
1

The ASDEX Upgrade Parameter Server

Gregor Neu
1
, Richard Cole

2
, Alex Gräter

1
, Klaus Lüddecke

2
, Christopher J. Rapson

1
, Gerhard Raupp

1
,

Wolfgang Treutterer
1
, Dietrich Zasche

1
, Thomas Zehetbauer

1
 and the ASDEX Upgrade Team

1

1
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

2
Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany

Concepts for the configuration of plant systems and plasma control of modern devices such as ITER and W7-X are based

on global data structures, or “pulse schedules” or “experiment programs”, which specify all physics characteristics

(waveforms for controlled actuators and plasma quantities) and all technical characteristics of the plant systems

(diagnostics and actuators operation settings) for a planned pulse.

At ASDEX Upgrade we use different approach. We observed that the physics characteristics driving the discharge control

system (DCS) are frequently modified on a pulse-to-pulse basis. Plant system operation, however, relies on technical

standard settings, or “basic configurations” to provide guaranteed resources or services, which evolve according to longer

term session or campaign operation schedules. This is why AUG manages technical configuration items separately from

physics items.

Consistent computation of the DCS configuration requires access to all this physics and technical data, which include the

discharge programme (DP), settings of actuator systems and real-time diagnostics, the current system state and a database

of static parameters. A Parameter Server provides a unified view on all these parameter sets and acts as the central point of

access.

We describe the functionality and architecture of the Parameter Server and its embedding into the control environment.

Keywords: configuration, plasma control system, plant systems, schedule, validation

1. Introduction

The ASDEX Upgrade (AUG) Control environment

consists of the modern digital discharge (or plasma)

control system DCS [1], machine control systems (MCS,

about 50 actuator and several infrastructure systems),

and around 150 data acquisition systems including ~20

real time diagnostics (rtDiags), which provide input to

DCS’s control feedback loops [2,3]. Safety and interlock

systems ensure that the control environment always

operates within safe bounds.

To execute a pulse, all these systems need to be correctly

configured: DCS, on the one hand, has to be set up with

application processes (APs) to perform specific control

tasks and these need to be parameterised to execute the

desired scenarios. Actuator systems and real time

diagnostics on the other hand need to provide the

resources required by DCS to execute its control tasks.

At AUG, the configuration of the control environment is

not done from a single pulse configuration description

(“pulse type” in JET [4], “experiment program” in

Wendelstein-7X [5], or “pulse schedule” in ITER [6])

but implemented as a staged process based on separately

managed configuration items: Plant systems are pre-

configured with “basic settings”; i.e. specific plant

characteristics and operation limits compatible with the

pulse goals [7]. The gas inlet system, for example, is

configured to provide fuelling capability for specific gas

types. In most cases this configuration will not only be

valid for the next pulse but for a series of pulses.

The parameters of the pre-configured plant need to be

made known to DCS’s APs to make sure that these

correctly interpret diagnostic input and output correct

commands to actuator systems. Another important DCS

parameter source are the segmented discharge programs

(DP) [8], which usually change from pulse to pulse and

contain all reference waveforms to direct the dynamic

behaviour of the control environment. The third

parameter source for DCS configuration is given

byvarious sets of static – not pulse specific – parameters

(examples are given in section 2.2). Some of the

parameters required by APs may not be available

directly from these sources but may have to be

computed, scaled, retyped, or reorganised in some way.

The situation therefore is that of several separately

evolving data sources (at the top of Fig. 1) and a need to

process this data, and tailor its presentation to the clients’

need. In information science such a scenario calls for the

implementation of a server.

The parameter server not only provides a unified point of

access for configuration data but also a natural location

for consistency checks (mainly of the DP with the

current plant settings). Also, the server itself can be

configured to redirect parameter requests to test data

instead of the usual source.

2

Fig. 1: Parameter server clients and data sources

2. Clients and Data Sources of the Parameter

Server

2.1 DCS Application Processes

DCS is the most important client of the Parameter

Server. It implements dedicated APs for various control

tasks such as I/O (digitised input from sensors or

rtDiags, digitised output to actuator systems), evaluation

of physical and technical quantities, monitoring,

feedback and feedforward control, and actuator

management [1]. A reference generator AP computes

reference waveforms from set points specified in the DP

and a segment scheduler AP directs the reference

generator to new scenarios on the occurrence of

predefined exeptions (also defined in the DP).

2.2 Parameters for Application Processes

Before each pulse, after a DP has been selected, APs

have to configured:

Technical parameters are required by various control

tasks: Settings from pre-configured actuator systems, for

instance, are used as clipping limits in feedback control,

monitoring limits or to inform actuator management APs

with actuator characteristics and priorities. Gain matrices

for specific feedback operation, machine and default

technical limits, linear or non-linear actuator scalings,

ADC/DAC scalings etc. are examples of static data, that

is typically stored in parameter files or databases and

used by control, monitoring, and I/O APs.

