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Kurzzusammenfassung

In dieser Arbeit werden generische, teilchenbasierte Modelle für die Beschrei-

bung von hierarchisch geordneter, polymerischer weicher Materie entwick-

elt, deren makroskopische Struktur mit mikroskopischen, molekularen Eigen-

schaften verknüpft ist. Dazu wird ein Top-down-Ansatz verwendet, um ma-

kroskopische Eigenschaften wie beispielsweise das generelle Phasenverhalten

zu reproduzieren. Methodisch werden die Modelle ausgehend von effektiven

Funktionalen (Hamiltonfunktion) entwickelt, die von lokalen skalaren und ten-

soriellen Ordnungsparametern abhängen, um flüssigkristalline (FK) Phasen zu

beschreiben.

Elastische Eigenschaften von nematischen FK Polymerschmelzen werden un-

tersucht. Als eines der Hauptresultate wird in der Simulation eine lineare

Abhängigkeit der Frank elastischen Spreizkonstante von der Kettenlänge ge-

messen, was die Auflösung eines Widerspruchs in bestehenden theoretischen

Vorhersagen nahelegt.

Des Weiteren wird ein Modell zur Beschreibung der Morphologie von poly-

merischen Halbleitern auf großer Längenskala am Beispiel des Moleküls Poly-

(3-Hexylthiophen) (P3HT) entwickelt. Die Modellierung der lamellaren, teil-

kristallinen Morphologie von realem P3HT wird im ersten Schritt für die we-

niger geordnete FK Phase entwickelt. Die nicht-gebundenen Modellwechsel-

wirkungen sind weich und anisotropisch, wobei zusätzliche biaxiale Symme-

trie die lokale Molekülarchitektur und die π-Wechselwirkungen generisch be-

schreibt. Makroskopische Materialeigenschaften, z.B. die Abhängigkeit des

isotrop-nematischen Übergangs von der Kettenlänge, werden reproduziert. Die
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Kurzzusammenfassung

Morphologien werden in Hinblick auf Landungstransporteigenschaften unter-

sucht.

Im letzten Teil der Arbeit wird ein Multiskalenansatz zur Wiedereinführung

von atomistischen Details entwickelt.
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Abstract

This thesis addresses the development of generic, particle-based models for hi-

erarchically structured polymeric soft matter, in which the macroscopic struc-

ture is linked to microscopic, molecular properties. The models are developed

in a top-down approach, tailored to reproduce macroscopic properties of the

real system, such as the general phase behavior. Methodologically, the mod-

els are derived from effective functionals (Hamiltonians) that depend on local

scalar and tensorial order parameters, capturing liquid crystalline (LC) phases.

The elastic properties of nematic LC polymer melts are studied. As one of

the main results, a linear scaling of the splay Frank elastic constant with the

chain length is found in the simulations, providing evidence for resolving a

disagreement of existing theoretical predictions.

Subsequently, a model is developed describing the large-scale morphology of

polymeric semiconductors, as a test case for poly(3-hexylthiophene) (P3HT).

The modeling of the lamellar, semi-crystalline morphology of real P3HT is, in

a first step, developed for the less ordered LC phase. The non-bonded model

interactions are soft and anisotropic, with additional biaxial symmetry captur-

ing generically the anisotropy of the molecular architecture and the π-stacking

interactions. Macroscopic features of the real material, such as the depen-

dence of the isotropic-nematic transition on the chain length, are reproduced.

The morphologies are analyzed with respect to charge transport related prop-

erties.

In the last part of the thesis, a multiscale scheme for the reconstruction of

atomistic detail is presented.
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1 Introduction

1.1 Motivation

Soft condensed matter concerns our everyday life. Most of our food is soft

matter, and so are, for example, rubber and soap. These materials can be de-

formed with moderate force and their macroscopic properties can neither be

classified as simply liquid-like nor as purely solid-like.

Soft matter consists of large molecules. In many cases, these molecules are

polymers, i.e. molecules which are composed of a large number of repeated,

covalently linked subunits.

The large scale structures and dynamics of soft matter are governed by weak

intermolecular forces on the order of the thermal energy kBT (about 2.5 kJ
mol

at room temperature). Therefore, thermal fluctuations are sufficient to signif-

icantly change the structure of the material. Often, for entropic reasons, the

macromolecules exhibit spontaneous self-organization into complex, ordered

structures.

These structures in soft matter systems may occur hierarchically, ranging

from length scales comparable to the size of a single molecule to higher or-

der, super-molecular scales. Typical examples are the spontaneously formed

nanometer-sized patterns found in block-copolymer systems, or the hierar-

chical assembly of lipid molecules into membranes in biological materials.
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1 Introduction

Fig. 1.1c shows a (model) system of a membrane structure, which itself orga-

nizes into spherical super-structures (vesicles).

Since a molecule may consist of several hundreds or thousands of atoms, the

typical length scales at which self-organizing structures occur are large from

the microscopic (atomistic) point of view. For the same reason, collective,

super-molecular assembly is observed on large time scales, i.e. on scales of

seconds to days or years.

One way of studying complex soft matter systems, besides the experiment

and analytical theory, is to investigate them with computer simulations. Usu-

ally, one formulates a computer model in terms of a set of idealized degrees

of freedom and interactions (e.g. defining interactions between atoms with a

force-field) and, based on these, derives macroscopic system properties with

the tools of statistical mechanics (“computer experiments”) [4]. The rapid de-

velopment of modern computers in the last decades permits an investigation

of models with increasing complexity. Nevertheless, large structures and slow

processes in complex soft matter are often still far from length and time scales

which can be accessed with well-developed, conventional simulation schemes.

In light of this, soft matter modeling has benefitted from the development of

coarse-graining techniques in order to account only for the relevant physical

processes involved and neglect unnecessary details.

Conceptually, coarse-graining is a process to “average out” certain local de-

tails and thereby reduce the number of degrees of freedom which describe a

system (see Fig. 1.1 for an illustration of the successive reduction of details in

order to describe the same system at different levels of resolution).

In the molecular simulation community, several variants thereof have been pro-

posed over the past years. Coarse-graining schemes help to turn the intractable

problem of sampling large systems “brute force” with techniques on the level

2



1.1 Motivation

(a) (b) (c)

First principle 

atomistic
Systematically 

coarse-grained
Phenomenological / generic

Figure 1.1: Scheme which illustrates the concept of coarse-graining for the ex-
ample of a lipid bilayer membrane. (a) Atomistically resolved lipid
molecule (From Ref. [5]). (b) Systematically coarse-grained model
of a lipid (From Ref. [6]). (c) Generic representation of lipids with
only a few beads, used for studying collective phenomena in lipid
bilayers on large scales (From Ref. [7]).

of atoms into that of sampling a reduced set of (coarse-grained or collective)

degrees of freedom, evolved by simple, effective interactions (coarse-grained

force-field).

The major challenge is to find a suitable set of such coarse degrees of freedom

and to define the effective interactions accordingly.

In this respect, systematic strategies have been proposed, in order to “derive”

coarse-grained models solidly based on statistical mechanics [8–15]. They

usually combine an explicit analytical mapping of atoms on the coarse-grained

sites with the calculation of effective interactions from an atomistic reference

system, i.e. force field. Once the coarse-grained model is parameterized, quan-

titative results may in principle be obtained from simulations thereof.

Balancing the degree of coarse-graining with the ability to describe certain

phenomena of interest, e.g. self-assembly or, in general, large scale phenom-

ena, is difficult within an ansatz focussed on deriving effective interactions
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1 Introduction

bottom-up from the atomistic force fields. In some situations, atomistic refer-

ence simulations might not be feasible, e.g. simply because an accurate atom-

istic force-field is not known. Furthermore, for the simulation of macroscopic

phase separation or self-assembly, where the bulk structure can change during

the simulation, effective interactions usually cannot be transferred between

thermodynamic states [16]. It is, for example, difficult to find an effective

coarse-grained potential which generates reliable predictions for the same sys-

tem at different temperatures.

In these cases, models are frequently developed phenomenologically, cap-

turing only some key aspects of the described real system and reproducing a

desired macroscopic (thermodynamic) property or phase behavior. The molec-

ular representation and, in particular, the molecular architecture in such frame-

works is generic, i.e. coarse-grained degrees of freedom are not explicitly con-

nected to atomistic coordinates. Still, the parameterization of the model can

be matched with the thermodynamic behavior of the real system. Even though

not easy to categorize, the latter strategies are often called top-down methods,

emphasizing the fact that certain effective interactions are imposed directly on

a coarse level of description in order to reproduce macroscopic behavior. This

is conceptually different from the previously discussed bottom-up schemes,

which are based on atomistic reference data. If no parameter matching is in-

volved at all, i.e. when a model is generic, one can still learn about general

physical concepts which govern macroscopic behavior of soft matter systems.

Phenomenological, generic molecular modeling is frequently guided by the

assumption of scale separation, a concept applying to various soft materials.

Scale separation refers to the case when the structure and dynamics on large

length and time scales (e.g. center-of-mass packing and motion) is indepen-

dent of the underlying microscale (e.g. atomistic structure and vibrations).

This concept has been of central importance for the development of simple

4



1.1 Motivation

models for long-chain polymeric systems. In these systems, the chain connec-

tivity introduces long range correlations to the material. As a consequence,

the length scale on the order of the average extension of a chain can be dis-

tinguished from the atomistic Ångström scale, falling in between the micro-

scopic scale of atoms and the macroscopic length scale. It is therefore typ-

ically called mesoscale. Interestingly, for long chains in solution, properties

on the mesoscale, such as the scaling of the average chain extension with its

length, have been found independent of microscopic details and interactions.

Therefore, simple, minimal models based on generic chain connectivity and

excluded volume repulsion are often used [17, 18]. Simple assumptions which

guide such generic modeling schemes are supported by experimental valida-

tions [19, 20]. Eventually, the macroscopic description of long chain polymer

solutions with minimalistic models found a rigorous theoretical justification

based on arguments from renormalization group theory applied to polymer

chains [21, 22].

Nevertheless, in many cases in which models have to be reasonably coarse

to allow the study of relevant processes, and the described real system is at the

same time reasonably complex, scale separation may not hold. In other words,

in such cases, features on the macroscale may emerge from properties on the

fine scale, which are readily “averaged out” in the coarse model representa-

tion. Thus, microscopic and macroscopic properties may be coupled strongly.

Chain stiffness, sub-molecular architecture and/or directionality of interac-

tions, for example, may lead to the formation of long-ranged partial order (i.e.,

liquid crystalline order) on macroscopic length scales. Clearly, the key molec-

ular features leading to the macroscopic ordering have to be incorporated in

a generic model. Only in that way, it can account for the macroscopic phase

behavior of the system. Since, as already discussed, systematic linking of such

fine scale features to macroscopic properties can be challenging, the develop-
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1 Introduction

ment of phenomenological models therefore relies to some extent on intuition.

One way to address complex structured systems with simple phenomeno-

logical models is to impose an effective energy landscape on the level of a

functional of local order parameters, i.e. to define an effective Hamiltonian

based on collective variables. Such concepts are known from classical density

functional theory (DFT) of liquids [23, 24], assuming that the free energy of

the system can be written as a functional of local density fields.

For polymers, for example, top-down modeling of relatively simple systems

with Edwards-type Hamiltonians is frequently used [18]. Therein, chain con-

nectivity is modeled by the connection of discrete segments with harmonic

potentials (“Gaussian thread”), while repulsive interactions between segments

are expressed as a simple functional of local segment density. These generic

approaches are traditionally focussed on density as the local order parameter,

i.e. they are used to capture systems with positional order, but without orien-

tational order.

However, phenomenological functionals may be written in terms of more com-

plex order parameters, in the spirit of phenomenological Landau-de Gennes

free energy expansions [25–27]. In that way, one can account for more com-

plex structuring and phase behavior, e.g. capturing liquid crystalline ordering

or crystallization. A natural choice of order parameters which capture increas-

ing complexity of a system is the sequence of liquid crystalline order parame-

ters [27, 28].

The aim of this thesis is to develop generic, particle-based simulation schemes

for hierarchically structured polymer systems that are linked to the micro-

scopic scale, based on simple, effective functionals of liquid crystalline order

parameters.

An advantage of such simulation schemes is given by the fact that, for
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1.2 Outline

simple functionals, models based on collective order parameters (field-based

representation) can be explicitly connected to a particle-based representation

[29–35]. This allows the sampling with standard particle-based simulation

schemes, such as Molecular Dynamics simulation or Monte Carlo simulation.

Starting from the most simple case of nematic liquid crystalline polymers, a

major development presented in this thesis is the incorporation of a biaxial-

nematic order parameter in such functional-based approaches. In that way, one

can capture an additional planar packing of molecules in a generic way. Fol-

lowing the sequence of amorphous to nematic to biaxial order, the presented

modeling schemes will be applied to a real polymeric material.

1.2 Outline

The linking element across the chapters in this thesis is the top-down mod-

eling strategy based on phenomenological functionals. However, the systems

this strategy is applied to are diverse. Therefore, the following outline gives -

for each study - a very brief overview of the physical systems and questions

addressed in a first step, and the methodological framework by which they are

studied in a second step. An overview of the underlying, conceptual modeling

schemes is provided in chapter 2.

In chapter 3, nematic liquid crystalline systems are investigated. While

those systems present the most simple case of liquid crystalline order, ne-

matic polymers exhibit a wealth of fascinating structural and elastic proper-

ties, which distinguish them from similar liquid crystalline systems containing

small molecules (short mesogenes). The focus in this chapter is on the investi-

gation of Frank elastic constants in nematic polymer systems, motivated by the

fact that the functional form of their dependence on the length of the polymer

chains has not yet been addressed rigorously in simulations.

7



1 Introduction

Conceptually, a model is developed in which generic nematic coupling is intro-

duced by a functional that depends on the nematic order parameter. From this

functional, a particle-based simulation scheme is subsequently derived. Since

this approach allows the equilibration of nematic mesophases on large scales,

an answer to the question how the Frank constants depend on the length of the

polymer will be given.

In chapter 4, the focus is shifted on more complex ordered systems, namely

the morphology of conjugated polymer systems used in organic electronics

(OE) applications. Fig. 1.2a depicts a blend of poly(3-hexylthiophene) (P3HT)

(a)
(b)

(c) (d)P3HT/PCBM Blend
Zoom, pure P3HT

P3HT Stack Single P3HT chain

Figure 1.2: Schematic of the hierarchical structure of a P3HT/PCBM blend.
(a) Illustration of phase separated morphology, with pure and in-
termixed domains (From Ref. [36]) (b) Zoom into the structure,
representing a pure P3HT domain, with visible amorphous and
partially crystalline domains (From Ref. [37]) (c) Further zoom
into a crystalline stack of P3HT chains (From Ref. [38]) c) Single
atomistic structure of a P3HT molecule.

and PCBM, which are both typical representatives of OE materials. P3HT

conducts charges along its relatively stiff backbone. It has short side chains

attached for imposing solubility (see Fig. 1.2d). The structure of P3HT in the

solid state is complex, with biaxially oriented backbones in lamellar-like crys-

talline stacks (planar orientation of flat aromatic rings), see Fig. 1.2c. Ordered

domains themselves are embedded in an inhomogeneous morphology of either

8



1.2 Outline

amorphous or partially ordered regions (illustrated in Fig. 1.2b).

Within the modeling framework of this thesis, the semi-crystalline structure of

P3HT is approached starting in the first step from a less ordered representation,

describing biaxial liquid crystalline phases. The model is able to capture the

sequence of amorphous via uniaxial to biaxial-nematic liquid crystalline or-

dering. The phenomenological interactions are combined with a sampling of

chain conformations using a systematic coarse-graining approach. Therefore,

the obtained morphologies can be investigated with respect to charge transfer

related properties. The influence of long-range mesoscale order on the ener-

getic landscape, for example, is subsequently studied. The chapter concludes

with a brief presentation of first attempts to address the more complex system

of P3HT/PCBM blends, i.e. the structure shown in Fig. 1.2a.

Chapter 5 is directly connected to the questions addressed in chapter 4.

Starting from there, a refined version of the modeling approach is presented.

Because of the sampling of realistic P3HT chain conformations combined with

explicit information on the polymer segment (hexylthiophene) orientations,

the generated morphologies discussed in ch. 4 are well suited for successively

restoring local atomistic details (backmapping).

To reach this goal, however, fine scale calculations are not directly feasible due

to a local overlap of segments and hence a resulting spatial overlap of charges.

The problem is approached by a three-step scheme, successively reiterating the

coarse-grained morphologies with more refined models. A “medium scale”,

systematically coarse-grained model is presented, in order to adjust the local

packing of the system towards the real target structure. Eventually, the study of

the influence of the morphology on the energetic landscape in ch. 4 is revisited,

now within a more precise, atomistically resolved level of detail.

9





2 Modeling approaches - an

overview

The advantages and limitations of a specific soft matter modeling approach de-

pend on the focus of the investigation. In addition to the difficulty of choosing

 First-principle

   (atomistic)

Bottom-up 

Top-down

Coarse-grained model

Microscopic 

information

Macroscopic 

information

Experiments

Figure 2.1: Scheme, illustrating different categories of modeling approaches.
Distinctions are not sharp and modern multiscale treatments incor-
porate many different aspects (at once).

an approach which is tailored to a specific question, it seems already challeng-

11



2 Modeling approaches - an overview

ing to categorize the available modeling strategies. The variety of concepts

and labels thereof is diverse. In recent reviews on the topic [10, 14, 39–42],

this diversity has been reflected equally.

The categorization into bottom-up and top-down approaches, as already in-

troduced in ch. 1, is probably one of the most rigorous conceptual distinctions.

The modeling approaches which are discussed in this chapter follow this clas-

sification.

Bottom-up schemes generally rely on information from a finer scale (com-

pare Fig. 2.1). In computational modeling, on the one hand, this information

is often obtained from a model at a finer resolution. In coarse-graining ap-

plications on molecular systems, the fine scale model is typically represented

by an atomistic force field. On the other hand, bottom-up modeling can be

build on experimental data. Structure-based bottom-up methods may use in-

formation on the local liquid structure of a fluid, for example. Ch. 2.1 reviews

some major developments in the field of bottom-up coarse-graining. Among

the methods which are reviewed, the structure-based methods are presented in

sec. 2.1.2 in most detail, since these methods are used in this thesis.

Top-down methods do not depend on information about an underlying finer

scale. They are are tailored to reproduce macroscopic properties, for example

thermodynamic observables and phase behavior (see Fig. 2.1). They are not

necessarily linked explicitly to a finer resolution. In this sense, they are build

phenomenologically. As discussed in detail in the following chapters, top-

down models, derived on a coarse description level, can frequently be linked to

field-based models because of the possibility for a dual representation in terms

of particles and (collective) fields. In ch. 2.2, a brief overview of top-down

approaches in molecular modeling is discussed. The main focus is put on field-

based modeling approaches, i.e. the use of collective order parameter fields

12



2.1 Bottom-up methods

for imposing a generic thermodynamic behavior on a molecular model. The

underlying links between a particle-based and a field-based model description

are reviewed in sec. 2.2.3. Such links of a particle-based model to a field-based

description are used at many stages in this work.

2.1 Bottom-up methods

For many applications in soft matter modeling, an essential prerequisite for a

coarse-grained (CG) model is the quantitative reproduction of reference data,

either obtained from a model on finer scale or from an experiment. Further,

one may want to “hand over” obtained structures from a CG simulation to a

finer scale description with minimal approximation, i.e. to work with a model

which has a “close” connection to the reference system.

In this chapter, approaches are reviewed which can collectively be labeled

bottom-up coarse-graining strategies [9–15]. Bottom-up coarse-graining lit-

erally implies an underlying fine scale of material description. This had ini-

tially been intended when the term coarse-graining was first used in the physics

community to describe the process of “averaging out” fine degrees of freedom

[43].