Physics parameters come from the DP, which is an XML

file edited by session leader to reflect the intended DCS

behaviour for a pulse. It is segmented into time slices for

phases of a discharge with a specific goal. Some

segments e.g. for ramp-up, repair [1], and termination

are re-used by many DPs, and have their own life-cycles

(ramp-up segments for instance, are typically developed

during the first phase of a campaign). Therefore, these

segments are not physically contained in DPs but stored

in separate segment containers and referenced (“linked

segments”).

For selected parameters DPs also allows to override

defaults from the static parameter database or to specify

single values that are used to modify actuator settings

(e.g. assignement of valves to a particular control task:

main chamber density, divertor neutral gas density, or

radiation control) or to check compatibility with these.

DPs and other segment containers are all managed in a

version controlled repository.

2.3 Other clients

Some key DP parameters of the upcoming pulse are

visualised and used by plant system officers to make

adjustments to their systems’ basic settings (either

automatically, or manually). The DP editor uses current

plant system data obtained via the parameter server to

provide guidance to the editing process. Various sets of

parameters are also displayed on the control room

screen, the operator user interface, or in browsers to keep

people outside the control room informed on the

experimental workflow.

3. Functions of the Parameter Server

3.1 Providing Configurations

To describe their configuration all DCS APs and all

rtDiags have so-called descriptor files that define

mappings of internal quantities, such as inputs, outputs

and other process parameters as used in the code, to

unique parameter names in a global namespace In some

cases values for the global namespace parameter are

provided.

It is the key purpose and main task of the Parameter

Server to fill in the missing values for all parameters in

the descriptor files, providing a complete configuration

file to requesting clients (Fig. 2).

Fig. 2: Mapping descriptor to configuration files

3.2 Validation and Testing

Being the unique point of access for all parameters

makes the Parameter Server the natural site to perform

checks and validation tasks. It also provides an efficient

and elegant solution for several test use cases, which can

be realised by simply re-routing parameter requests to

test data in a way completely transparent to accessing

clients.

4. Parameter Server Architecture

The Parameter Server has several HTTP service ports.

Listener threads spawn an individual service thread for

each client request. The service threads use the request

3

URL and its parameters to trigger the activity of objects

in a global data structure: the Object Store.

4.1 Parameter objects (value, access, computation)

All objects in the Object Store are instantiations of a

C++ base object class or a derivate thereof. All objects

have a “process” (aliased “value” in parameter objects)

method, which performs the object’s main function and

of utility methods – e.g. to represent a self-description of

the object in a web browser or an XML file, to signal to

the notification service (see below) that the object’s

value has changed, or to turn caching of values on or off.

Different Parameter Objects populate the Object Store

(Fig. 2):

 “Value parameters” are instantiated with constant

values. The “value” method simply returns the

stored value.

 “Access parameters” implement access functions,

e.g. for reading actuator settings. Their “value”

function reads the value anew everytime it is called

– unless caching is turned on.

 “Function parameters” are objects, whose “value”

function will typically perform some computation

accessing other objects in the object store. Again,

these can be subject to caching.

The Parameter Server also features generic classes,

whose “process” method is instantiated from inline Ruby

or bash code in a configuration file. When “process” of

such an object is called, control is handed over to the

Ruby interpreter or a shell, which can read/write and

otherwise manipulate the object store using SWIG (REF

SWIG) generated wrapper functions. This mechanism

opens the path to the use of other scripting languages

such as Perl, PHP, Python, Tcl, and many more.

4.2 Other objects

Apart from the parameter objects, the Object Store

contains numerous utiliy objects for reading and writing

files from/to external sources (DP repository, Apache

web server) and validation and consistency check

objects.

4.3 Object Store Structure

Objects in the object store are organised as a stack of

frames (maps of names to pointers to objects). Objects

are always searched by entering the stack from the top

(i.e. accessing the last frame pushed on the stack). An

object in a higher frame thus overrides objects with the

same name in lower frames:

 The lowest frame is the “built-in frame” that is

created when the Parameter Server is started. It

contains objects, which define basic functions, e.g .

for fetching and processing the DP, or for providing

the setup of DCS. Other objects define the

environment for the operation of the Parameter

Server itself.

 The “initialisation frame” is populated with default

parameter objects (value, access, and function

objects) and standard validation objects.

Configuration files drive the instantiation of objects

in built-in and initialisation frame. The XML

elements in these files correspond to object class

names, the name attribute gives the object name and

the remaining attributes describe the data type, the

value (for value objects only), and the parameters

required by the object’s “process” method.

 The “DP frame” is filled when the Parameter Server

processes a discharge program. Objects in this frame

are used to override the default parameters of the

initialisation frame, to write new values to actuators,

or to store quantities derived from the DPs reference

waveforms (e.g. requested plasma current flattop,

max. min. of feedforward currents for poloidal field

coils).

 The “descriptor frame” hosts objects that originate

from AP or rtDiag descriptor files.

At the end of a pulse all frames from the stack except for

the built-in frame are popped from the stack thus

providing a clean slate for the configuration of the next

pulse (all objects are reset to their default).