On the one hand, the possibility to generate specific reference data (with high

accuracy) in a controlled way is an advantage of computer simulations over

experiments. Complex microscopic information may in some cases be diffi-

cult to extract from experiments, and so may be the control and quantification

of the errors in the experimental reference data. On the other hand, deriving

a quantitatively “correct” model from a more refined (atomistic) model is lim-

ited by the accuracy of the parameterization of the latter, i.e. by the accuracy

of the atomistic force field.

For bottom-up strategies, the reference system typically contains atomistic

13



2 Modeling approaches - an overview

degrees of freedom, while the CG description is based on, for example, the

centers-of-masses of groups of atoms as the CG degrees of freedom. Fre-

quently, as in the center-of-mass example, CG degrees of freedom (or interac-

tion sites) are explicitly connected to the atomistic coordinates. The connec-

tion between atomistic and CG degrees of freedom can be formalized by the

definition of a mapping operator, as it has been presented in a series of publi-

cations about the attempt to cast the systematic bottom-up coarse-graining into

a solid statistical mechanics framework [12, 13, 41].

Following a systematic description [15, 44], an atomistic configuration, given

by a set of atomistic coordinates rN = {r1, . . . , rN}, is linked to a CG config-

uration, defined by a set of interaction site coordinates Rn = {R1, . . . ,Rn},

via a mapping operator M ,

Rn = MrN . (2.1)

If the atomistic, fine detailed system is described with a potential energy func-

tion u(rN), and the CG system equivalently with a CG potential U(Rn), find-

ing a model potential can be motivated with the rigorous condition of equal

probabilities of states in both representations, i.e. by claiming [13]

e−U(Rn)/kBT ∝
∫

drNe−u(rN )/kBT δ
(
MrN −Rn

)
. (2.2)

The relation in eq. 2.2 can be seen as the formal manifestation of the process

to “average out” fine scale degrees of freedom when coarse-graining.

When imposing the link between the CG and the atomistic potential, eq. 2.2,

the CG potential is interpreted as a potential of mean force (PMF). This is

a multibody effective potential which describes the interaction between CG

sites as if they were generated by the underlying atomistic force field (com-

pare also Ref. [45] for a rigorous discussion of effective interactions). In this

way, the coarse-grained sampling by default reproduces all thermodynamic
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and structural observables with respect to the CG mapping sites, in particular

all correlation functions.

While the PMF will be formally introduced and discussed in sec. 2.1.2 (it will

become clear why the potential is connected to a mean force), some general as-

pects will already be discussed here. Since the effective interaction arises from

the removal or integration of fine (atomistic) degrees of freedom, the PMF in-

corporates entropic contributions. Thus, by default, the effective potential is

temperature or state point dependent. Consequently, even if the full many-

body effective potential was known, it might be difficult to use it at different

thermodynamic states or even across areas in the phase diagram in which a

transition is expected [14, 16].

2.1.1 Force matching

The force matching method [41, 46] is only briefly motivated here. In that

framework, the connection of interactions between atoms (atomistic force-

field) and interactions between coarse-grained sites (CG force-field) is devel-

oped on the level of forces, following a variational minimization of the residual

χ2(F CG) =
1

3N
〈

N∑

l=1

|F CG
l (MrN)− F AA

l (rN)|2〉, (2.3)

which is a functional of the CG force field F CG. F AA
l is the effective force on

a site l in the atomistic representation, derived from the atomistic force field,

while F CG
l is the effective force on the same site in the CG representation, de-

rived from the CG force field, respectively [41]. The yield of such systematic

force matching [46] methods is a tabulated CG force field, which can be im-

plemented directly with standard Molecular Dynamics (MD) simulation pack-

ages, such as GROMACS [47], LAMMPS [48], or ESPResSo/ESPResSo++

[49, 50]. An implementation of the force matching technique can be found,
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2 Modeling approaches - an overview

for example, in the coarse-graining software package VOTCA-CSG [44].

The method is closely related to the optimization of a CG potential with re-

spect to correlation functions (structure-based coarse-graining) [51, 52].

2.1.2 Structure-based coarse-graining

In the following, structure-based coarse-graining techniques are discussed [11,

53–55]. In order to do so, some fundamental terms from statistical mechanics

are introduced first. A convenient choice of the statistical ensemble in molec-

ular simulations is the canonical ensemble, where the probability of finding a

system of N indistinguishable particles in a microstate rN = {r1, . . . , rN} is

proportional to the Boltzmann-weight

W (rN) = e−βH(rN), (2.4)

with β = 1
kBT

. The value of the function H
(
rN
)

at the state point rN is

the total energy of the system, and H is the Hamiltonian, here written in the

most general form of an N -body potential. The probability of a microstate

rN is then given by the probability function P (N)(rN) = W (rN )
Z

, which is

normalized by the configurational partition function

Z =
1

N !

∫

W (rN)drN , (2.5)

where drN = dr1 . . . drN . Note that here only the configurational part of the

partition function is considered, i.e., momenta are not included.
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Correlation functions and potential of mean force

Following standard textbooks [24, 56, 57], one can define a hierarchy of con-

ditional probabilities for finding a specific (smaller) set of n particles by

P (n)(rn) =

∫

P (N)(rN)drN−n. (2.6)

For later convenience, this is often written as the n-particle distribution func-

tions

n(n)(rn) =
N !

(N − n)!
P (n)(rn). (2.7)

The prefactor in eq. 2.7 is chosen under the assumption of indistinguishable

particles, hence it corrects for the permutation of a subset of n particles among

the full set of N particles. For eq. 2.7, this gives the intuitive interpretation

of a probability of finding any subset of n particles at (or close to) the coor-

dinates r1, . . . , rn, irrespective of their permutation among those coordinates.

An important quantity for later use is the two-particle distribution

n(2)(r1, r2) = N(N − 1)

∫

P (N)(rN)drN−2. (2.8)

This distribution function can be related to a spatial correlation function g(r1, r2)

by

n(2)(r1, r2) = n(1)(r1)n
(1)(r2)g(r1, r2). (2.9)

In an isotropic system, g(r1, r2) = g(r = |r1−r2|) only depends on the spatial

distance between the particles. The function g is called the radial distribution

function (RDF). In a macroscopically homogeneous and spatially isotropic

system there is a more convenient writing: g(r) = V 2

N2n
(2)(r1, r2). Hence,

it follows that

g(r) =
V 2(N − 1)

NZ

∫

WN(r
N)drN−2. (2.10)
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The subsequent discussion is borrowed from textbooks [56, 57] in order to

step through the following statistical problem: Choosing a molecule, which is

labeled for convenience with index 1 and coordinates r1, one can ask for the

average force acting on this molecule due to the contributions from all other

molecules as a function of the distance of molecule 1 from a second molecule

2 with coordinates r2.

The force on molecule 1 is defined as F1(r
N) = −∂H(rN )

∂r1
. Its conditional aver-

age in the canonical ensemble when molecule 1 is at position r1 and molecule

2 at position r2 is given by

〈F1(r1, r2)〉 =
∫ (

−∂H(rN )
∂r1

)

WN(r
N)drN−2

∫
WN(rN)drN−2

. (2.11)

From the expression eq. 2.11, the average force on molecule 1 as a function

of the pair distance r = |r1 − r2| can be written as the derivative of a func-

tion UMF , which is frequently introduced in statistical mechanics as the (two-

particle) potential of mean force (PMF), drawn from the relation

〈F1(r)〉= − ∂UMF (r)

∂r
. (2.12)

This function can be connected to the pair correlation function eq. 2.10 by

substituting the definitions from eqs. 2.8-2.10 into eq. 2.12, yielding

g(r) = e
−

UMF (r)

kBT . (2.13)

Note that in the limit of low density, the PMF in eq. 2.12 converges to the po-

tential energy of the two particles. However, in cases of a finite system density,

the configurations of the surrounding particles give rise to an entropic contri-

bution and the PMF is therefore state dependent, i.e. it depends on temperature

and density. Eq. 2.11 can be similarly written in a more general way as an av-
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erage force F1(r
n) acting on molecule 1 as a function of the configuration rn

of a (finite) set of n particles. In that way, the many-particle PMF is defined

by [56]

F1(r
n) = −UMF (r

n)

∂r1
. (2.14)

For bottom-up coarse-graining applications, in which a number of N fine

(atomistic) degrees of freedom are mapped onto n CG degrees of freedom, the

optimal solution for an effective CG potential can formally be also seen as an

n-particle PMF. This PMF corresponds to the effective free energy of the set of

n CG degrees of freedom, which is generated by integration over the atomistic

degrees of freedom, as a function of their configuration Rn (compare eq. 2.2).

In practical coarse-graining applications, one is restricted to approximations

of this multi-dimensional potential.

Boltzmann-Inversion

The relationship between the two-particle potential of mean force, depending

on the pair distance, and the radial distribution function in the previous section

can be generalized. The distribution of any independent CG degrees of free-

dom, which may be, for example, a CG bond length b or bond and torsional

angles θ and φ [8], can be related to the Boltzmann weights of appropriate

effective potentials Ub, Uθ and Uφ. Thus, for the probability distributions, the

following relations apply [8]:

p(γ) ∝ e−Uγ(γ)/kBT , γ = b, θ, φ.

(2.15)
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The coarse-grained potentials are subsequently estimated by inverting the prob-

ability functions eqs. 2.15 [8],

Uγ = −kBT ln p(γ), γ = b, θ, φ.

(2.16)

This method is frequently applied in polymer simulations, for which the prob-

ability distributions are obtained, for example, from an atomistic reference

simulation [8, 54].

Iterative Boltzmann-Inversion

The Iterative Boltzmann-Inversion (IBI) is a standard algorithm for approxi-

mating a pairwise potential in order to reproduce the RDF of pairs. The IBI

is designed for solving the problem of deriving model potentials from given

structural data, i.e. correlation functions [11, 58]. The available data can be ob-

tained from diffraction experiments, or, similarly, from a reference computer

simulation. In experiments, a convenient way of accessing useful structural in-

formation is to measure the structure factor from diffraction experiments and

then perform a Fourier transformation of the result in order to obtain the pair

correlation function.

If structural data for g(r) is given as a reference, the pair potential can be

obtained from an iterative process. If a pair potential reproducing a certain

RDF exists, a theorem derived by Henderson [59] states that such a potential

is unique. However, in practical applications this statement has to be taken

with care. It is not obvious how deviations of the RDF data propagate into the

derived potential, i.e. how statistical fluctuations in a real sample of an RDF

influence the resulting model potential [44, 52].
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A convenient choice of an initial guess for the potential can be

Upair(r) = −kBT ln[g(r)], (2.17)

which gives a good approximation for dilute systems, in which the entropic

contribution to the pair potential of mean force is small. Subsequently, the con-

figuration of the system can be updated with some method of choice, usually

in a short MD simulation, in which the potential guess is used for calculating

the forces. From the resulting configuration, the instantaneous pair correlation

in step i, gi(r), is measured and the pairwise potential is updated prior to the

next iteration, via

Ui+1(r) = Ui(r) + kBT ln
gi(r)

g(r)
. (2.18)

The algorithm is converged if the instantaneous distribution gi(r) equals the

target distribution g(r).

Usually, some care has to be taken with respect to the equilibration of the con-

figuration in the individual iteration cycles. Slowly evolving observables, as

for example chain conformations on the level of the contour length in polymer

simulations, should in principle be relaxed during all iteration steps. Neverthe-

less, relaxation on relatively short length scales usually is sufficient. In order

to test this assumption, convergence is usually checked after a reasonably large

amount of iteration cycles by performing a long test simulation with the cal-

culated potential. If the potential has been converged sufficiently, the structure

does not change during this run.

2.1.3 Other approaches

Similar to force matching, the relative entropy approach [60, 61] is a varia-

tional scheme. Within this method, the residual which is minimized is based
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on the relative probability distribution of the coarse-grained site configuration,

obtained from mapping in the all-atom picture (which is called target in the

original Ref. [60]), and the respective configuration generated by the coarse-

grained potential after mapping (which is called model in Ref. [60]). The

residual reads

Srel(UCG) =

∫

drNpAA(rN) ln

[
pAA(rN)

pCG(MrN , UCG)

]

, (2.19)

where pAA(rN) is the probability of the target configuration and pCG(MrN)

the one for the model configuration, respectively. The label AA stands for all

atoms. UCG is the effective coarse-grained potential.

Another prominent example for deriving effective CG potentials is the In-

verse Monte Carlo method [53], which yields an approximation of the PMF

from an iterative cycle of short CG simulations.

The approaches which have been discussed so far are strategies for deriving

a CG representation of a system in order to investigate it at a coarse level of

detail. It is briefly mentioned here that recent strategies of “true” multiscale

treatments have been proposed (AdResS and H-AdResS adaptive resolution

simulation schemes) [42, 62–64]. In these approaches, certain areas of a sys-

tems are described in detail, while other, less interesting areas, are treated on a

coarse level. These methods are similar to the concept of using a magnifying

glass on the interesting part of a system.

2.2 Top-down methods

Following a different route, models can be optimized to quantitatively repro-

duce macroscopic properties without putting a direct link to an underlying finer
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scale. This is frequently called a top-down modeling approach.

Conceptually, the idea of reversing the deterministic nature of physical theo-

ries in order to a posterio derive (molecular) model parameters top-down from

macroscopic experimental reference data is not new. Early efforts in this direc-

tion used the experimentally available equation of state data in order to obtain

simple models for an underlying molecular interaction potential, hence to de-

rive a more intuitive picture of the interactions of molecules [56, 65]. One

famous example is the early work of Lennard-Jones on determining simple

molecular model potentials for argon [66].

A more recent example, used mainly for biomolecular simulations, is the

MARTINI force field [67]. In this case, the force field involves a set of in-

teraction parameters fitted to available experimental data.

Models which are optimized for matching thermodynamic properties of a

specific system are often lacking a correct local (liquid) structure compared

to the real system. The model is not referring to a fine level of description,

i.e. underlying chemical details and molecular architecture. Some “hybrid”

approaches try to remedy this lack of structural accuracy by refining structural

aspects of the target system at the same time [68].

As it will be demonstrated in this work, the “lack” of local structural accuracy

is even an advantage in many cases. Often, top-down models focus more on

the phenomenological point of view and require a relatively coarse molecular

representation. By incorporating more and more fine scale details into a few

coarse-grained interaction sites, the effective interactions become softer. Thus,

(partial) overlap of segments is possible [34, 69]. This can be seen intuitively

at the example of a polymer chain: Locally, atomistic degrees of freedom in-

teract via a harsh excluded volume repulsion. However, if many atoms are

incorporated into a single coarse-grained interaction site, a pair of the latter in-

teraction sites may be allowed to approach very small spatial separations, since

such configurations may still be consistent with a large number of underlying
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microscopic configurations [45]. This is not only physically meaningful, since

averaging over many “hard” (atomistic) interactions softens the magnitude and

distance dependence of effective interactions, but also improves significantly

the sampling efficiency with standard algorithms, for example Molecular Dy-

namics (MD) or Monte Carlo (MC) schemes.

Besides using thermodynamic data for the systematic parameterization of

effective potentials, models can be based exclusively on generic principles,

e.g. symmetry or polarity of molecules, connectivity or stiffness, or a general

phase behavior. In principle, a purely generic approach may be distinguished

from more systematic top-down strategies by the fact that for generic models,

no parameters are matched to real systems. However, this categorization is not

rigorously used, and top-down, generic and phenomenological approaches are

sometimes used as synonyms.

Generic strategies can be useful in order to study the behavior of a model sys-

tem as a representative of a class of real systems, for example the dependence

of system properties on parameterization. Besides having proved to be useful

in the field of classical polymer theory [17, 18, 21, 70], as already discussed

in the introduction, generic models are used for studying the self-assembly

process of lipid bilayers in biological systems [40, 71, 72].

2.2.1 Phenomenological models

Conceptually, one may call any physical theory phenomenological: There is

always an underlying, more detailed description level, and the theory loses its

validity outside a certain regime of time and length scales or beyond a specific

class of problems. Thermodynamics is a subject which evolved historically

in a phenomenological fashion. By deduction from experiments, a consistent

theory was established which describes a system, e.g. a gas or a liquid, in

terms of a closed set of thermodynamic potentials (energies or free energies)
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and relations, linking the potentials to thermodynamic state variables (“caloric

equations of state”) or linking variables with each other (“thermal equations of

state”).

Statistical mechanics connects the macroscopic, phenomenological descrip-

tion and the underlying system of an extremely large number of particles, or,

in other words, fine degrees of freedom. Computer simulations allow the inte-

gration of the microscopic equations of motion of a reasonably large ensemble

of particles. Thereby, one can derive macroscopic quantities such as temper-

ature, pressure, or transport coefficients, or the equations of state thereof di-

rectly. However, from the modeling point of view, if one is mostly interested

in large scale system properties such as the thermodynamic phase behavior,

one may use models focussed on a phenomenological, macroscopic level of

description.

Field-theoretic simulation concepts for soft matter and polymer systems reflect

this spirit [18, 73–76]. The idea is to describe a system on the level of fields,

i.e. collective degrees of freedom, which can be for example the density of

a liquid or a more complex order parameter field. The equilibrium configu-

rations of such fields are then obtained from the generalized thermodynamic

forces which propagate the field configurations.

In the following sections, a framework is discussed to characterize a system

with an effective interaction functional in terms of collective variables (fields),

which depends on a few phenomenological parameters, such as the compress-

ibility of species or an immiscibility parameter in the case of multicomponent

fluids.

Historically, simple expressions of the free energy in terms of order param-

eters were frequently postulated in mean-field theories for the investigation

of phase transitions, such as the Ginzburg-Landau model [77] in supercon-

ductor theory. Further examples for a description based on phenomenologi-

cal free energy functionals are the Flory-Huggins theory of polymer solutions
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[17, 78, 79] and the more recently developed phase field models [80] based on

the Cahn-Hilliard functional expansion of the interfacial free energy [81].

A more complete collection of phenomenological mean-field theories can be

found in Ref. [82], and a large collection of original references in the context

of polymer theory in Ref. [74].

2.2.2 Field-theoretical framework

In this paragraph, some frequently used basic mathematical expressions in

field-theoretic frameworks are discussed. The starting point is a set of f real

order parameter fields ρi (x), i = 1, . . . , f , which describe the system of in-

terest. Those fields depend on the position x in three-dimensional Euclidean

space. The relevant degrees of freedom in such a representation are the values

of all the fields at each point in space. Thus, one can write down a partition

function for the system as a functional integral over all possible field configu-

rations,

Z =

∫
∏

i

Dρi (x) e
−βF({ρi(x)}), (2.20)

with β = 1
kBT

and F a functional of the fields.1 From statistical physics, the

free energy of the system is given by F = − 1
β
lnZ.

Suppose now, the order parameter fields were averaged over sub-volumes in

space in order to obtain average fields which are smooth and stationary. Sta-

tionarity is given when typical fluctuations in the order parameter fields appear

on much smaller length scales than the length scale on which the averaging is

performed. The latter scale may be, for example, a mesh width which divides

the space into a number of subvolumes.

One can consider the following example: Suppose a homogeneous mixture of

two species, e.g. a mixture of two distinct types of polymers in the regime

1For details about the field-theoretic formalism, the book of Chaikin and Lubensky, Ref. [82],
was a helpful source for the author.
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where the intermixed phase is thermodynamically stable (i.e. no macroscopic

phase separation is observed). Taking a look at the local density distribution

of the different species, one notes that they are inhomogeneously distributed,

since the local density is correlated due to the chain connectivity. If one was

interested in the density distribution of the two different monomers at assumed

length scales comparable to or larger than the average size of a polymer coil,

such correlations should have decayed to zero, meaning that one observes a ho-

mogenous density distribution. Now, even if the local conformations of chains

in the system were changed, the averaged density would not change. Thus,

on the large scale, the equilibrium representation of the system is given by a

single configuration of the field, the equilibrium density fields ρi(x).

For eq. 2.20, the functional integral is then equal to the value of its integrand

at a single position in the field coordinate space, thus

Z = e−βF({ρi(x)}), (2.21)

where, in more general terms, ρi(x) are the equilibrium configurations of the

order parameter fields. Under this assumption, the functional F equals the free

energy F of the system, thus F ({ρi (x)}) = F ({ρi(x)}). Even if the order

parameter fields were not strictly stationary, the integral (eq. 2.20) would in

some cases be well approximated by a single term which contributes most to

the exact integral. Such a candidate for ρi(x) can be formally obtained from a

minimization principle,

δF (ρi (x))

δρi (x)

∣
∣
∣
∣
ρi(x)=ρi(x)

= 0, (2.22)

for i = 1, . . . , f . This leads to the approximation F ({ρi(x)}) ≈ F ({ρi(x)}),
known as the saddle-point approximation.
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2.2.3 Dual representation with particles and fields

In the following derivations, a system is composed of n interacting polymers,

each consisting of N monomers with coordinates ri(s) specified by the label

of the chain i = 1, . . . , n and the monomer label s = 1, . . . , N relative to each

chain. The total number of monomers in the system is denoted by Ñ = nN

and the abbreviated notations rÑ = {r1(1), . . . , rn(N)} and drÑ = dr1(1) ·
dr1(2) · · ·drn(N) are used. The configurational part of the canonical partition

function reads

Z =
1

n!

∫

drÑe−βH(rÑ). (2.23)

In macromolecular modeling approaches, interactions are frequently decom-

posed into bonded and non-bonded contributions [14], i.e. H = Hb + Hnb.

Bonded contributions, in field-theoretical approaches, are usually assumed

simple functions of the monomer coordinates. In the (discrete) Gaussian chain

model for example,

Hb =
3kBT

2b2

n∑

i=1

N∑

s=1

(ri(s)− ri(s+ 1))2. (2.24)

Another example is the worm-like chain model, which is often used for meso-

scopic modeling of semi-flexible chains (more details will follow in chapter 3).

In order to transform the statistical mechanics into a statistical field theory

[75], one can define a local density operator

ρ̂(x) =
n∑

i

N∑

s

δ(x− ri(s)), (2.25)

which connects the local density to the microscopic degrees of freedom, i.e.

the monomer coordinates ri(s). In the following, the non-bonded interaction
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is assumed to be pairwise additive, which means one can write

Hnb =
1

2

n∑

i=1

N∑

s=1

n∑

l=1

N∑

m=1

u (ri(s), rl(m)) . (2.26)

With eq. 2.25, the non-bonded interaction can be rewritten in terms of the local

density operator:

Hnb =
1

2

n∑

i=1

N∑

s=1

n∑

l=1

N∑

m=1

∫

dx

∫

dx′δ(x− ri(s))u (x,x
′) δ(x′ − rl(m))

(2.27)

=
1

2

∫

dx

∫

dx′ρ̂(x)u (x,x′) ρ̂(x′).

The equivalent representation of Hnb in eq. 2.27 can be seen as a functional

which depends on a collective variable (in this case the local density), which

is derived from the underlying microscopic coordinates.

In a second step towards a field-theoretical description, one can formally rewrite

the partition function, eq. 2.23, by using delta functions [74, 75]:

Z =
1

n!

∫

Dρ

∫

drÑδ (ρ− ρ̂) e−βHb−
β
2

∫
dx

∫
dx′ρ̂(x)u(x,x′)ρ̂(x′) (2.28)

=
1

n!

∫

Dρ

∫

Dwei
∫
dxwρ+nlnZSC(iw)−β

2

∫
dx

∫
dx′ρ(x)u(x,x′)ρ(x′),

withZSC(iw) =
∫
drNe−

3
2b2

∑N
s=1 (r(s)−r(s+1))2−i

∑N
s=1 w(r(s)) the partition func-

tion of a single chain interacting with the imaginary field iw(x). In the last

step, the integral representation of the delta function was used, i.e.

δ (ρ− ρ̂) =

∫

Dwei
∫
dxw(ρ−ρ̂), (2.29)
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where w(x) is an auxiliary real scalar field [74, 75]. Thus, one has derived an

expression of the partition function which solely depends on the fields ρ and

w, i.e.

Z =
1

n!

∫

Dρ

∫

Dwe−βF(ρ,w). (2.30)

With eq. 2.30, the statistical mechanics in terms of n interacting chains is for-

mally rewritten in terms of decoupled chains interacting with fluctuating fields

ρ and w. This is the starting point for the rich field of polymer field theories

[73–76, 83] and numerical (approximate) solutions thereof, such as the self-

consistent field approach [73, 74, 76].

Self-consistent field theories, applied to polymeric (multi-component) sys-

tems, use eq. 2.30 as a starting point for a series of saddle point approxima-

tions, see eq. 2.22, which leads to a set of self-consistent field equations that

can be solved with standard numerical techniques [74, 75].

Despite a description completely in the field picture as sketched above, the

first step towards the particle-field transformation, eq. 2.27, can in many cases

already be useful for an efficient sampling of the particle-based formulation of

the configurational integral, i.e. eq. 2.23 in combination with the expressions

of interactions in eq. 2.24 and eq. 2.27. Guided by the concepts of classical

density functional theory (DFT), the expression of the non-bonded interaction

in eq. 2.27, reformulated as a functional of local field (collective) variables,

motivates to assume an (approximate) functional expression in terms of col-

lective variables for the definition of interactions (also for the derivations in

this section, a specific form of the interactions was assumed, i.e. eq. 2.26,

which is not a prerequisite). Eq. 2.24 together with the non-bonded energy

functional

Hnb/kBT =
v

2

∫

dx[ρ̂(x)]2 (2.31)

is the well-known (discrete) Edwards model [18, 84] for a system of interact-
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ing chains. The non-bonded energy functional can be seen to arise from a virial

expansion and v is related to the excluded volume parameter, which has to be

positive in order to define a physically meaningful model. The expression is

directly related to the energy functional eq. 2.27 through the specific represen-

tation of the pair potential, which in this case is a short-ranged delta-potential,

i.e. u (ri(s), rl(m)) = δ (ri(s)− rl(m)). It is shown in the following chapters

how such a one-to-one correspondence translates to the more complex case of,

for example, orientation-dependent interactions.

2.2.4 Grid-based vs. off-lattice evaluation

The non-bonded energy functional, as a function of collective variables, has

frequently been used for particle-based simulations, e.g. standard Monte Carlo

sampling of the statistical mechanics defined by 2.23. In doing so, the in-

volved delta-functions, which connect the microscopic degrees of freedom (the

monomer coordinates) with the collective field variables, are problematic for

a direct implementation.

A possible work-around is the discretization of space into a collocation grid

and to assort the monomers to grid nodes by a specified collocation scheme.

Various implementations have been used, from simple collocation to the near-

est grid point to a Gaussian distribution of a particle to a set of neighboring

grid nodes [29, 30, 85–87]. Such algorithms are well known from the field of

electrostatics calculations [88–90].

For particle-based simulations, grid-based implementations can be very ef-

ficient, since the non-bonded interactions are obtained without the use of a pair

list. This is due to the fact that the integral, eq. (2.31), turns into a simple sum-

mation over grid cells, and hence the total non-bonded energy is in the same

way discrete, i.e. can be written as a summation over grid cells. It should be

noted that the grid spacing introduces a length scale in the system which can
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be interpreted as an interaction range. The approach can then be seen as a

“regularization” of the zero-ranged delta potential.

In the past, several variants of such methods were applied successfully to

morphology studies of block-copolymers and other multi-component and/or

branched chain systems [29–31, 85–87]. In some systems, however, such

collocation schemes may generate artifacts when applied to certain geome-

tries [91] or more elaborated shapes of microscopic interactions, e.g. liquid-

crystalline coupling, since the introduction of a grid breaks the rotational in-

variance of the simulation space. Nevertheless, for relatively simple uniaxial-

nematic systems and a coarse chain representation, the lattice version of the

above approach can still be useful for obtaining insight into generic properties

of liquid-crystalline morphologies [69].

Another way of evaluating non-bonded interactions is to work with a con-

tinuous (i.e. smooth) representation of the local density field eq. 2.25 by as-

signing density clouds to the monomers, which then build up the density field.

Therefore, we define a “smoothed” version of the local operators by a weight-

ing procedure,

Φ̂ω(x) =

∫

dx′ω(|x− x′|)ρ̂(x′), (2.32)

with ω being a kernel or weight function. The function ω is the formal repre-

sentation of the density cloud. The specific form of ω is arbitrary, but it has

to be normalized. The procedure exhibits similarities with the weighted or

smoothed density approach in classical DFT [23, 24, 92].

Taking the simple functional eq. 2.31 as an example, one can show that

replacing the local density operator eq. 2.25 in eq. 2.31 by the weighted local

density operator eq. 2.32, given that the choice of ω is made explicit, uniquely

defines a pair potential [32–34, 93, 94]. This can be seen by transforming

the functional back to the pairwise potential representation after replacing the
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operator,

Hnb

kBT
=
v

2

n∑

i

N∑

s

n∑

l

N∑

m

∫

dxω (|x− ri(s)|)ω (|x− rl(m)|) , (2.33)

with
∫

dxω(|x− ri(s)|)ω(|x− rl(m)|) ≡ v(ri(s), rl(m)). (2.34)

The same procedure can in principle be repeated for the higher order expan-

sion terms in the functional, e.g. terms cubic in the local density, in order to

derive three- and more-body interactions [32]. As will be shown later, for a

simple analytic choice for ω, the pair potential can be derived analytically by

solving the integral in eq. 2.34.

As a conclusion, it is pointed out that the density cloud approach and the

grid-based method are connected directly. A density cloud representation and

the corresponding model can, in principle, be recovered exactly from the grid-

based model. This is achieved by choosing a spherical collocation scheme in

combination with the limit of infinitely fine grid spacing. Thus, the grid-based

implementation can be seen as a method which approximates the evaluation of

the overlap integral in eq. 2.34 numerically. While the grid-based method has

the advantage of allowing sampling without a pair list, the grid-less method

avoids potential artifacts, while still retaining the explicit connection to the

interaction functional. This offers a transparent control of thermodynamic

properties on the functional level [35]. Furthermore, standard particle-based

simulation methods, such as implemented in the GROMACS Molecular Dy-

namics package [47], can be used readily once the integral in eq. 2.34 is solved

analytically.
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3 Nematic polymers - studied with

soft, generic models

Parts of this chapter are based on the following article:

P. Gemünden and K. Ch. Daoulas, “Fluctuation Spectra in Polymer Nematics

and Frank Elastic Constants: A Coarse-Grained Modelling Study”, Soft Mat-

ter, 11, 532-544 (2015).

In this chapter, elastic properties of nematic liquid crystalline polymers

(LCP) will be studied with a particle-based generic model. A nematic LCP

melt is the first example of partially ordered soft matter addressed in this

thesis. The study is motivated by the fact that there are only very few ex-

perimental or computational investigations of the specific elastic properties

(e.g. Frank elastic constants [95, 96]) of nematic LCP [97–99], especially for

polymer melts [100]. From analytical theory, however, several predictions for

the elastic properties of LCP from simple model calculations exist [101–108].

Following these predictions, LCP have an unusually strong response to splay

deformations, giving rise to material properties extraordinarily different from

those of small-molecule liquid crystals.

In simulations, generating and analyzing large equilibrated LCP mesophases

is challenging with first-principle, particle-based simulation schemes because

of large system sizes, suggesting the use of models operating on a coarse-

grained level. In the literature, single-site interaction models have been pro-
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posed, for example the off-lattice Gay-Berne-type models [109–111] and the

efficient lattice-based Lebwohl-Lasher model [112–114]. In the Gay-Berne

model, particles interact off-lattice with a harsh repulsive core of ellipsoidal

shape [109]. The Lebwohl-Lasher model is the direct implementation of the

Maier-Saupe coupling between nearest neighbors on a cubic lattice [112].

In this chapter, a generic off-lattice polymer model which has been intro-

duced in Ref. [69] is developed further in order to study elastic properties of

LCP. The model accounts for anisotropic single-site interactions between poly-

mer segments and is directly derived from a functional based on local density

and nematic order parameters [69]. Such a connection facilitates the tuning

of macroscopic system properties, i.e. the phase behavior (see ch. 2.2 and in

particular ch. 2.2.3).

Large-scale nematic mesophases have been equilibrated and subsequently an-

alyzed to obtain density and director fluctuation spectra, which are directly

connected to macroscopic elastic properties, e.g. Frank elastic constants. It

will be shown that these spectra can be described by generic functional forms

proposed by available analytical theories [104–108, 115]. Eventually, the

dependence of the Frank elastic constants on the chain length will be dis-

cussed. From the simulations, evidence will be provided for a linear scal-

ing of the splay constant with chain length, which is in agreement with the

description from Meyer [103] and following theoretical considerations [104–

106, 108, 116].

3.1 Background

A liquid crystal (LC) is a fascinating example of mesoscale ordering in soft

matter. Literally, the term liquid crystal refers to the non-trivial appearance

of a material which is neither conventionally liquid-like nor crystalline, but
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shares features with both “traditional” phases. A liquid crystal is, compared to

an isotropic liquid, partially ordered. Therefore, a liquid crystalline mesophase

generally has a lower symmetry than the isotropic phase.

This was first experimentally observed in systems which have special optical

properties within a certain temperature range [117, 118]. Usually, one dis-

tinguishes between thermotropic and lyotropic liquid crystals, depending on

whether the temperature or the molar relative concentration is the main driv-

ing force for a liquid crystalline phase transition, i.e. the transition of a system

from a disordered, isotropic mesophase to a partially ordered, LC mesophase.

(a) (b)
n

ni

Figure 3.1: Schematic, illustrating (a) isotropic and (b) nematic alignment of
molecules with their symmetry axis ni along a common direction
n, called the macroscopic nematic director.

In a nematic LC, molecules have the tendency to align along a common

spatial direction, which is called the macroscopic nematic director, denoted by

the vector n. Fig. 3.1 illustrates the molecular alignment in a nematic LC. Not

entirely intuitive, for lyotropic systems the entropy can increase when chang-

ing to a spatially more ordered phase. Taking a closer look, one notes that the

molecules which align along the director gain translational entropy, while in
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3 Nematic polymers - studied with soft, generic models

the direction perpendicular to the director the system remains in a liquid-like

state. For LCP, the internal flexibility of molecules adds up to a subtle balanc-

ing between translational and configurational entropy in the system, i.e. the

chain stiffness influences the phase behavior additionally.

An early phenomenological statistical mechanics description of lyotropic

liquid crystals goes back to Onsager [119], who developed an approximate

solution for a classical system of elongated molecules interacting via a harsh

contact potential which arises from the geometrical overlap (excluded volume)

of particles.

Later, Maier and Saupe [120] showed that for thermotropic liquid crystals,

within a mean-field calculation, the transition to a nematic phase can be ex-

plained solely with anisotropic dispersion forces, i.e. a deviation of the molec-

ular electrical field from that of a point source. Contributions to the inter-

molecular potential up to dipol-dipol interactions have been considered, with

the interaction between a pair of particles with index i and j

vij =

(
3

2
cos2(θ)− 1

2

)

, (3.1)

in which θ is the angle between the respective dipole axes. Within the re-

spective treatment, eq. 3.1 is the dominant contribution driving the isotropic-

nematic phase transition.

The expression in eq. 3.1 is used for quantifying anisotropic coupling in sim-

ple models capturing nematic order [26, 69, 121–124]. The model introduced

in this chapter is in a similar spirit.

In real systems, the consideration of either only long-ranged London (dipolar

attractive) dispersion forces in the case of Maier-Saupe theory or only short-

ranged repulsive forces in the case of Onsager theory is certainly an oversim-

plification [125]. In modeling studies, one usually accounts for a combination

of both orientation and distance dependent contributions, with a potential de-
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3.1 Background

rived from the product of the two contributions [110, 126–129].

Quantifying liquid crystalline nematic order

For a system of molecules which exhibits nematic order, the expression eq. 3.1

arises as a measure of the molecular orientation with respect to a fixed refer-

ence director n. This can be seen when expanding the orientational distribu-

tion function of the molecular axis, with respect to the director, in the orthog-

onal basis set of Legendre polynomials and subsequently truncating after the

first non-trivial even term [28],

f(ni · n) =
1

2
+

5

2
〈P2〉P2 (ni · n) +O

(
(ni · n)4

)

=
1

2
+

5

2

〈
3

2
cos2(ni · n)−

1

2

〉(
3

2
cos2(ni · n)−

1

2

)

+ . . . .

(3.2)

Odd terms in the expansion eq. 3.2 have been omitted, since here only apolar

nematic phases are considered, i.e. an exchange n → −n leaves the system

unchanged. The vectors ni and n are normalized, i.e. |ni| = |n| = 1. Angular

brackets denote an ensemble average. For the apolar case, nematic order can

be quantified with a symmetric traceless tensor of rank two - the nematic order

tensor, which is defined locally as

Qαβ (r) = ρ−1
0

n,N
∑

i,s

qi,αβ (s) δ (r − ri (s)) , (3.3)

with the molecular orientation tensor defined as

qi,αβ (s) =
3

2
ni,α (s)ni,β (s)−

δαβ
2
. (3.4)
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The quantity ni,α (s) is the α-component of the molecular director ni(s). The

additional parameter s is introduced for later convenience for the more general

case of labeling polymer segments. It is not important for the discussions in

this section. Performing an average over space,

〈Qαβ〉 =
1

V

∫

drQαβ (r) =
1

nN

n,N
∑

i,s

qi,αβ (s) , (3.5)

in which ri(s) labels the coordinates of a segment, one can extract both the

macroscopic director and the order parameter from eq. 3.5. The tensor in

eq. 3.5 is diagonal in the eigenframe which is aligned with the macroscopic

director, i.e. the average direction of molecules. It has the diagonal form

Qαβ = diag
(

S,−S
2
+ T,−S

2
− T

)

. (3.6)

The parameter

S =

〈
3

2
(ni(s) · n)2 −

1

2

〉

i,s

(3.7)

is the macroscopic nematic order parameter, where 〈·〉i,s denotes an aver-

age over all segments. The additional parameter T quantifies the deviation

of the nematic phase from cylindrical symmetry. It is nonzero for biaxial

mesophases, which will be the subject of chapter 4. Thus, with standard nu-

merical tools it is possible to extract information about the director and the

degree of order in a nematic system by performing an eigenvector and eigen-

value analysis of the tensor eq. 3.5.

Local fluctuations of nematic orientation

In a liquid crystal, the nematic director is in general not a constant in space.

This is because excitations of director fluctuations at various wave lengths
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3.1 Background

are excited at finite temperature, allowing a further reduction of entropy in a

system. Thus the director, viewed as a spatially fluctuating field n(x), is com-

posed of natural fluctuation modes whose amplitudes as a function of wave

length bare interesting information about the response or stiffness of the mate-

rial to deformations.

(a) (b) (c)

Figure 3.2: Scheme, illustrating the fundamental excitations of the director
field. (a) Splay deformation, described with the Frank constantK1.
(b) Twist deformation, quantified with K2. (c) Bend deformation,
corresponding to K3.

The three fundamental deformations in a three-dimensional bulk system are

the splay, twist and bend distortions, see Fig. 3.2. A continuum theory estab-

lished by Oseen [95] and Frank [96] connects the geometrical director distor-

tions, i.e. the three Frank constants, to a free energy. If the modulation of the

director field is weak and the director is a smoothly varying quantity in space,

this free energy is written as

Fn =
1

2

∫

d3x
{
K1(∇ · n)2 +K2(n · (∇× n))2 +K3(n× (∇× n))2

}
.