Fig. 3: Parameter server services and interfaces. N:

notfication service; B: browsing service, S: standard

configuration service, G: generic parameter service

4.4 Services

The Parameter Server currently implements four services

(Fig 2):

4.4.1 Standard configuration service:

This service allows submitting descriptor files

complying with a particular XML schema (DESC). The

files are parsed and an object is created for the file itself

and for each parameters for which a value is specified.

When at a later stage APs and rtDiags retrieve their

configuration files (schema CONF), the Parameter

Server accesses the object store to find the previously

submitted file and to resolve all references to parameters

before returning it to the client.

4

Note that the decoupling of submission (descriptor) and

retrieval (configuration) allows clients to mutually

provide locally defined parameters to each other.

4.4.2 Generic parameter service:

All clients that request files, which are not compliant to

the DESC/CONF schemata described above, use this

service. A typical example is the request of a Preview by

a data acquisition system or the request for the current

plant state by the DP editor.

When a client requests a file, the object store is first

checked for an object entry with the specified filename.

If such an entry exists, its process method is executed –

the scheme is used, for instance, to return the DCS setup.

Otherwise the file request is redirected to an Apache web

server, the file parsed for occurences of parameter

references, and the references replaced by the

corresponding values before returning the file to the

client.

The interface can also be used to browse files with

parameter references. File contents are displayed with all

references resolved.

4.4.3 Notification Service

In the past, the ease with which clients could request

information from the Parameter Server has led to

(occasional and accidental) “denial-of-service-attacks”

on the Parameter Server, typically through polling of

plant system parameters.

Polling is usually done by clients that want to detect the

change of a particular parameter in a timely way. This is

highly inefficient, especially when several clients poll

the same parameters, and hence a notification service

was implemented in the latest generation of the

Parameter Server. Clients now simply register (and

unregister) for notification when an object of the object

store is modified. When registering, the client specifies

the name of the object, the URL where it wants to be

notified, and the protocol to be used for notification

(currently only http).

The service is implemented by maintaining a linked list

of notification requests and using an internal polling

thread, which periodically calls the “value” method for

all objects in the list. When the value changes a callback

to all requesting clients is executed.

4.4.4 Object Store Browsing Service

This service renders the content of the object store as

tree structures of the object names in a web browser.

Two views are available: frame-by-frame, where a

separate tree is displayed for each frame (the same name

can show up in several frames), or global, where a single

tree displays all parameter names (if objects with the

same name exist in several frames only that of the

highest-level frame is shown). The service is used

mainly for debugging purposes.

5. Conclusion

Configuring a control environment like that of ASDEX

Upgrade is a process and cannot be conceived as

“downloading a global configuration data structure”

(pulse schedule [6] or experiment program [5]) to the

plant. With our flexible experimentation scheme, [9] a

better approach is to allow plant systems to (pre)-

configure themselves from proprietary datastructures and

according to own time schedules, guaranteeing resources

to a pulse or a series of pulses. The method of choice

appears to be to implement a Parameter Server that

allows clients (notably the discharge control system) to

access relevant parameters. This unique point of access

also permits to check the consistency and validity of

configuration data irrespective of its source, and

provides a simple and elegant means of implementing in-

situ tests by redirecting configuration requests.

Acknowledgments

This work has been carried out within the framework of

the EUROfusion Consortium and has received funding

from the European Union’s Horizon 2020 research and

innovation programme under grant agreement number

633053. The views and opinions expressed herein do not

necessarily reflect those of the European Commission.

References

[1] W. Treutterer et al., ASDEX Upgrade Discharge Control

System—A real-time plasma control framework, Fusion

Eng. Des., 89 (3), (2014), pp. 146-154

[2] K. Behler et al., Review of the ASDEX Upgrade data

acquisition environment — present operation and future

requirements, Fusion Eng. Des., 43 (3–4), (1999), pp.

247–258

[3] K. Behler et al., Update on the ASDEX Upgrade data

acquisition and data management environment, Fusion

Eng. Des., 89 (5), (2014), pp. 702–706

[4] H van der Beken et al., Level 1 software at JET: a global

tool for physics operation, Proceedings., IEEE Thirteenth

Symposium on Fusion Engineering Volume 1 (1989),

201-204

[5] A. Spring et al., A W7-X experiment program editor–A

usage driven development, Fusion Eng. Des., 87 (12),

(2012), pp. 1954–1957

[6] T. Yamamoto et al., Designing a prototype of the ITER

pulse scheduling system, Fusion Eng. Des., 87 (12),

(2012), pp. 2016-2019

[7] G. Raupp et al., ASDEX Upgrade CODAC overview,

Fusion Eng. Des., 84 (7-11), (2009), pp. 1575–1579

[8] G. Neu et al, The ASDEX Upgrade discharge schedule,

Fusion Eng. Des., 82 (5–14), (2007), pp. 1111-1116

[9] G. Neu, et al. Experiment planning and execution

workflow at ASDEX Upgrade, Fusion Eng. Des., 86 (6–

8) (2011), pp. 1072–1075

http://www.sciencedirect.com/science/journal/09203796
http://www.sciencedirect.com/science/journal/09203796/43/3