(3.8)

K1, K2 and K3 are the Frank elastic constants. The first, K1, quantifies splay

elastic behavior, while K2 and K3 correspond to twist and bend deformations,

respectively. The free energy is an expansion up to second order in even terms

of the gradient of the director field. For a slowly varying field, one can as-

sume that eq. 3.8 is the dominant contribution to the distortion free energy
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[25, 100, 130]. Close to point defects or confining walls, the approximation

leading to eq. 3.8 is no longer appropriate [131, 132]. Aiming at a tool for mea-

suring fluctuation spectra in order to determine the Frank elastic constants, a

general relation between the director fluctuation modes and the material con-

stants is now briefly reviewed.

Material properties and fluctuation spectra

Material constants such as the compressibility are in general related to large

wave length fluctuation modes of a corresponding microscopic quantity. For

the example of compressibility, this is the density. The Frank elastic constants

are in the same way connected to the local nematic director. Given a sys-

tem is strongly ordered (in the context of polymer nematics, this is to assume

stretched chain conformations, see sec. 3.5), one can write the nematic director

as

n(x) = n+ δn(x), (3.9)

where |δn(x)| is small [82]. In such cases, the director fulfills |n(x)| ≈ 1, and

the Fourier transformation of the distortion field can be written as δn(q) =

(δnin(q), δnout(q)) (harmonic approximation). Thus, the Frank free energy

(eq. 3.8) is approximated by

Fn ≈ 1

2

∑

q

(
K1q

2
⊥ +K3q

2
‖

)
|δnin(q)|2 +

1

2

∑

q

(
K2q

2
⊥ +K3q

2
‖

)
|δnout(q)|2.

(3.10)

The components of the projected instantaneous director (see illustration in

Fig. 3.3), δnin(q) and δnout(q), lie in the plane spanned by the average direc-

tor n and the scattering vector q, and normal to this plane, respectively (see

Fig. 3.3) [82, 100]. The scattering vector q is decomposed into components

parallel, q‖, and perpendicular, q⊥, to the director n. The approximated free

energy (eq. 3.10), even though yet not applicable to the case of polymeric sys-
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Figure 3.3: Scheme, illustrating the components δnin(q) and δnout(q) of the
projection of the instantaneous nematic director, δn, expressed
as functions of the scattering vector q. The component δnin(q)
is defined in the plane spanned by the average director n and q.
δnout(q), respectively, points along the corresponding plane nor-
mal. The scattering vector q and its components parallel (q‖) and
perpendicular (q⊥) to the director n are also shown.

tems, is a workhorse for experimental measurements of the Frank elastic con-

stants. Using the equipartition theorem for the sum over degrees of freedom,

eq. 3.10 relates the material constants with the fluctuation modes, i.e.

〈|δnin(q)|2〉 =
kBT

K1q2⊥ +K3q2‖
,

〈|δnout(q)|2〉 =
kBT

K2q2⊥ +K3q2‖
. (3.11)

The ensemble averages (eq. 3.11) are directly related to, for example, the scat-

tering intensity obtained from light scattering experiments [118, 133, 134].
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3.2 Motivation of studies

For liquid crystalline polymers, the elastic properties of the material are ex-

pected to be more complex than for a short mesogene LC, due to large spatial

correlations along the molecular backbone and the interplay between meso-

scopic order and molecular flexibility. It is known that for long molecules, the

orientation and density fluctuations are coupled [101–103]. Splay deforma-

tions in the material therefore lead to fluctuations in density. This mechanism

significantly alters the generic form of the fluctuation spectra, i.e. eqs. 3.11.

q

q

Figure 3.4: Scheme, illustrating the bowtie-shaped density scattering pattern
in the q‖-q⊥-plane by lines of constant magnitude. For long chains,
scattering along the director, i.e. the direction of q‖, is suppressed.
Along q⊥, perpendicular to the director, a constant scattering is
predicted for small q⊥. This figure is adopted from Ref. [108].

Only a few experimental results have been reported on the behavior of the

Frank constants for lyotropic [133–135] and thermotropic [97–99] LCP, which

contrast a wealth of analytical work addressing the subject [101–108]. For ex-

ample, a bowtie-shaped density-density scattering contour (see Fig. 3.4) has

been predicted theoretically [104–108], which has been, at least for a mod-

erately large wave length regime, confirmed experimentally [135]. However,
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for the dependence of the splay elastic constant on chain length the theoretical

predictions differ, since one relies on the assumption of a generic mechanism

creating the splay distortions [101–103].

Figure 3.5: Scheme, illustrating the large voids created by a splay deformation
of long molecules (compare left scheme). The energetic cost of
creating a splay was derived by de Gennes [101, 102] from a simple
estimation of the penalty from the large induced density variation.
Mayer [103] pictured a mechanism of creating a splay by filling
the voids with the chain ends of surrounding molecules.

Most prominently, the conclusions drawn from the work of de Gennes [101,

102] and Meyer [103] differ fundamentally, since they support, respectively,

an either quadratic or linear dependence of the splay constant on chain length.

Both predictions are derived under the assumption that the number of hairpin

defects, i.e. sharp turns of chain backbones leading to backfolded conforma-

tions, is negligible in the considered systems.

The scheme in Fig. 3.5 illustrates in a simplified way the different mecha-

nisms of creating a splay. If molecules are long, the splay deformation gives

rise to a large density fluctuation along the chain contours, inducing voids in

the material (see left scheme in Fig. 3.5). De Gennes estimated that the charac-

teristic dependence on chain length stems solely from the penalty for density
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H
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Figure 3.6: Scheme, illustrating the insertion of chain ends in a polymer ne-
matic mesophase, creating thereby a splay deformation of the di-
rector field. Chains heads are labeled with H , and tails with T ,
respectively. According to Meyer [103], this is the dominant exci-
tation mechanism creating a splay deformation in polymer nematic
material. The assumption is based on chains which are reasonably
stretched, i.e. the amount of hairpins is negligible. This figure is
adopted from Ref. [103].

variations arising from a tilt of the molecular axis. From this assumption, he

predicted a quadratic scaling with chain length [101, 102]. In contrast, Meyer

proposed a mechanism to create a splay deformation with smaller density vari-

ations. The right scheme in Fig. 3.5 illustrates the chain end insertion mecha-

nism in order to minimize the density fluctuations. In that way, a splay defor-

mation is energetically less costly than in the scenario proposed by de Gennes.

Meyer derived the linear scaling of the splay constant with chain length from

an entropic penalty for the creation of an inhomogeneous spatial distribution

of chain heads and tails [103] (see Fig. 3.6). It has been shown [136] that
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the difference between both explanations vanishes for lyotropic LCP, since for

such systems the compressibility is inversely proportional to the chain length.

For thermotropic LC, i.e. a polymer melt, the difference remains.

For the twist and bend Frank elastic constants, independence of chain length

has been predicted, provided the chains are reasonably flexible [103, 107, 116,

137, 138]. There are some more recent theoretical predictions on the behavior

of the Frank constants which support the predictions by Meyer, presented in

a series of publications from Nelson et al. [104–106, 108]. The main find-

ings from the theory presented in these publications are reviewed in sec. 3.5,

preparing for the comparison of simulation results with theoretical predictions.

An experimental test of the theoretical predictions regarding the fine details

of the large wave length regime in the scattering contour [104–108] is diffi-

cult to realize with standard scattering techniques [133–135]. In simulations,

small-angle scattering amplitudes are in principle accessible, however, one re-

lies on the equilibration of very large configurations - which is computationally

expensive with standard particle-based schemes. For polymer LC, long-range

correlations due to relatively stiff backbones are present and the systems of

interest have to be even larger, which pushes the conventional simulation tech-

niques based on hard potentials, for example Lennard-Jones-based Molecular

Dynamics simulations, to a limit.

Possibly for that reason, numerical studies on fluctuation spectra in LCP are

rare to date. In simulations of small-molecule LC, single-site interaction-based

models helped to improve the sampling, however they have yet only been ap-

plied with harsh repulsive interactions at close distances [109–111]. For LCP,

elastic constants of lyotropic systems have been discussed with models based

on connected, infinitesimally thin line segments in two-dimensional geome-

tries [139], in order to remedy the limitation of system size. In one case, a

simulation study on three-dimensional LCP, in which molecules were repre-

sented by connected hard spheres, indicated a bowtie pattern in the density
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fluctuation spectra [140].

From this point of view, the use of soft, generic models [69] may help

to overcome some of the discussed limitations. While retaining the explicit

particle-based representation and hence the explicit information about the lo-

cal nematic director, a significant overlap of segments due to soft non-bonded

interactions can increase the sampling efficiency. Furthermore, the connection

of the particle-based model to its field-based equivalent representation sim-

plifies the tuning of the phase behavior of the system [69]. In this way, one

may be able to study systems which are sufficiently large for investigating

long wave length director fluctuations in nematic LCP. Novel simulation re-

sults supporting this statement will be presented in ch. 3.6, in which they are

compared with existing predictions from analytical theories for nematic LCP

(in the zero-hairpin limit).
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3.3 Coarse-grained model for nematic polymers

The coarse-grained model builds on an approach presented earlier by Daoulas

et al. [69]. There, a worm-like chain (WLC) model for the bonded degrees

of freedom was used in combination with a grid-based scheme for evaluating

non-bonded interactions, which are obtained from a functional of local density

and nematic order parameters. In the following, the approach used in Ref. [69]

for modeling non-bonded interactions will be developed further. The inter-

actions will be derived analytically from the functional of order parameters.

The scheme differs from the grid-based method in that it does not use a lattice

collocation algorithm for the evaluation of non-bonded interactions, i.e. they

are calculated in continuum. Details will be provided in the following. The

definition and parameterization of bonded interactions equal those in Ref. [69]

and they will only briefly be rephrased.

Without limiting the generic spirit of the molecular model, an approximate

matching of parameters to experimental data has been performed. The length

scale and stiffness of the polymer chain model, i.e. the bonded degrees of free-

dom, are roughly matched to experimental values for poly(3-hexylthiophene)

(P3HT) [69]. P3HT is a theoretically and experimentally well studied example

of a conjugated polymer used in the field of organic electronics [141]. It be-

longs to the family of polyalkylthiophenes, in which, for some representatives,

a nematic liquid crystalline phase has been reported experimentally [142–149].

The specific matching was performed on the background of a broader model-

ing project, trying to describe the morphology of materials which are used in

organic electronics applications with simple models. This will be the topic of

the following chapters 4 and 5. For the main results in the present chapter, the

chemical specificity is not relevant.
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θ
s− 1 s

s+ 1

ni(s)ri(s)

Figure 3.7: Schematic representation of the worm-like chain construction. The
molecular axis ni(s) in chain with index i is oriented along the
segment s. Two consecutive vectors span the angle θ, entering the
bonded potential.

3.3.1 Bonded interactions

The model system contains n discrete worm-like chains (WLC) (see Fig. 3.7)

and hasN coarse-grained segments associated with coordinates ri(s) and bond

orientations indicated by ni(s). The index i counts the chains, while index s

is counted along the chain contour to label individual segments. The Hamilto-

nian, with respect to the bonded degrees of freedom, reads [69]

Hb

kBT
= − ǫ

b2

N−1∑

s=1

ni(s+ 1) · ni(s). (3.12)

Therein, the parameter ǫ controls the bending stiffness, penalizing the devi-

ation of pairs of consecutive segments from parallel alignment, quantified by

the angle

Θ = arccos

(
ni(s+ 1)ni(s)

|ni(s+ 1)||ni(s)|

)

. (3.13)

A fully stretched backbone conformation represents the energy minimum. The

parameter b = |ni(s)| is the coarse-grained bond length.

For parameterizing the bonded interactions, the bond length can be taken

as b = 0.79 nm, corresponding to a 2:1 mapping scheme of hexylthiophene

units to coarse-grained segments [69]. The bond length is kept constant during
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the simulations, since the model operates on scales much larger than the typ-

ical magnitude of bond length fluctuations. Indirectly, the persistence length

lp of a model chain is matched via the stiffness parameter ǫ to the regime of

experimentally reported values lp ≃ 2.2− 2.4 nm for P3HT conformations in

solution [150, 151]. The conformations for chains in a melt, unless they are

ordered, are expected to resemble those of the molecule in Θ-solvent condi-

tions [19]. However, the experimental results from Ref. [151] were obtained

in moderately good solvent conditions and therefore the model chains are con-

sidered less flexible than in the real system [69].

One can obtain analytically a value for the stiffness constant ǫ that corre-

sponds to a certain persistence length. From the theory of the WLC model,

defined by eq. 3.12, the relating equation [69, 152] reads

b

lp
= ln

[
1− exp(−2ǫ)

1− 1
ǫ
+ (1 + 1

ǫ
)exp(−2ǫ)

]

. (3.14)

Solving eq. 3.14 numerically, lp ≃ 2.2 nm leads to the choice of ǫ = 3.284

[69].

3.3.2 Non-bonded interactions

The non-bonded potential will be derived from a functional of local order pa-

rameters, generically capturing the nematic liquid crystalline phase behavior

(compare ch. 2.2). The ansatz is similar to field-theoretical approaches to poly-

meric liquid crystals [26, 121–124]. The functional is connected to a meso-

scopic pairwise potential, which is subjected to a relatively coarse molecular

description level, i.e. single-site interactions [69]. The non-bonded interac-

tions are orientation dependent, coupling the molecular axes of a pair of seg-

ments explicitly. The potential is soft, i.e. the energy of fully overlapping

segments remains on the order of magnitude of the thermal energy kBT . Ex-

cluded volume constraints are thereby relaxed, increasing the sampling ef-
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ficiency compared to modeling approaches for nematic polymers based on

isotropic, hard repulsive interactions [140].1

Traditionally, for field-theoretic approaches based on an effective functional

(Hamiltonian) of local order parameters, the functional is linked to contact

potentials expressed through delta functions [26] (compare ch. 2.2.4). For

transforming the Hamiltonian into a particle-based pairwise potential with fi-

nite interaction range, such interactions have to be regularized, i.e. the delta

functions have to be smeared out in space (see ch. 2.2.4 for a more detailed

discussion). In earlier studies, a collocation grid has been frequently used for

transforming a functional of local densities into a pairwise potential, which can

then be addressed with a standard Monte Carlo simulation scheme [29, 30, 85–

87]. Such a collocation grid for evaluating non-bonded interactions has also

been used in Ref. [69], applying similar concepts to anisotropic interactions.

In this thesis, a different route is taken, calculating non-bonded interactions

directly from the continuum space representation of segments. Even though

the evaluation of non-bonded interactions cannot be performed efficiently via

a grid, i.e. without a costly neighbor searching algorithm, the explicit underly-

ing connection to the functional is retained. Such schemes have been applied

for isotropic potentials before [32–34, 93, 94].

The reason for choosing a grid-less simulation scheme is that for more com-

plex molecular architecture (i.e., for the model developed in ch. 4), a reg-

istration of the average (macroscopic) director with the underlying grid was

observed. The artifacts were observed for systems with different lattice spac-

ing and remained present even for systems with a very fine grid spacing and

more sophisticated collocation schemes. For example, for an assignment of

particles to grid points within a spherical surrounding volume and a colloca-

tion of a single particle to several hundreds of grid points, artifacts remained.

1This is explained by the fact that isotropic repulsive interactions have to be sufficiently
strong, in order to be able to observe an ordered phase [153].
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3.3 Coarse-grained model for nematic polymers

Such grid artifacts have been found earlier in more complex geometries, e.g.

for polymers close to adsorbing surfaces [91].

The local fluctuations of the nematic director, which are in the main focus of

this chapter, may be especially sensitive to such a grid registration, addition-

ally motivating the choice of an off-lattice evaluation scheme.

The top-down model for non-bonded interactions is based on the definition

of a functional [26, 69, 75, 121–124],

Hnb

[

ρ̂, Q̂
]

kBT
= ρ0

[
∫

dr
κ

2

(
ρ̂(r)

ρ0
− 1

)2

− v

3

∫

dr Q̂(r) : Q̂(r)

]

. (3.15)

In this expression, the local density field is introduced as

ρ̂(r) =
∑

i,s

δ(r − ri(s)), (3.16)

which can be seen as an operator assigning the segment coordinates ri(s) to

the density field ρ̂. The parameters κ and ν control the density fluctuations and

the orientation coupling strength, respectively [69]. An expression similar to

ρ̂ can be written for the local nematic order tensor field

Q̂αβ(r) =
1

ρ0

n∑

i=1

N∑

s=1

δ (r − ri(s)) qi,αβ(s), (3.17)

with

qi,αβ(s) =

[
3

2
ni,α(s)ni,β(s)−

δαβ
2

]

, (3.18)

connecting the segment orientations ni(s) with the field Q̂(r) [26]. The dou-

ble dot product used in eq. 3.15 is defined as a double summation over pairs

of indices, i.e. A : B :=
∑

α

∑

β AαβBαβ for a pair of tensors A and B.

For symmetric tensors, the definition is equal to a contraction and subsequent
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summation over tensor components.

Now, one can perform a step along the line of the example in ch. 2.2.4, sub-

stituting the local fields ρ̂(r) and Q̂(r) in the functional eq. 3.15 with their

averaged equivalents [32–34, 93, 94], Φ̂ω(r) (eq. 2.32 from ch. 2.2.1) and

Q̂ω(r) =

∫

dr′ω(|r − r′|)Q̂(r′). (3.19)

Similar to the transformation of the density dependent part of eq. 3.15, which

has been presented in ch. 2.2.1, it is possible to do a transformation of the part

in eq. 3.15 which involves the orientation tensor. The details about the trans-

formation is given in appendix ch. 1 for the more general case of a functional

involving an additional orientation tensor which quantifies biaxial order (this

case will be covered in ch. 4). This leads to an expression for the non-bonded

interactions in terms of a pairwise potential,

Vnb = u(rij(s,m))

[

κ̄− 2ν̄

3
qi(s) : qj(m)

]

, (3.20)

in which rij(s,m) = |ri(s) − rj(m)| and the tensors qi,αβ(s), defined in

eq. 3.18, express the segment orientations with respect to the laboratory coor-

dinate frame. The constants κ̄ and ν̄ are related to κ and ν in eq. 3.15 through

the Boltzmann-factor, i.e. for example κ̄ = κkBT . The function u(r) arises

from an integration step performed when casting eq. 3.15 with the substitution

of eq. 2.32 and eq. 3.19 into the expression eq. 3.20 (compare Refs. [32–

34, 93, 94]). However, the analytical form of u(r) remains dependent on the

explicit choice of the weight function ω (compare Refs. [32–34, 93, 94] and

appendix ch. 1).

One can show the equivalence of the orientation coupling term in eq. 3.20,

written as the double dot product of the molecular tensors, and the familiar

expression of the latter quantity through the second Legendre polynomial, i.e.

proportional to the Maier-Saupe coupling eq. 3.1 with the angle θ spanned by
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ni

nj

σ

Figure 3.8: Schematic representation of the non-bonded interaction between
pairs of segments. The molecular axes ni and nj enter the poten-
tial in eq. 3.20 through the molecular nematic tensors. The distance
dependent contribution to the potential, i.e. the function u(r), is il-
lustrated as the overlap of density clouds with radius σ surrounding
each segment.

a pair of segments evaluated similar to eq. 3.13.

Factorizing non-bonded interactions into distance and orientation dependent

parts (compare eq. 3.20) has been frequently reported in other studies of LC

with soft models [110, 126–128, 154]. In this thesis, the distance dependent

soft core u(rij(s,m)) is chosen proportional to the geometric overlap of two

spherical density distributions, compare Fig. 3.8. The weight function is set to

ω(r) =
3

4πσ3
(3.21)

for r ≤ σ and zero otherwise. The density clouds are placed at the segment

centers (compare Fig. 3.8), i.e. at ri(s) and rj(m), respectively.

The explicit form of the core u(rij(s,m)) can be obtained by solving an over-

lap integral analytically. More details about this calculation can be found in

the appendix ch. 1. Here, only the result is given, reading [34]
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u(rij(s,m)) =
1

ρo

∫

drω(r − ri(s))ω(r − rj(m)) = (3.22)

=
3

8πρoσ3

(

2 +
rij(s,m)

2σ

)(

1− rij(s,m)

2σ

)2

.

In order to draw an approximate connection between the model and a real

system of P3HT chains, a density cloud can be interpreted as the continuous,

coarse-grained representation of underlying microscopic degrees of freedom

[69, 155, 156]. The radius, σ = 0.79 nm, is chosen according to the length

of a hexyl chain in all-trans configuration. Below this distance, neighboring

chains start overlapping. Taking into account that the bulk density of P3HT

is ∼ 4 hexylthiophenes/nm3, and each coarse-grained segment represents two

real monomers, the reference density is chosen ρ0 = 2 segments/nm3 (com-

pare ch. 4).

Following the discussion in Ref. [69] for the model parameterization, the

free parameters of the non-bonded interactions, κ̄ and ν̄, are chosen from a

mean-field estimate of the free energy for a homogeneous system from eq. 3.15.

From the Maier-Saupe phenomenological mean-field theory [120] it is known

that for non-flexible molecules an isotropic-nematic transition occurs above

a coupling strength νMS ≃ 4.54. This value can be kept as an upper limit,

since ordering is expected at weaker coupling strength for flexible molecules,

i.e. in the case of polymers [157]. To obtain nematic ordering, the strength

of orientation coupling is empirically chosen as ν̄ = 3.33kBT [69]. From a

mean-field estimation of the free energy evaluated for perfect nematic order

(i.e., S = 1), a lower limit for the compressibility-related parameter κ̄ can be

derived, in a way that the (estimated) compressibility remains non-negative.

Details about the mean-field estimation of the free energy and the isothermal

compressibility can be found in the appendix ch. 2 and in Ref. [69]. For the

studies discussed in this thesis, the value κ̄ = 7.58kBT is chosen somewhat
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higher compared to Ref. [69], in order to ensure a positive compressibility in

the case of strong nematic coupling. All simulations have been performed at

the temperature T = 500K.

3.4 Systems studied and simulation details

Monodisperse melts of polymer chains with N = 16, 32, 48 and 64 segments,

which corresponds to ∼ 20 persistence lengths for N = 64, have been equi-

librated using Monte Carlo (MC) simulations in the nV T ensemble. Cubic

simulation cells with periodic boundary conditions in all directions are con-

sidered. For the three largest chain lengths N , the length of the cell-edges

Lbox is chosen to be two times larger than the end-to-end distance of a fully

stretched WLC (which equals the contour length L = bN ). For the shortest

chain length, N = 16, the dimensions of the cell are larger, Lbox = 4L. The

number of molecules in a system is chosen in a way that the average segment

density reproduces the reference bulk density of P3HT ρ0 = 2 segments/nm3,

i.e., nN/V = ρ0. For the longest chains with N = 64 segments this leads

to systems with up to 2 × 106 segments. Due to the softness of the non-

bonded interactions it has still been possible to equilibrate the samples with

a serial calculation on a single CPU. For testing the relaxation, the saturation

of macroscopic observables, e.g. the nematic order parameter and the average

end-to-end distance of a chain, has been monitored during the simulations in

order to reach a plateau. For additional control of sampling errors due to finite

trajectories, for each of the considered chain lengths, eight independent simu-

lations have been performed. This allows a systematic error estimation of the

extracted properties (compare sec. 3.6).

All chains are initially fully stretched and aligned along the z-axis of the

laboratory frame, while their centers-of-masses are randomly distributed. The

systems have been relaxed with a Monte Carlo algorithm which uses non-local
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qz

qy

n

Figure 3.9: Visualization of a representative configuration of a nematic WLC
melt with N = 32 segments per chain. The chains are aligned
along the z-axis, and n denotes the macroscopic director of the
phase. The edge length of the simulation cell is Lbox = 2L (with
the contour length L of the WLC). To demonstrate that Lbox is sub-
stantially larger than the actual end-to-end distance of the chains
along the director of the nematic phase, the configurations are pre-
sented without breaking individual chains at the periodic bound-
aries of the simulation box, i.e. with a wrapping based on the
centers-of-masses of the chains. The vectors qy and qz mark the
yz-plane used for the calculations of the density and director fluc-
tuation spectra. The two-color scheme of the visualization is used
for improving the visibility of chain contours. All chains are how-
ever identical in terms of chain length and interactions.
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backward and forward reptation, with either of the two possible directions cho-

sen with equal probability. Reptation moves [158, 159] are mixed with local

flip moves, in which a coarse-grained bead is rotated by a random angle around

the axis defined by the corresponding bond vectors. With a 70% probability,

a trial move is a reptation, while 30% of the trials are local flip moves. Each

attempted move is accepted using the standard Metropolis acceptance proba-

bility [160]

pacc = min (1, exp (−(∆Hb +∆Hnb)/kBT )) , (3.23)

with the energy changes ∆Hb and ∆Hnb concerning the bonded and non-

bonded interactions of the system after having performed the trial step. For the

combination of reptation and local flip moves, an acceptance rate of ∼ 22%

is observed in the ordered phase. Periodic boundaries have been used in all

three directions and a standard (i.e., non-linked) cell list has been used for

the evaluation of non-bonded interactions. A representative snapshot of an

equilibrated nematic melt of chains with N = 32 is presented in Fig. 3.9.
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3.5 Theory revisited

A few theoretical predictions regarding density and director fluctuations in

nematic liquid crystalline polymers (LCP) are now recapitulated, applied to

the discrete worm-like chain model which has been used in the simulations.

It should already be noted that the theory which is reviewed was formulated

for a system with no hairpins, i.e. fully stretched chains [104, 105, 107, 108].

In simulations, as it will be shown in ch. 3.6.2, the molecules have not been

constrained, i.e. the configurations do not correspond to the zero-hairpin limit.

For a nematic LCP mesophase with n continuum WLC’s, it is straightforward

to introduce a local areal density of chains intersecting a plane normal to the

average director of the mesophase, n.

ri

z

z i

n

i

z

z i

r (s)

(s)

(a) (b)

s-1

s+1

s

Figure 3.10: (a) Illustration of the labeling of a position along the contour of
a WLC chain with index i with respect to a coordinate along the
director n and a vector ri⊥ in the plane perpendicular to n. (b)
Labeling of the segment position for the discrete WLC chains,
expressed in terms of the discrete parameter s counting along the
chain segments.

Without loosing generality, it is convenient to assume that n is parallel to the

z-axis of the laboratory coordinate frame (see Fig. 3.10a). In this case, zp sets

the position of such a plane and r⊥ is a two dimensional vector defining a point
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on the plane. In this setup, chains which are oriented without backfolding can

be described [104, 105, 107, 108] as curves which are single-valued functions

of z. The local areal density becomes

ρ(r⊥, zp) =
n∑

i=1

∫ zL(i)

z0(i)

δ (r⊥ − ri⊥(z)) δ (zp − z) dz. (3.24)

In eq. 3.24, z0(i) and zL(i) are projections of the two ends of the i-th chain

on the z-axis (L is the contour length of the WLC). Within a hydrodynamic

treatment of correlations, local fluctuations δρ(r⊥, zp) and δn(r⊥, zp) of den-

sity and director fields can be penalized through a free energy [104, 105, 108],

F =

∫

dr⊥

∫

dzp

[

B

2

(
δρ

ρ̃0

)2

+
G

2

(

∂zpδρ+ ρ̃0∇⊥δn

)2
]

+ Fn[δn].

(3.25)

The first term in eq. 3.25 represents a simple equation-of-state, with ρ̃0 and

B being the average areal chain density and two-dimensional bulk modulus,

respectively. The latter does not depend on chain length, up to a O(L−1) term

[105] due to translational entropy. For a chain to intersect a plane, the average

distance of its center from zp must be smaller than l/2 below or above the

surface [161], with l being the average length or extension of the chain when

projecting its contour on the z axis. Thus, it follows that ρ̃0 = nl/V . The

second term in eq. 3.25 expresses the constraint that changes in areal density

and director fields are coupled. In particular [25, 103],

∂zpδρ+ ρ̃0∇⊥δn = ρH − ρT, (3.26)

where ρH and ρT are the local densities of chain “head” and “tail” ends

(compare illustration Fig. 3.6). In the limit of infinitely long chains, no chain

ends are present and the differential form in eq. 3.25 is strictly zero. Hence,

in this case G → ∞. For finite chains to penalize deviations of ρH − ρT from

zero (as happens in the case of splay deformation [103]), analytical theories
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[103–105, 108] typically assume

G = lkBT/2ρ̃0. (3.27)

This corresponds to the concentration susceptibility of a mixture of “head” and

“tail” ends, considering them as noninteracting ideal gases. Recently, it was

recognized that this constraint in fact applies to polar nematic ordering and

care is needed when applying the constraint in eq. 3.26 to nonpolar nematics

(i.e., quadrupolar ordering) [161, 162]. For the latter, an alternative tensorial

conservation law has been developed [162]. However, this constraint has not

yet been incorporated into a theory describing fluctuations. Fn in eq. 3.25

is the “bare” Frank free energy eq. 3.8, with splay, K1, twist, K2, and bend,

K3, elastic constants which are approximately equal to those of a system of

unpolymerized mesogenes [105].

From eq. 3.25, correlation functions of the local areal density and the direc-

tor orientation were obtained [104, 105, 108] in the hydrodynamic limit and

found in agreement with a more elaborated “microscopic” description, map-

ping polymer trajectories on wordlines of two-dimensional bosons in order

to use the respective mathematical framework [104, 105, 108]. For the large

wave length predictions of the theory, to which the simulation results will be

compared, the subtle microscopic derivation of the theory is irrelevant.

To cast the results into the context of discrete WLC’s, it is helpful to parame-

terize the continuum WLC through the arc length t of the curve. Since there

is no backfolding, z will be a single-valued function of t, that is z = zi(t) and

ri⊥(zi(t)) = ri⊥(t). Thus, eq. 3.24 becomes

ρ(r⊥, zp) =
n∑

i=1

∫ L

0

δ (r⊥ − ri⊥(t)) δ (zp − zi(t)) z
′
idt. (3.28)

Considering that z′i = dzi/dt is the direction cosine of the tangent vector
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of the curve at value t of the arc length with the z-axis, a discrete analog of

eq. 3.28 can be introduced as (compare Fig. 3.10)

ρ(r⊥, zp) =
n∑

i=1

N∑

s=1

δ (r⊥ − ri⊥(s)) δ (zp − zi(s)) a, (3.29)

with ri(s) = {ri⊥(s), zi(s)} being the coordinates of the centers of the

segments of the discrete WLC and a a characteristic microscopic length scale

representing an average projection of the distance between segment centers on

the z-axis. Based on eq. 3.29 a structure factor for the density fluctuations can

be defined as

〈ρ(q⊥, qz)ρ(−q⊥,−qz)〉 = (3.30)

a2

V

〈
∣
∣
∣

n,N
∑

i,s=1

exp
[
i
(
q⊥ · ri⊥(s) + qzzi(s)

)]
∣
∣
∣

2
〉

=

(
ρ̃0
ρ0

)2

S(q⊥, qz).

Angular brackets denote an average in the canonical ensemble and l = aN

was substituted into ρ̃0 = nl/V to obtain a = ρ̃0/ρ0. The scattering function

S(q⊥, qz) is normalized by V and not the number of scatterers nN , which is a

more common choice. Direct substitution of theoretical results [104, 105, 108]

for 〈ρ(q⊥, qz)ρ(−q⊥,−qz)〉 into eq. 3.30 leads to the following prediction for

the discrete WLC model:

S(q⊥, qz) =
kBTρ

2
0 (q

2
⊥ + (K1q

2
⊥ +K3q

2
z) /Gρ̃

2
0)

Bq2⊥ + (B/Gρ̃20 + q2z) (K1q2⊥ +K3q2z)
. (3.31)

The generic form of eq. 3.31 corresponds to a highly asymmetric scattering,

in which the contour lines of constant S(q⊥, qz) create the characteristic bowtie

pattern [104, 105, 107, 108, 135]. As an illustration, it is helpful to consider
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the limiting behavior of S(q⊥, qz) along the qz = 0 and q⊥ = 0 axes:

S(q⊥, 0) =
kBTρ

2
0

B
, S(0, qz) =

kBTρ
2
0

B +Gρ̃20q
2
z

. (3.32)

S(0, qz) has an Ornstein-Zernike form, with

ξ2 =
Gρ̃20
B

(3.33)

being the analog of a (squared) correlation length. Indeed, the eqs. 3.32 demon-

strate that for infinitely long chains, l → ∞ (that is G → ∞), no scattering

along q⊥ = 0 should be observed, while constant scattering is still obtained

for qz = 0 [107, 135]. According to eq. 3.32, chains of finite length scatter

also for q⊥ = 0. This scattering however decays as one moves from the origin

of the axes. A more detailed discussion of the theoretically predicted contour

plots of the structure factor can be found in Ref. [108]. Very few experimental

investigations confirmed the bowtie-shaped scattering contour for real liquid

crystalline polymers, from nematic samples of poly-γ-benzyl glutamate [135]

in one case, and from aqueous suspensions of vanadium pentoxide [163] in

another case. In both studies, small-angle X-ray scattering was used.

To compare the theoretical predictions with simulations, it is convenient to

address director fluctuations in melts of discrete WLC’s in terms of the nematic

tensor [111, 115, 164, 165], Qαβ(r) = ρ−1
0

∑n,N
i,s qi,αβ(s)δ(r − ri(s)), which

is also given in eq. 3.3. The Fourier transformation of this quantity reads

Qαβ(q⊥, qz) =
1√
V ρ0

n,N
∑

i,s=1

qi,αβ(s) exp
[
i
(
q⊥ · ri⊥(s) + qzzi(s)

)]
. (3.34)

For n oriented along the z-axis and small distortions of the director field,

one has [115]

δnα(r) = 2Qαz(r)/3〈S〉, (3.35)

64



3.5 Theory revisited

with α = x, y and the average nematic order parameter 〈S〉. Thus, the theoret-

ical predictions [104, 105, 108] for 〈δnα(q⊥, qz)
2〉 transform to:

4〈|Qαz(q⊥, qz)|2〉
9〈S〉2kBT

=
1

K2q2⊥ +K3q2z

(

1− q2α
q2⊥

)

+

(3.36)

1

KR
1 q

2
⊥ +K3q2z

(
q2α
q2⊥

)

with KR
1 = K1 +

B
B

Gρ̃20
+ q2z

.

As in the case of S(q⊥, qz), angular brackets denote an average in the canon-

ical ensemble.

The generic form of the spectrum of the orientation tensor in eq. 3.36 is

typical [115] for nematic LC described by a Frank free energy (see eq. 3.11

for comparison), albeit, here the splay constant KR
1 is q-dependent. The limit

of KR
1 for q2z → 0 is

KR
1(0) = K1 + Bξ2 = K1 +

1

2
kBT lρ̃0. (3.37)

It can be seen that KR
1(0) ∼ N (since l = aN ) [104, 105, 108], in agreement

with a more qualitative treatment by Meyer [103]. On the contrary, in the same

limit, an alternative approach by de Gennes [101, 102] leads to a different

scaling, KR
1(0) ∼ N2. Notably, for infinite chains, all analytical theories [101,

104, 105, 108] are consistent with each other, predicting KR
1 = K1 + B/q2z .
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3.6 Results

3.6.1 Strength of nematic order and director orientation

To simplify the discussion of theoretical predictions in the previous section, it

was assumed that the coordinate frame which is fixed to the laboratory (i.e.,

the simulation box) and the frame which is oriented with the z-axis along the

macroscopic nematic director match. In simulations, this is true only for the

initial starting configurations, with n oriented along the z-axis of the simu-

lation box. However, it is important to monitor n during the entire Monte

Carlo simulation since it can reorient [111, 166] due to fluctuations. Thus, in

each melt configuration, the maximum eigenvalue, S, and the corresponding

eigenvector of the tensor

1

V

∫

Qαβ(r)dr =
1

nN

n,N
∑

i,s

qi,αβ(s) (3.38)

were calculated. Table 3.1 summarizes the values of configurational averages

of the maximum eigenvalues, 〈S〉, as a function of the chain length N .

N 16 32 48 64
〈S〉 0.62(4) 0.65(1) 0.66(0) 0.66(7)

Table 3.1: Average nematic order parameter, 〈S〉, as a function of the number
of chain segments, N .

From Table 3.1 it follows that the strength of nematic orientation increases

with chain length, saturating for longer molecules. This behavior stems from

orientational correlations along the chain backbone induced by bending rigid-

ity [69] and is qualitatively similar to the shift of the isotropic-nematic transi-

tion to higher temperatures as molecular weight increases [69, 148, 157].

The eigenvector analysis demonstrates that for the two shortest melts, N =

16 and 32, the changes in the orientation of n are indeed substantial. For exam-
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ple, for the N = 16 melt angles as large as θ = 7.5◦ between n and the z−axis

of the laboratory frame were observed. At the same time, for the two longest

melts N = 48 and 64 the reorientations of n were found insignificant, i.e., the

observed angles were at most θ ≃ 1◦. The differences between the laboratory

and the nematic director frames are taken into account [111, 166] during the

analysis of the fluctuation spectra, as will be described in the relevant sections.

3.6.2 Chain stiffness and backfolding
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Figure 3.11: (a) Bond correlation data which is used for extracting the per-
sistence of the bulk phase of WLC with N = 64 segments per
chain. The fitted exponential is shown, and for comparison also
the bond correlation function for chains in the ordered nematic
phase. (b) Main panel: Percentage of chains in a melt having at
least one hairpin, as a function of the number of chain segments,
N . Lower right: Fraction of backfolded chains, as a function of
the number of hairpins per chain for N = 64 melts. Upper right:
The component of the average radius of gyration (squared), R2

gz,
along the director as a function of N .

Fig. 3.11a shows the decay of the bond orientation correlation measured in

the amorphous and in the nematic bulk phase of chains with N = 64 seg-

ments. The measured persistence length lp = 2.29 nm for the amorphous sys-
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tem agrees well with the initial input value, see ch. 3.3. For comparison, the

same bond order correlation is shown for a nematic liquid crystalline phase,

in which chains are aligned along a preferred direction. Orientational correla-

tions of bond vectors decay significantly slower along the chain contour.

For the following discussion of fluctuation spectra and material constants,

it is important to quantify the amount of backfolded chains as a function of

polymer length. To comply with the theoretical description in Sec. 3.5, in

every configuration, for each chain the number of intersections with a sequence

of planes normal to the axis of the director, n, was calculated. The distance

between the planes was chosen significantly smaller than the bond length. A

chain was considered as backfolded if found to intersect a plane more than

once.

Fig. 3.11b presents in the main panel the percentage of backfolded chains

(averaged over all configurations) as a function of the number of segments

in the chain. In can be seen that the amount of these molecules increases

substantially with chain length so that for N = 64 almost 40% of polymers

have at least one backfolding. The apparent linearity of the plot is due to

the still moderate chain lengths. Even for the longest considered chains with

N = 64, the fraction of chains with more than one hairpin is below 10%, which

is illustrated in Fig. 3.11b in the lower right panel. Theoretical arguments

based on the continuum WLC model [167] within mean-field approximation

predict that the fraction of backfolded chains should eventually saturate to

unity as 1− exp(−Γ) with

Γ = (L/l0) exp(−Uh/kBT ). (3.39)

The characteristic scales of length, l0, and energy, Uh, are functions of the

chain stiffness, strength of orientational coupling, order parameter, and tem-

perature. L is the contour length. The small number of backfolding events per
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chain in the simulations is demonstrated in the upper right panel of Fig. 3.11b.

The figure presents a logarithmic plot of the component of the average radius

of gyration (squared) along the nematic director, R2
gz, as a function of N . It

can be seen that it still obeys a rod-like scaling R2
gz ∼ N2. In a regime with

many hairpins it should be [116, 167] R2
gz ∼ N .

3.6.3 Density fluctuation spectra

To calculate fluctuation spectra in simulations, the scattering vectors must

comply with periodic boundary conditions [168] and it is more convenient to

introduce them in the laboratory frame. There, the components of the q-vector

are given by

qLα = 2πiα/Lbox, (3.40)

with iα being integers and α = x, y, z. For each configuration of the N = 16

and 32 melts, a density structure factor S(qL) is calculated in the Fourier space

of the laboratory frame via the definition in eq. 3.30 but replacing q = {q⊥, qz}
with qL. The coordinates ri(s) are by default given in the laboratory frame.

To define the vectors, −15 ≤ iα ≤ 15 are used. Subsequently, a qL-dependent

123-frame is introduced [111, 166] (123 is an arbitrary label for the coordinate

frame which is rotating in the laboratory frame). The z-axis of this frame, in

every configuration, is set along the corresponding n. The y-axis is placed in

the plane defined by qL and n, while the x-axis is pointing in perpendicular di-

rection. The scattering vector in the 123-frame is obtained as q = T̂ qL, where

T̂ is the rotation matrix transforming between the two frames. The compo-

nents of T̂ are obtained, for each configuration, from the eigenvectors of the

averaged nematic tensor eq. 3.38. From the definition of the 123-frame it fol-

lows that q = {0, qy, qz}, with qy ⊥ n and qz ‖ n. Transforming all available

qL into {qy, qz}-pairs, the values of S(qL) can be assigned to a two dimen-

sional spectrum S(qy, qz) in the director-based frame. Since θ changes during
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Figure 3.12: (a) Contour plot of the density fluctuation spectrum, S(qy, qz), in
the nematic director frame of a melt with N = 32 (left figure)
and N = 64 (right figure) segments per chain. Contour lines cor-
respond to equal magnitudes of scattering. (b) Main panel: Solid
circles show a one-dimensional “cut” of the scattering function
S(0, qz) for the N = 32 melt. The contribution from intramolec-
ular scattering along the z-axis, S0(0, qz), is shown with a solid
line. An estimate of S0(0, qz) based on a rod system is shown
with a dashed line (see main text for details). Inset: Form factor,
P (0, qz), for N = 16, 32 and 64 melts. (c) One-dimensional pair
correlation of chain ends projected onto the z-axis, for systems
with N = 32, 48 and 64.

the run, the discrete set of vectors qL generates a set of continuous q-vectors

in 123-frames. In practical applications, the continuum values of qy and qz
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are coarse-grained into regularly spaced bins [111]. In this thesis, the width

of the bins is chosen equal to the resolution 2π/Lbox of the Fourier space in

the laboratory frame and final spectra are obtained as averages of the S(qy, qz)

accumulated in each bin over all configurations.

Since for the melts with longer chains,N = 48 and 64, the variations in the ori-

entation of n are small, it was assumed that the director frame coincides with

the laboratory frame, i.e. q = qL. In these melts, q is placed in the yz-plane

of the laboratory frame in a way that q = {0, qy, qz}, with qy,z = 2πiy,z/Lbox

and −20 ≤ iy,z ≤ 20. Thus, in contrast to the melts with shorter chains, the

q-space is discrete and final spectra are obtained as averages over the S(qy, qz)

which are accumulated for each discrete {qy, qz}-pair over all configurations.

A representative contour plot of S(qy, qz) for nematic melts with N = 32 and

N = 64 (calculated in the director frame for N = 32 as described above), is

presented in Fig. 3.12a. It qualitatively agrees with the theoretically predicted

bowtie shape (see previous section). Similar scattering patterns have been re-

ported in earlier simulations of lyotropic polymer nematics [140]. Fig. 3.12a

demonstrates that near the origin, the scattering decreases when moving along

the qy = 0 axis as predicted theoretically. However for the melt with shorter

chains, N = 32, this decay is not monotonous in the simulations and for larger

qz, a sequence of scattering minima is observed.

The additional scattering features in Fig. 3.12a do not signify smectic order-

ing but stem from intramolecular scattering. For a nematic N = 32 melt, this

is shown in Fig. 3.12b by comparing S(0, qz) with the contribution from in-

tramolecular scattering, S0(0, qz), along the z-axis of the director frame (for

clarity only the region qz > 0 is shown). The intramolecular scattering is first

calculated in the laboratory frame from

S0(q
L) =

1

V

n∑

i=1

〈∣
∣
∣
∣
∣

N∑

s=1

exp
(
iqL · ri(s)

)

∣
∣
∣
∣
∣

2〉

= Nρ0P (q
L). (3.41)
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Angular brackets denote an average over the chain conformations and P (qL)

stands for the molecular form factor [169]. Subsequently, the 123-frame trans-

formation is employed in order to obtain S0(0, qz) in the director frame from

S0(q
L). Fig. 3.12b highlights that S(0, qz) is already affected by the second of

the subsidiary maxima of S0(0, qz). The apparent difference in the location of

some of the maxima of S(0, qz) and S0(0, qz) stems from the binning of the qz
vectors used to calculate the former.

The oscillations of S0(0, qz) manifest the strong stretching of polymers along

the nematic director and are observed in all melts modeled in this study. This

is illustrated in the inset of Fig. 3.12b presenting P (0, qz) for systems with

N = 16, 32 and 64. It is instructive to compare the intramolecular scatter-

ing with the following estimate. In a melt configuration, for each i-th chain

the component of the radius of gyration (squared) along the nematic director,

R2
gz(i), is obtained. Each i-th chain is assigned the form factor of a rod,

Prod(i)(qz) = [2 sin(qzlr(i)/2)/qzlr(i)]
2, (3.42)

in which qz is taken parallel to the rod axis.

The length of the rod, lr(i), is chosen in a way that it has the same radius of

gyration (squared) as the chain, that is, lr(i) =
√

12R2
gz(i). The approximate

intramolecular scattering follows from

S0(0, qz) ≃ (Nρ0)〈Prod(qz)〉, (3.43)

with angular brackets denoting the average over all chains and configurations.

It is presented in the main panel of Fig. 3.12b with a dashed line and roughly

follows the shape of S0(0, qz) calculated exactly via eq. 3.41. As illustrated

in the inset, the loss of structure in P (0, qz) increases with chain length. This

can be explained with a larger variations in chain conformations for longer

molecules.
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The fact that the additional scattering features in Fig. 3.12a do not stem from
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Figure 3.13: Examples of the inverse density structure factor for N = 32
(solid circles) and N = 64 (open circles) melts. The bottom
panel presents ρ20S

−1(qy, 0) as a function of qy and the approx-
imation (cf. eq. 3.32) with a constant (dashed line) which is
approximately the same for both N . The upper panel presents
ρ20S

−1(0, qz) as a function of qz. The parabolic fits for N = 32
and N = 64 are shown with solid and dashed lines, respectively.
In both panels, broken red lines mark the boundaries of q-space
used for the fit.

an onset of smectic order can also be seen at the one-dimensional pair corre-

lation function measured from the chain ends projected on the z-axis point-

ing along the director. Fig. 3.12c depicts this quantity for the systems with

N = 32, 48 and 64 segments per chain. The observed structuring is very weak
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for all chain lengths and is essentially similar to that of an ideal gas.

It is interesting to explore whether S(qy, 0) and S(0, qz) can be described

by a constant and an Ornstein-Zernike form respectively, as suggested by

eq. 3.32. For this purpose Fig. 3.13 presents ρ20S
−1(qy, 0) (lower panel) and

ρ20S
−1(0, qz) (upper panel) as a function of qy and qz respectively, for N = 32

(blue solid symbols) and N = 64 (black open symbols) melts. The structure

factor presented in the figure is the average of eight independently obtained

values of S(qy, qz). Accordingly, errorbars are equal to the standard deviation
√

σ2(qy, qz) of the structure factor at every scattering mode.

The bottom panel of Fig. 3.13 demonstrates that for small wave vectors,

the density structure factor normal to the nematic director can be indeed ap-

proximated by a constant, which should equal B/kBT (cf. eq. 3.32). The

constant is marked by the horizontal black dashed line, obtained from a lin-

ear least squares fit of ρ20S
−1(qy, 0) in q2-space, for |qy| ≤ 0.6 nm−1. The

extracted B/kBT is presented as a function of N in Fig. 3.14 (open squares).

The errorbars correspond to approximately 1% error in the estimation of B.

They characterize the spread of the values obtained after splitting the indepen-

dent runs for each chain length into groups with four simulations each, and

calculating the B constant separately for each group. The data in Fig. 3.14

demonstrate that, for the considered chain lengths, the two-dimensional bulk

modulus B does not depend on N . In principle, a weak reduction of B as

N becomes larger is expected, mainly because of the smaller translational en-

tropy of chains (compare sec. 3.5). However, such effects are not discernible

in the plot.

A parabolic approximation to ρ20S
−1(0, qz), motivated by the Ornstein-Zernike

form of eq. 3.32, is demonstrated in the upper panel of Fig. 3.13 for melts

with N = 32 and N = 64 (solid blue and dashed black lines, respectively).

The curves shown in the figure were obtained through a linear least squares

fit of ρ20S
−1(0, qz) in q2-space, with Gρ̃20/kBT as a free parameter while fix-

ing B/kBT to the values calculated from the analysis of ρ20S
−1(qy, 0). As a
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B/kBT (red squares, right axis) as a function of number of chain
segments, N . The arrow marks the constant offset of Gρ̃20/kBT .

test, the spectra allowing also for variations of B/kBT have been fitted and

no significant differences were observed. Moreover, the B/kBT , calculated

in this way, match the data obtained from the analysis of ρ20S
−1(qy, 0) (see

Fig. 3.14). For all melts the fit was performed in the region |qz| < 0.56 nm−1,

which presents an empirical choice. Namely, as suggested by the similarity be-

tween S0(0, qz) and the approximate intramolecular scattering calculated from

the rod system, the natural choice to avoid the “jagginess” of ρ20S
−1(0, qz)

would be to consider length scales larger than the characteristic chain dimen-

sion dominating scattering. This would correspond to |qz| < 2π/
√

12R2
gz (R2

gz

follows from Fig. 3.11b). Indeed, for the shortest N = 16 chains, for which

the effects from intramolecular scattering are the strongest, this condition is
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followed fitting ρ20S
−1(0, qz) by a parabola for |qz| < 2π/l ≃ 0.5 nm−1. At

the same time, it is observed that Gρ̃20/kBT extracted from the parabolic ap-

proximation does not change substantially when the fit regime is expanded

beyond |qz| = 0.5 nm−1 to incorporate periods of oscillations in ρ20S
−1(0, qz)

(presumably because of cancellation effects). For longer chains, for which the

effects from intramolecular scattering are less pronounced, ρ20S
−1(0, qz) is ap-

proximated by a parabola for |qz| . 0.6 nm−1. In this case, the fitting region

includes several multiples of 2π/
√
12R2

gz.

Fig. 3.14 presents the Gρ̃20/kBT obtained from the above procedure as a

function of N (open circles). As in the case of B/kBT , the errorbars charac-

terize the spread of the values for Gρ̃20/kBT obtained after splitting the inde-

pendent runs for each chain length into groups with four simulations each.

Notably, if Gρ̃20/kBT is fitted with an unconstrained B/kBT in the corre-

sponding fit function, the obtained values are within these errorbars. The re-

sults can be well described by a linear dependence of Gρ̃20/kBT on the chain

length (dashed black line). This observation supports the theoretical assump-

tion [103, 104, 108] G ∼ l (since l = aN ) with the difference that in sim-

ulations, the linear dependence has a constant offset (marked by the arrow in

Fig. 3.14). It is interesting that there are no clear deviations from the depen-

dence Gρ̃20/kBT ∼ N which was predicted in the zero-hairpin limit, even in

the case of the longer melts, N = 64, in which almost 40% of the molecules

have at least one backfolding “defect”.

3.6.4 Director fluctuation spectra and Frank constants

To obtain the spectrum of the orientation tensor for melts with N = 16 and 32,

the Fourier transformQαβ(q
L) is calculated replacing in eq. 3.34 q = {q⊥, qz}

with qL. The Fourier image is transformed to a qL-dependent 123-frame to

obtain

Q̂(qy, qz) = T̂ Q̂(qL)T̂−1. (3.44)
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Figure 3.15: (a) Contour plot of the inverse director fluctuation spectrum,
Wxz(qy, qz), corresponding to twist-bend modes for a N = 64
melt. (b) A subset of simulation data forWxz(qy, qz) as a function
of q2y at two representative values, qz = 0 and 1 nm−1 (squares
and circles, respectively,) is presented. Dashed lines show the ap-
proximation by the analytical expression of eq. 3.45. (c) Same as
(b) but considering Wxz(qy, qz) as a function of q2z at fixed qy = 0
and 1 nm−1.
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Then, |Qαβ(qy, qz)|2 is calculated and assigned to the bins of the yz-plane in

the 123-frame which correspond to the rotated qL. Final spectra are obtained

as averages of the values accumulated in each bin over all configurations. As

it has been clarified in sec. 3.6.3, the laboratory and the director frame can

be assumed to coincide for the N = 48 and 64 melts. In these melts, q is

placed in the yz-plane of the laboratory frame and |Qαβ(qy, qz)|2 is obtained

directly via eq. 3.34 without any intermediate transformation. The final spectra

are obtained as averages over |Qαβ(qy, qz)|2, accumulated for each discrete

{qy, qz}-pair over all configurations.

Twist, K2, and bend, K3, constants

When the scattering vector is located in the yz-plane eq. 3.36 predicts that the

fluctuations of the nematic tensor corresponding to twist-bend modes should

fulfill:

Wxz(qy, qz) ≡
9kBT 〈S〉2

4〈|Qxz(qy, qz)|2〉
= K2q

2
y +K3q

2
z (3.45)

The theoretical result can describe the simulation data in a rather broad

range of wave vectors, for all modeled chain lengths. This conclusion fol-

lows after fitting the right-hand side of eq. 3.45 to Wxz(qy, qz) calculated from

melt configurations. The fit is performed in q2-space for |qy,z| ≤ 1 nm−1 us-

ing linear least squares. The statistical error estimate for the individual modes

of Wxz(qy, qz) was obtained as described in sec. 3.6.3. The elliptic shape of

the twist-bend fluctuation spectrum is illustrated in Fig. 3.15a, presenting a

contour plot of Wxz(qy, qz) for a melt with N = 64. An example of the accu-

racy of the fit is provided in Fig. 3.15b presenting a subset of simulation data

for Wxz(qy, qz) as a function of q2y at two representative values, qz = 0 and

1 nm−1 (squares and circles, respectively). For these qz, the dashed lines in

Fig. 3.15b show the approximation of the simulation data through the fit func-

tion K2q
2
y +K3q

2
z , with K2 and K3 originating from a fit in the whole region

|qy,z| ≤ 1 nm−1. Fig. 3.15c presents a similar plot, considering Wxz(qy, qz) as
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Figure 3.16: Main panel: Splay, KR
1(0) , twist, K2, and bend, K3, elastic con-

stants as a function of the number of segments in a chain. The
Gρ̃20 calculated in Fig. 3.14 is also reproduced on the plot. The
absolute values for the material constants are determined assum-
ing T = 500K as the reference temperature. Inset: Comparison
of KR

1(0) and Gρ̃20 after subtracting from the latter the offset indi-
cated in Fig. 3.14.

a function of q2z at qy = 0 and 1 nm−1.

The twist and bend elastic constants calculated from the fit for all mod-

eled chain lengths are presented in Fig. 3.16. Errorbars were obtained from

the standard deviation of elastic constants calculated by fitting the fluctuation

spectra in each of the available independent runs, separately. The robustness

of the results is emphasized regarding the choice of the fitting region. Namely,

choosing smaller limits, for example |qy,z| ≤ 0.5 nm−1, yields very similar

results for K2 and K3. Fig. 3.16 demonstrates that both K2 and K3 tend to

constant values as the chain length increases, which is in agreement with the-

oretical arguments [103]. K3 is roughly twice as large as K2, while the order
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of magnitude of both constants is 10−11 N. Interestingly, both observations

are in good agreement with experimental findings in lyotropic nematic poly-

mers [97–99].

Splay constant KR
1

For the splay-bend mode, the theory (see eq. 3.36) predicts

Wyz(qy, qz) ≡
9kBT 〈S〉2

4〈|Qyz(qy, qz)|2〉
=

[

KR
1(0) −

Bξ4q2z
1 + ξ2q2z

]

︸ ︷︷ ︸

KR
1

q2y +K3q
2
z . (3.46)

In the above expression, an equivalent form for the splay constant KR
1 (qz)

(comparing to eq. 3.36) is employed, to facilitate fitting. It follows from

eq. 3.46 that, in theory, for small wave vectors the isolines of Wyz(qy, qz)

should form an ellipse in the yz-plane of the director frame. As qy and qz in-

crease, the contour plot of Wyz(qy, qz) should transform into a figure-of-eight

shape with the long axis oriented along the director.

In contrast to the twist-bend fluctuation spectra, the shapes of the splay-bend

spectra Wyz(qy, qz) in the simulations of melts with shorter chains (N = 16

and N = 32) do not completely match the corresponding theoretical predic-

tions. For an illustration, Fig. 3.17a presents a contour plot of Wyz(qy, qz)

for a N = 16 melt. While the general shape of the plot follows the theo-

retical expectations, the isolines exhibit a sequence of “wiggles”. Contrary

to the case of density structure factors (compare Fig. 3.12a) these additional

features stem from intermolecular correlations and not from intramolecular

scattering directly. This conclusion follows after considering the contribution

of intramolecular scattering, obtained by calculating the Fourier transforma-

tion of the nematic tensor for each i-th molecule in the laboratory frame first,
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Figure 3.17: (a) Contour plot of the inverse director fluctuation spectrum,
Wyz(qy, qz), of the splay-bend modes in a N = 16 melt, illus-
trating the “wiggles” in the pattern of contour lines. (b) Con-
tour plot of the inverse single-chain director fluctuation spectrum,
wyz(qy, qz), for the same melt, presenting a cross-like pattern of
minima.

according to

Qi,αβ(q
L) =

1√
V ρ0

N∑

s=1

qi,αβ(s) exp
(
iqL · ri(s)

)
. (3.47)

For each chain, the Fourier image of the molecular nematic tensor is trans-

formed to a qL-dependent 123-frame to obtain

Q̂i(qy, qz) = T̂ Q̂i(q
L)T̂−1, (3.48)

and the total part of intramolecular scattering is given by

w−1
yz (qy, qz) ≡ 4n

n∑

i=1

Qi,yz(qy, qz)/9〈S〉2kBT. (3.49)
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3 Nematic polymers - studied with soft, generic models

Fig. 3.17b presents the contour plot ofwyz(qy, qz) forN = 16 demonstrating

that it has a different pattern comparing to Wyz(qy, qz). For short chains, the

cross-like shape of minima in wyz(qy, qz), not observed in the total scattering,

stems from strong correlations in the orientation of segments along the same

molecule due to stiffness. The instantaneous tilt angle θs of a segment axis

with respect to the director n has an average value larger than zero, i.e. 〈θs〉 >
0. In Fig. 3.17b, the angles between the branches of the cross and the qy-

axis depend on the magnitude of 〈θs〉. Indirectly, however, the intermolecular

correlations leading to the distortions in Fig. 3.17a are still coupled to the chain

connectivity. This follows from the observation that they are located at wave

vectors roughly corresponding to the contour length of the polymer chains.

For longer polymers, the distortions of the isolines not only shift to smaller

wave vectors but become also less pronounced.

Fig. 3.18a presents the contour plot of Wyz(qy, qz) for the longest N = 64

melt, which is in very good agreement with the shape predicted by eqn. 3.46.

This can be quantified by fitting the Wyz(qy, qz) obtained in the simulations

for |qy,z| ≤ 1 nm−1 by the functional form suggested by eqn. 3.46. Fig. 3.18b

considers two representative values qz = 0 and 1 nm−1 to demonstrate that the

fitted function (dashed lines) describes the original data (squares and circles,

respectively) closely at different values of qz. Fig. 3.18c provides a similar

comparison, now considering Wyz(qy, qz) as a function of q2z at two represen-

tative values, qy = 0 and 1 nm−1. Notably, the value of the bend constant K3

obtained from this fit matches the value extracted from the twist-bend fluctua-

tions.

For all chain lengths, the small wave length behavior of the splay constant,

KR
1(0), is presented in Fig. 3.16 (open circles). It was extracted from linear fits

to Wyz(qy, qz) as a function of q2y , while setting qz = 0. For melts without

significant hairpin effects, the plot suggests a linear dependence of KR
1(0) on

N as first predicted by Meyer. For polymer nematics with a large number of

hairpins per chain, it has been predicted theoretically that KR
1(0) should reach a
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Figure 3.18: (a) Contour plot of the inverse director fluctuation spectrum,
Wyz(qy, qz), corresponding to splay-bend modes for N = 64
melt where no “wiggles” are observed. (b) A subset of simula-
tion data for Wyz(qy, qz) as a function of q2y at two representative
values, qz = 0 and 1 nm−1 (squares and circles, respectively)
is presented. Dashed lines show the approximation by the ana-
lytical expression of eq. 3.46. (c) Same as (b) but considering
Wyz(qy, qz) as a function of q2z at fixed qy = 0 and 1 nm−1.
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3 Nematic polymers - studied with soft, generic models

finite value as a function of N , which is related to a statistical segment length

(and, hence, the persistence length) for chains with many hairpins [116]. Thus,

for longer chains with moderate backfolding (such as N = 64), the onset of

saturation, i.e., sublinear dependence ofKR
1(0) onN , might be expected. In fact

forN = 64, the simulations suggest the appearance of such effects, manifested

by the slight “bending” of KR
1(0) with increasing chain length. However, such

effects lie within the estimated errorbars (compare Fig. 3.16).

An important question refers to the extent to which the above results are

affected by finite system size effects. For N = 16 the splay constant ob-

tained from test simulations in smaller cells, Lbox = 4L, matched the KR
1(0) in

Fig. 3.16 (obtained at Lbox = 8L). However, in simulations of the longest

melts, in which Lbox = 2L is employed, fluctuations could be more sup-

pressed, resulting into Frank constants that are larger comparing to those of

an “infinite” system. Therefore, in larger samples of these melts splay con-

stants might reduce leading, e.g., to more pronounced saturation effects.

In Fig. 3.16 the quantityGρ̃20 previously calculated from density fluctuations

(compare Fig. 3.14) is also reproduced as a function of N . According to the

theoretical prediction KR
1(0) = K1 + Gρ̃20 one expects that: a) KR

1(0) has the

same slope comparing to Gρ̃20 as a function of N and b) KR
1(0) ≥ Gρ̃20 is larger

than Gρ̃20, since KR
1 is nonnegative. In Fig. 3.16, for short chains, Gρ̃20 has

a slope similar to KR
1(0), which agrees with the first expectation. At the same

time, in simulationsGρ̃20 is larger thanKR
1(0). One can argue that this difference

from the theoretical result is due to the constant offset in the linear dependence

of Gρ̃20 on N observed in Fig. 3.14. The inset of Fig. 3.16 compares KR
1(0) and

Gρ̃20, subtracting from the latter the offset 1.99kBT obtained in Fig. 3.14. In

this case the two curves are very close to each other, for short chains.
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3.7 Conclusions

In this chapter, within a Monte Carlo simulation study, the applicability of a

soft, generic model has been demonstrated for studying director and density

fluctuation spectra in nematic liquid crystalline polymer (LCP) melts. In or-

der to do so, a model presented earlier [69] has been adopted and developed

further. The non-bonded interactions between polymer segments are therein

evaluated on the basis of a soft potential, which incorporates distance and ori-

entation dependent contributions. The distance dependent part is analytically

derived from an overlap integral of spherical density clouds.

Due to the softness of the potential and hence the allowance of significant seg-

ment overlap, the equilibration of large scale morphologies of nematic LCP

with up to N = 64 repeat units was possible. With these morphologies at

hand, and in particular with the explicit segment orientations retained in the

particle-based model, it was possible to analyze director and density fluctua-

tions in a large regime of wave lengths. The simulation box size was a multiple

of the size of an extended chain.

As one of the main results of the study, the simulations strongly support the

linear scaling prediction for the splay Frank elastic constant with chain length,

as it was first proposed by Meyer [103], in disagreement with the earlier result

of de Gennes [101, 102].

It is stressed that the analytical work [103, 104, 108] addressed the limit of

zero hairpin folding only, thus chains are fully stretched. In fact, it can be seen

from the results in ch. 3.6.2 that hairpins can always be found in the considered

systems. It would be interesting to see if the slight deviation of the splay con-

stant scaling from its linear trend, as indicated from the analysis presented in

Fig. 3.16, becomes more pronounced for longer chains, with more backfolding

events per chain on average.

The soft model approach has shown suitable for studies on the scales addressed

here, since the simple model potential in combination with local and global
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3 Nematic polymers - studied with soft, generic models

Monte Carlo moves allows an efficient sampling of the phase space. However,

in order to study the behavior of the Frank elastic constants for the regime

of saturated chain backfolding [116, 137], one has to proceed to even larger

systems with longer chains. In that way, it may be possible to investigate the

different scaling regimes for the elastic constants in a unified way, e.g. linear

behavior of the splay constant in the regime with few hairpins and the onset

of saturation of the latter for systems with many hairpins. This is not feasible

with the approach used in this thesis. Thus, there is a demand for addressing

the problem with more sophisticated simulation approaches. The Monte Carlo

algorithm could be optimized by using more advanced sampling techniques,

e.g. biased reptation or more global update moves. Following another direc-

tion, one may think of an implementations for highly parallel Molecular Dy-

namics (MD) simulations. A parallel implementation may be straightforward

with the off-lattice, particle-based chain model introduced in this study, how-

ever the implementation of the orientation dependent interactions in a standard

force-based MD simulation might require special techniques.
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4 Modeling biaxial mesophases of

poly(3-hexylthiophene)

Parts of this chapter are based on the following article:

P. Gemünden, C. Poelking, K. Kremer, D. Andrienko, and K. Ch. Daoulas,

“Nematic Ordering, Conjugation, and Density of States of Soluble Polymeric

Semiconductors”, Macromolecules 46, 5762–5774 (2013) (cover article).

The results discussed in this chapter, in particular in ch. 4.3.2 and ch. 4.5.2, are

the outcome of a collaboration with Carl Poelking and Denis Andrienko from

the Organic Electronics Group of the Theory Department at the Max-Planck-

Institute for Polymer Research in Mainz. The author of this thesis focussed on

the investigations regarding the morphology of the material, while the inves-

tigations regarding charge transport were the main focus of the contributions

by Carl Poelking.

In chapter 3, a soft, anisotropic, generic polymer model was used for study-

ing nematic LC mesophases of semi-flexible (worm-like) chains. It was found

that such models, which are based on simple top-down constructions of phe-

nomenological non-bonded interactions, can be used for addressing generic,

fundamental physical questions regarding the macroscopic material properties

of liquid crystalline polymers. In the present chapter, this approach will be

further elaborated, in order to describe, first, complex mesophase structuring,

and, second, specific molecular geometries. A model will be developed which

is capable of describing biaxial-nematic morphologies, i.e. mesophases with
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a symmetry that is reduced compared to uniaxial (cylindrical-symmetric) sys-

tems. Conceptually, the main modification of the modeling framework, com-

pared to the previous chapter 3, is to account for an additional tensorial cou-

pling term in the effective Hamiltonian eq. 3.20. The approach is applied, as a

test case, to the molecule poly(3-hexylthiophene) (P3HT), a polymer typically

used in organic electronics research. Subsequently, generic structure-property

relations for the model morphologies are studied, e.g. the influence of long-

range mesoscale order on the energy landscape of the material.

4.1 Background

In organic electronics, soluble polymeric semiconductors build a class of ma-

terials with promising properties for applications in mechanically flexible de-

vices. Typical examples are organic light emitting diodes (OLED), organic

field-effect transistors (OFET), and organic solar cells (OPV) [170–173]. The

characteristic feature of the molecular architecture of semiconducting poly-

mers is a semirigid conjugated backbone. Due to the conjugation, an injected

charge carrier is able to travel along the molecular contour (see the book of

Geoghegan and Hadziioannou [174] for an overview of the chemistry of conju-

gated polymers). Due to the strong interaction between conjugated backbones,

bulk processing of these polymers is usually impractible [175]. However, sol-

ubility and therefore the potential for a low-cost processing can be achieved

by functionalizing short aliphatic side chains. Poly(3-hexylthiophene) (P3HT)

is an example of a soluble semiconducting polymer which is experimentally

and theoretically well studied [141]. In practical applications, it showed a

promising performance in active layers of organic solar cells, in which it is

blended together with the fullerene derivative phenyl-C61-butyric acid methyl

ester (PCBM) [176] (see Fig. 1.2).

88



4.1 Background

The energetically favorable backbone conformation of P3HT is an all-trans-
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Figure 4.1: (a) Upper scheme: Illustration of a part of a poly(3-
hexylthiophene) in a low energy state. In the all-trans config-
uration, neighboring thiophene rings are aligned co-planar. The
lower scheme illustrates the typical zig-zag configuration accord-
ing to the connecting C-C bonds. (b) At finite temperature, cis-
configurations are increasingly present. For very long chains in
solution, the chain conformation may be described as a random
coil [174]. Locally, however, the polymer is relatively stiff. Fig.
(b) is adapted from Ref. [174].

configuration, leading to a typical zig-zag-structure, see Fig. 4.1a. Thermal

fluctuations lead to an increased population of cis-configurations. Accord-

ingly, the backbone orientation correlation decays quickly in solution, and the

backbones resemble semi-flexible chains with a certain persistence length, see

schematic in Fig. 4.1b. The molecular conformation partitions the chain into

planar sub units (conjugated segments) due to backbone twisting (torsional de-

fects). The distribution of conjugated segments within the molecule influences

the charge transfer properties along the backbone, due to increased localization

of the excess carrier that results from a stronger fragmentation of the chain.
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The morphology of polymeric semiconductors is extremely difficult to pre-

dict and to control in both experiments and first-principle molecular simula-

tions. Due to π-stacking interactions, the material exhibits a lamellar-like,

crystalline packing in the solid state [177] (compare Fig. 1.2c). Additionally,

different crystal structures are observed depending on the processing condi-

tions [175, 178, 179]. An increased charge carrier mobility is observed in the

crystalline phase due to the large electronic overlap in the lamellar configura-

tion [175, 180]. Charge transfer in (semi-)crystalline morphologies of poly-

meric semiconductors can be described as a series of hopping events between

conjugated segments [181]. The time scales for intra- and inter-molecular

transfer differ significantly, and the intermolecular hopping, which proceeds in

the non-adiabatic regime of charge transfer, is the mobility-limiting step (com-

pare Ref. [181] for a more detailed discussion of charge transport in polymeric

semiconductors). An approximate expression of the latter transfer rate is given

by Marcus theory [182].

On even larger scales, the solid state morphology of P3HT and other conju-

gated polymers is governed by inhomogeneously distributed areas of either

amorphous or partially crystalline domains [180]. The long-range correla-

tions due to the chain connectivity and the conformational frustration of side

chains impede the control of backbone order during the processing. Depend-

ing on processing conditions, the structure may be arrested in a kinetically

stable state. Due to packing problems of the side chains, the crystallinity and

therefore the conjugation of backbones and the electronic overlap between lo-

calization units may be reduced. Charge transport in the material is therefore

affected by these large-scale morphological features [141, 183]. Recently, a

possible improvement of molecular ordering and, hence, of the charge trans-

port properties was reported for materials annealed via a liquid crystalline (LC)

mesophase [145–147, 183]. Such an intermediate state of mesophase ordering

was reported above the melting temperature for various polymeric semicon-

ductors [142–149, 184].
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4.2 Motivation

This part of the thesis focusses on the morphology of polymeric semiconduc-

tors and specifically on the question how the latter is connected to charge trans-

fer related properties. Ultimately, the knowledge of structure-process-property

relationships is desirable for an efficient design of components and devices. In

order to approach this with simulations, large systems need to be addressed,

because spatial correlations due to chain connectivity extend over length scales

exceeding ≥ 10 nm. Significantly coarse-grained models can help to over-

come some of these problems. Nevertheless, for connecting the large-scale

morphology with charge transfer-related material properties, one has to link

between the scales. On the one hand, the essential molecular features that af-

fect the molecular ordering and mesoscale structuring in this class of materials

have to be incorporated. On the other hand, a sufficiently coarse-grained rep-

resentation has to be used in order to reach device-relevant scales.

In the past, several coarse-grained modeling approaches for polymeric semi-

conductors have been proposed. The most detailed of those were the three-

site models, in which a set of effective potentials was derived, representing

one hexylthiophene unit by three coarse-grained sites. The side chains are to

some extend explicitly retained in the coarse-grained description [185–188].

However, the level of detail comes with relatively high computational cost,

and the three-site approach is usually limited to a small number (up to sev-

eral hundreds) of molecules. An attempt to combine some of the microscopic

features typical for conjugated polymers (e.g., chain stiffness) with a coarser

particle-based level of description has been proposed [69], allowing to address

larger systems. Zooming out to larger scales, field-based methods have been

used recently to describe charge transport processes in polymeric semiconduc-

tor blends [189]. However, none of the drastically coarse-grained approaches

takes into account the planar shape of monomers and π-stacking interactions.
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In this chapter, the problem of modeling the hierarchically structured, par-

tially crystalline morphology of polymeric semiconductors is approached, in a

first step, via a less ordered state, namely the liquid crystalline phase. Along

the example of P3HT, a top-down model is developed, which is capable of

generating biaxial liquid-crystalline mesophases of P3HT (see ch. 4.1). In

this way, the molecular packing accounts not only for an on average parallel

alignment of the chain backbones, but reflects the planar packing of backbone

segments due to π-stacking interactions in a generic way. The approach is

combined with a systematic bottom-up modeling of chain backbone config-

urations, derived from an atomistic single chain reference simulation. From

the analysis of large, equilibrated mesophases, results will be presented for the

impact of mesoscale ordering on molecular conformations and, eventually, the

energetic landscape relevant for charge transport.
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4.3 Coarse-grained model for biaxial-nematic

polymers
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Figure 4.2: (a) Chemical structure of poly(3-hexylthiophene) (P3HT). (b)
Atomistic and (c) coarse-grained representations of the P3HT
chain. The coarse-grained interaction site is located at the inter-
section of two imaginary lines along theC-C-bonds which connect
neighboring thiophene rings.

The coarse-grained model is developed by first defining a mapping scheme

[15] and subsequently splitting the interactions, as it is frequently done in

(classical) polymer simulations [8, 190, 191], into a bonded and a non-bonded

part.

4.3.1 Coarse-grained mapping

An explicit, systematic mapping of atomistic to coarse-grained degrees of free-

dom is chosen (compare ch. 2.1), in a way that a whole hexylthiophene unit

is mapped onto a single coarse-grained interaction site. A coarse-grained site

represents the whole group of atoms that belong to the monomer [14, 54],

including the atoms associated with a hexyl chain. A typical choice for the

locations of the coarse-grained mapping points are the centers-of-masses of
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the atoms belonging to a monomer. However, for specific molecular archi-

tectures, such a mapping may lead to correlated coarse-grained degrees of

freedom [192]. For P3HT, consecutive trans-angles lead to a backbone con-

figuration in which a thought connection of thiophene ring centers along the

chain backbone renders a zig-zag line, leading to the typical backbone con-

figurations illustrated in Fig. 4.1. Therefore, mapping points are chosen in a

way that the connection between ring centers coincide with the C-C-bonds

between adjacent thiophene rings. In other words, the coarse-grained map-

ping points are located at the intersection of two imaginary lines along these

C-C bonds. In fact, with this choice, the correlation of coarse-grained angu-

lar, θ, and torsional, φ, degrees of freedom is minimized, which is monitored

by measuring the cross-correlation obtained from the trajectory of an atom-

istic reference simulation using the VOTCA package [44]. It is verified that

an offset of ±20% in the system temperature has no significant effect on the

distributions of the coarse-grained degrees of freedom. In the following, the

distribution for the bonded degrees of freedom will be solely adjusted through

the Boltzmann factor kBT .

4.3.2 Bonded interactions

The derivation of the coarse-grained bonded potentials was carried out in col-

laboration with Carl Poelking and Denis Andrienko. For this purpose, a Molec-

ular Dynamics reference simulation has been performed for a single, fully

atomistic P3HT chain with 20 monomers at temperature T = 370K with

a Langevin-dynamics integrator as implemented in the GROMACS package

[47]. A Langevin thermostat with coupling constant τ = 1ps has been used.

All interactions across more than two monomers along the backbone were ex-

cluded in this run, which is consistent with the choice of exclusion for the

coarse-grained non-bonded potential at a later stage. The force field used for
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Figure 4.3: (a) Bonded potential and (b) Ryckaert-Bellemans torsion potential
[193], obtained from Boltzmann Inversion of an atomistic single
chain reference statistics.

the sampling is a re-parameterized version [175] of the OPLS-AA force field

[194, 195], since the original OPLS-AA force field may be problematic for the

modeling of inter-ring torsion potentials in conjugated systems [196]. Details

on the choice of force field can be found elsewhere [175].

From the atomistic reference, the distributions of the bond length, angle and

torsional angle were obtained. For angular and torsional interaction potentials,

harmonic angular and Ryckaert-Bellemans torsion potentials [193] are defined

by

Vθ =
κθ
2
(θ − θ0)

2 , Vφ =
5∑

j=0

(−1)jcj cos
j φ. (4.1)

Subsequently, the parameters κθ, θ0, and cj have been derived from a Boltz-

mann inversion of the angular distributions using the VOTCA-CSG coarse-

graining package [44] and a subsequent fit of the analytical expressions in

eq. 4.1 to the data.

In Table 4.1, fitted values for the potential parameters are shown. Fig. 4.3

shows the angular and torsion potential from eq. 4.1 for this specific param-

eterization. The bond length, which has also been monitored in the atomistic
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θ0 κθ
147.46 462.653
c0 c1 c2 c3 c4 c5
2.75248 -1.37645 -5.29397 3.19667 3.12177 -2.41059

Table 4.1: Coarse-grained bonded potential parameters (eqs. 4.1) obtained
from Boltzmann inversion of the angular distributions. The angle θ0
is given in degrees and κθ given in kJ/(mol rad2). The ci-expansion
parameters are all given in kJ/mol.

simulation, fluctuates around a mean value b = 0.40 nm, with a standard rel-

ative deviation of less than 0.1%. In the coarse-grained simulations, the bond

length is kept fixed.

In order to validate the parameterization, in Fig. 4.4, the bond orientation

correlation and the end-to-end distance distribution is shown, comparing the

set of data obtained from an atomistic reference simulation and from a coarse-

grained simulation. For the bond orientation correlation, Fig. 4.4a, the red

squares show the data obtained from the all-atom reference simulation. The

solid black line is similarly obtained from a coarse-grained single chain simu-

lation at the same reference temperature T = 370K. The data obtained from

the coarse-grained sampling reproduces the data from the reference chain well.

More interestingly, the green circles show the similar data set obtained from a

coarse-grained bulk simulation (however non-bonded interactions will be dis-

cussed later) at a temperature T = 500K. The comparison with the other

two curves shows that the stiffness of a chain in bulk is similar to that of the

isolated chain even for the relatively short chains considered, as it is expected

in the limit of very long chains reflecting quasi-Θ-solvent conditions [19]. It

is also demonstrated that the bonded potentials are not very sensitive to the

temperature of the simulation. Similar conclusions can be drawn for the end-

to-end distance distribution, shown in Fig. 4.4b.
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Figure 4.4: (a) Bond orientation correlation, calculated from the atomistic sin-
gle chain reference trajectory, compared with the same quantity
calculated from a CG single chain and amorphous melt. The vec-
tor bi points along the bond connecting two thiophenes. The data
for the melt is shown for the reference temperature T = 500K,
where the potential was simply rescaled (see main text for details).
(b) End-to-end distance averaged over chains, obtained from the
atomistic reference chain and a CG single chain at T = 370K.

4.3.3 Non-bonded interactions

In this section, the novel framework for developing the non-bonded interac-

tions will be explained in detail. In contrast to the systematic derivation of

bonded interactions, described in the previous section, the non-bonded inter-

actions are developed using a top-down approach.
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Anisotropic interaction

The model for the non-bonded, pairwise interactions is developed for a rela-

tively coarse molecular representation (compare Fig. 4.2). For the P3HT chain,

each hexylthiophene is mapped onto a single coarse-grained interaction site. It

is important to convey with the mapping some of the most relevant underlying

microscopic features to the coarse description level. The coarse-grained model

should include the effect of conformational frustration of side chains and π-

stacking interactions of aromatic rings (backbones) [177, 197]. The molecular

anisotropy in real polymeric semiconductor materials has a strong impact on

the structure at large scales, as observed in, for example, lamellar (crystalline),

discotic or nematic mesophases [177, 184, 198].

At the coarse description level addressed in the present framework, a system-

atic bottom-up modeling of non-bonded interactions is not feasible because

of the limited transferability of effective interactions [55, 190, 199] (compare

also ch. 2.1). For this reason, non-bonded interactions are introduced phe-

nomenologically in the following, combining soft repulsive interactions with

anisotropic coupling of coarse-grained sites.

The development of non-bonded interactions is in the same spirit as in ch. 3.

Here, as a new feature, biaxial symmetry is introduced via a biaxial-nematic

order parameter [28, 200, 201] on the level of an effective functional, in order

to capture the directionality of effective interactions and the mesophase sym-

metry of the real material (compare Fig. 1.2 and Fig. 4.2)

The directionality of monomers is mimicked by considering the coarse-

grained segments as objects with plate-like symmetry (D2h), as it is often done

in theoretical approaches to biaxial-nematic LC phases [27, 201, 202].

To the s-th site in a molecule with index i, an orthonormal set of vectors is

assigned, {n(1)
i (s),n

(2)
i (s),n

(3)
i (s)}, where i = 1, . . . , n and s = 1, . . . , N

98
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(compare Fig. 4.2). Here, n is the number of molecules in the system and

N is the degree of polymerization. The orientation of these vectors is fixed

by the conformation of the chain and is shown in Fig. 4.2c. The molecular

orientations are chosen according to the following geometric constructions:

n
(1)
i (s) ‖ ri(s+ 1)− ri(s− 1),

n
(2)
i (s) ‖ (ri(s+ 1) + ri(s− 1))/2− ri(s), (4.2)

in which ri(s) is the position of the coarse-grained interaction site s in a

molecule i (indicated as beads in Fig. 4.2c, compare also Fig. 3.7). The ori-

entation of n(3)
i (s) is given by the orthonormality of the set. For the ends of

the chain, the orientation vectors can be defined by adding additional “ghost”

bonds. The torsional and angular degrees of freedom of these auxiliary bonds

are also subjected to the bonded potentials of eq. 4.1.

In order to approximately capture the macroscopic thermodynamic behavior

of the real system, e.g. a limited compressibility and biaxial-nematic ordering,

the following functional is postulated [27, 202]:

Hnb

[

ρ̂, Q̂(1), B̂
]

=

∫

dr
κ̄ρ0
2

(
ρ̂(r)

ρ0
− 1

)2

− ν̄ρ0
3

∫

dr Q̂(1)(r) : Q̂(1)(r) (4.3)

− µ̄ρ0
3

∫

dr {Q̂(1)(r) : B̂(r) + B̂(r) : Q̂(1)(r)}

− λ̄ρ0
4

∫

dr B̂(r) : B̂(r).

Even though only the biaxial order tensor B̂(r) is new in eq. 4.3, while

the segment density ρ̂ and the nematic order tensor Q̂(r) have already been

introduced in ch. 3, the full set of local order parameter fields is given here for
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4 Modeling biaxial mesophases of poly(3-hexylthiophene)

clarity of the further discussions:

ρ̂(r) =
n∑

i=1

N∑

s=1

δ(r − ri(s))

Q̂
(1)
αβ(r) =

n∑

i=1

N∑

s=1

δ(r − ri(s))

ρ0
q
(1)
i,αβ(s) (4.4)

B̂αβ(r) =
n∑

i=1

N∑

s=1

δ(r − ri(s))

ρ0
bi,αβ(s).

Note the identification Q̂(1)(r) = Q̂(r), with a superscript (1) being intro-

duced for later convenience. The molecular tensors q(k) (where k = 1, 2, 3)

and b are defined as:

q
(k)
i,αβ(s) =

3

2
n
(k)
i,α(s)n

(k)
i,β (s)−

δαβ
2

bi,αβ(s) = n
(2)
i,α(s)n

(2)
i,β(s)− n

(3)
i,α(s)n

(3)
i,β(s) (4.5)

with α, β = x, y, z.

The first term in eq. 4.3, depending on the local density ρ̂, defines a simple

equation of state, penalizing the density fluctuations in the system [203, 204].

The orientation-dependent part is an analog to the phenomenological Landau

free energy, associated with tensorial fields Q̂(1)(r) and B̂(r), in which terms

only up to quadratic order have been retained [27, 202].

The definition of the interactions through a functional of local order param-

eters (collective variables), as defined by eqs. 4.4, allows the conversion of the

particle-based description into a field-theoretical one, and vice versa. As al-

ready discussed in chs. 2.2 and 3, models can then be efficiently treated within

the self-consistent field theory approach or methods that account for fluctu-
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ations [30, 205–207]. For the choice µ̄ = 0 and λ̄ = 0 one recovers from

eq. 4.3 the functional used in ch. 3 for the description of nematic liquid crys-

talline polymers, i.e. eq. 3.15.

For the general case, eq. 4.3, a transformation similar to that used in ch. 3.3.2

is now applied [29, 32, 34], in order to arrive at a pairwise potential. Therefore,

the locally defined quantities ρ̂, Q̂(1) and B̂ in eq. 4.3 are substituted with the

averaged quantities Φ̂ω(r) (eq. 2.32 from ch. 2.2.1), Q̂ω(r) (eq. 3.19 from

ch. 3.3.2) and

B̂ω(r) =

∫

dr′ω(|r − r′|)B̂(r′), (4.6)

in order to obtain the Hamiltonian as a sum of pairwise interactions,

Hnb =
1

2

n∑

i=1

N∑

s=1

n∑

j=1

N∑

t=1

[
1

ρ0

∫

drω(|r − ri(s)|)ω(|r − rj(t)|)
]

×
[

κ̄− 2ν̄

3
q
(1)
i (s) : q

(1)
j (t)− 2µ̄

3

(

q
(1)
i (s) : bj(t) + bi(s) : q

(1)
j (t)

)

− λ̄

2
bi(s) : bj(t)

]

.

(4.7)

In this expression, the choice of the weight function ω is yet not explicit. The

orientation dependent part of eq. 4.7 can be casted into the form of the bi-

axial interaction potential proposed by Straley [201], if the definitions of the

molecular axes are substituted explicitly. The resulting form emphasizes the

fact that the potential is a direct generalization of the Meier-Saupe potential

for molecules with biaxial symmetry [200, 201].

Defining the weight function ω with eq. 3.21, the non-bonded potential be-

tween sites s and t in the i-th and j-th chain, respectively, has the following
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form [27, 201, 202, 208]:

Vnb = u(rij(s, t))

[

κ̄− 2ν̄

3
q
(1)
i (s) : q

(1)
j (t)− (4.8)

− 2µ̄

3

(

q
(1)
i (s) : bj(t) + bi(s) : q

(1)
j (t)

)

− λ̄

2
bi(s) : bj(t)

]

,

with rij(s, t) = |ri(s)− rj(t)|. The isotropic part of the interaction is set by

u(rij(s, t)) (eq. 3.22, compare also Ref. [34]) and κ̄ controls the compressibil-

ity of the system. In order to fix the sphere diameter, d = 2σ, which determines

the interaction range, it is noted that conjugated backbones start to repel each

other when their side chains overlap. It is therefore set σ = 0.6 nm, which is

close to the length of a hexyl chain in the all-trans configuration, ∼ 0.76 nm

(note that σ = 0.6 nm is smaller than the value used for the uniaxial-nematic

model in ch. 3). An explicit dependence of the potential u(rij(s, t)) on a refer-

ence density ρ0 is retained, although it could have been incorporated into the

coefficients of eq. 4.8. In fact, this emphasizes the link to the functional-based

field-theoretical descriptions of polymeric liquid crystals [121, 122, 124, 209].

For the simulations, the reference density is chosen to be the bulk number

density of P3HT repeat units, ∼ 4 hexylthiophenes/nm3, which is estimated

from the P3HT molar volume of 151 cm3/mol [177] similar to the choice in

ch. 3.3.2.

With the definition of molecular tensors eqs. 4.5, the ν̄-dependent term in

eq. 4.8, corresponding to the double dot product (see ch. 3.3.2) of q(1)
i (s) and

q
(1)
j (t), promotes a rod-like nematic alignment, where on average n

(1)
i (s) ‖

n
(1)
j (t) (see Fig. 4.5). The term defined by the product of bi(s) and bj(t) fa-

cilitates biaxial ordering, where on average n
(2)
i (s) ‖ n

(2)
j (t) and n

(3)
i (s) ‖

n
(3)
j (t). Finally, the µ̄-dependent term favors on average the orthogonal orien-

tation of hexylthiophene units, i.e., n(1)
i (s) ⊥ n

(1)
j (t) and n

(2)
i (s) ⊥ n

(2)
j (t).

In this study, such orientation of mesogenes will be considered unphysical and
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n(3)

q(1) : bq(1) : q(1)
b : b

Figure 4.5: Scheme, illustrating the interpretation of the coupling terms in
eq. 4.8. See main text for a detailed explanation.

is set in the following to zero, µ̄ = 0. If sites s and t are located on the same

chain, and |s − t| ≤ 3, their non-bonded interactions are fully set to zero,

otherwise they interact with the potential defined in eq. 4.8.

As to conclude this section, it is noted that the presence of the distance de-

pendent soft core u(rij(s, t)) renders the interaction potential eq. 4.8 different

from the one originally introduced by Straley [201]. In his work, the non-

bonded potential was obtained from the excluded volume of two rectangular

blocks at selected relative orientations. The distance dependence was averaged

out at the first step of a mean field treatment. The interaction parameters in the

potential can be connected (approximately) to the length, breadth and width of

the rectangular blocks [201].

The directional interactions of eq. 4.8 can be considered as a simple case of

defining a coarse-grained potential by keeping a few terms in a general expan-

sion into a product basis of Wigner matrices [28, 210, 211]. Generally, the

coefficients in such an expansion are functions of intermolecular distances.

The model introduced in this study approximates the dependence by a single

function u(rij(s, t)).
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Setting the interaction strength

Obtaining physically adequate thermodynamic behavior of the system imposes

constraints on κ̄, ν̄, µ̄, and λ̄. As it has been already mentioned above, µ̄ = 0

is always set, and two limiting cases in ν̄, λ̄-parameter space are considered.

Namely, when ν̄ = 0 and λ̄ is larger than a critical value (details will be given

in the following), biaxial-nematic mesophases are obtained. When exploring

the properties of such mesophases related to charge transport (e.g., density of

states) it is important to ensure that the same parameterization leads to biaxial

nematic ordering for all considered molecular weights and temperatures. For

this purpose, the magnitude of λ̄ required to induce biaxial ordering, which

decreases with chain length (see ch. 4.5.1 for details), has to be considered.

Therefore, the LC behavior of the shortest polymer with N = 8 is initially

explored for the highest temperature of interest, T0 = 500K, and the value

for λ̄ is chosen on the order of a few kBT0, for which biaxial-nematic ordering

is observed. This choice of λ̄ is sufficient to induce biaxial-nematic ordering

for the remaining combinations of chain lengths and temperatures considered

in the simulations. The opposite case, setting λ̄ = 0, is also addressed, in

which for sufficiently large ν̄, mesophases with “rod-like” nematic alignment

are obtained.

The restrictions on κ̄ can be obtained from the simple mean field estima-

tion of the isothermal compressibility, κT (see appendix ch. 1), in the case of

perfect biaxial ordering,

1

κT
=
kBTρ0
N

+
(
κ̄− ν̄ − λ̄

)
ρ0. (4.9)

Within the range of coupling parameters considered in the simulations, κ̄ =

6kBT0 is always employed, in order to ensure a positive compressibility [69].
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At the same time, for this choice,

κ̄u(0) = 6κ̄/8πρ0σ
3 ≈ 1.65kBT0, (4.10)

that is, the interactions remain soft, i.e. on the scale of kBT , if segments

substantially overlap. This is a result of the substantial degree of coarse-

graining employed in the current model, while preserving the number den-

sity of hexylthiophene units of the real material. Indeed, the coarse-grained

hexylthiophenes interact already at distances 2σ = 1.2 nm, which is almost

two times larger than the average distance of their centers estimated from the

mean density as ρ−1/3
0 ≈ 0.63 nm. In this scope, using a larger κ̄ would result

into a model with unrealistically large excluded volumes. A more general dis-

cussion of the effects of compressibility on packing of largely coarse-grained

units can be found in Ref. [32] (compare also with the discussions in ch. 3.3).

4.4 Systems studied and simulation details

In the following, P3HT molecules with chain lengthsN = 8, 16 and 32 will be

considered, placed in a cubic simulation cell with fixed volume V and temper-

ature T . The number of chains n in the simulation box is defined in a way that

the average density of particles corresponds to the reference density of P3HT,

i.e. nN/V ≈ 4 hexylthiophenes/nm3. The configuration space of these sys-

tems is sampled using a Monte Carlo approach. The scheme is based on the

standard reptation algorithm [212–215], adopted in order to take into account

the orientational degrees of freedom of the end-groups of the P3HT chain (see

Fig. 4.6).

To propose a new configuration, a chain is randomly selected and one of

the two end-groups, together with the attached “ghost” bond, is cut-off and

reattached to the opposite end of the molecule (the direction of the reptation

is chosen with equal probability for the forward and backward case). The
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old segment

new segment

(b)

(a)

n(1)(1)

n(1)(N)

n(2)(N)r(N − 1) r(N + 1)

n(3)(N)

n(2)(1)r(0) r(2)

n(3)(1)

Figure 4.6: Configuration of a P3HT chain (a) prior and (b) after a reptation
move. The physical and the “ghost” bonds are drawn with solid
and dashed lines, respectively. The orthonormal set of vectors
defining the orientation of the hexylthiophene group at the old and
the new position is also shown.

reattachment is performed through the “ghost” bond at the corresponding end

of the chain (compare sec. 4.3.3), transforming into a physical bond. Subse-

quently, to specify the orientation of the hexylthiophene at the changed posi-

tion, new torsional and angular degrees of freedom are chosen for the “ghost”

bond which is attached to it. These are drawn according to the Boltzmann

weight of the bonded potentials, defined in eqs. 4.1. Simultaneously, at the old

position of the group, the physical, connecting bond becomes a ”ghost” bond.

The above steps are clarified in Fig. 4.6, showing a P3HT chain before and

after a reptation move. Following the standard Metropolis criterion [160], the

move is accepted with probability

pacc = min(1, exp(−∆Hnb/kBT )), (4.11)
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with ∆Hnb corresponding to the difference in non-bonded energies between

the proposed and the old configuration. It is calculated by considering the

isotropic and directional interactions (see eq. 4.8) between the displaced group

and the surrounding particles at the new and old positions. The interactions

are calculated using a linked neighbor-list algorithm [88]. The softness of the

interactions enhances significantly the efficiency of the reptation move, e.g.,

in the biaxial phase the move has an acceptance rate of 20%.

Periodic boundary conditions are employed in all directions. To reduce fi-

nite system-size effects, the length of the box edges L is taken to be at least

twice as large as the contour length of the polymer. For example, setting

L ≈ 26 nm constitutes a typical choice for the shorter P3HT chains with

N = 8 and 16. In this case, the modeled systems contain about 7 × 104

coarse-grained hexylthiophene groups. At the same time, the simulations of

the longer molecules with N = 32 are more demanding: typical systems con-

sidered in this case have dimensions L ≈ 51 nm and consist of approximately

5× 105 hexylthiophenes.
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4.5 Results

4.5.1 Conformational and thermodynamic properties

Amorphous melts

It is instructive to study the model first without the orientation-dependent inter-

actions, i.e. modeling P3HT melts including only the isotropic repulsive part

of the potential in eq. 4.8 and κ̄ = 6kBT0, while ν̄ = µ̄ = λ̄ = 0. Conforma-

tional properties of the P3HT chains can be quantified via the standard single

chain structure factor, S0(q), which can be related to the chain stiffness from

a Holtzer plot [216–218]. An example is shown in Fig. 4.7a, demonstrating

the qS0(q) calculated in a melt of P3HT chains with N = 32, simulated at

T = 500K. The wave vector q∗, marking the transition to the plateau, can be

used to define a persistence length lp = 3.5/q∗ [216–219] (this definition of lp,

in particular the factor 3.5, is empirically chosen, see Ref. [219]). In order to

obtain q∗ from the intersection of two straight lines by fitting in a logarithmic

plot (see inset in Fig. 4.7a), the decreasing part of qS0(q) before the plateau is

chosen, i.e. the values in the interval 1.21 nm−1 ≤ q ≤ 1.58 nm−1, and from

the plateau regime itself, i.e., 2.41 nm−1 ≤ q ≤ 3.46 nm−1. From Fig. 4.7a,

q∗ = 1.77 nm−1 is found, leading to lp = 1.98 nm. As it has been discussed in

Ref. [218], the choice of the fitting region and of the function approximating

the qS0(q) near the plateau is rather ambiguous and such details will affect the

precise values of the extracted lp. Thus, when comparing simulation results

with scattering experiments, it is essential that both employ the same defi-

nition of lp and conventions for its extraction. However, it is noted that the

lp = 1.98 nm calculated from the Holtzer plateau is in very good agreement

with lp = 1.5 nm − 2 nm observed in scattering experiments [150] for P3HT

solutions near Θ-solvent conditions at high temperatures (T ∼ 200 ◦C).

Focussing on the bulk properties of the amorphous melt, the compressibility
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Figure 4.7: (a) Holtzer plot for a melt of P3HT chains with N = 32, in which
S0(q) stands for the single chain structure factor and q is the mag-
nitude of the wave vector. The inset shows the region of the tran-
sition to the Holtzer plateau in a logarithmic plot and straight red
lines correspond to a linear fit of data. (b) Inverse structure fac-
tor of density fluctuations, 1/S(q), plotted for small wave vectors,
calculated from simulations of P3HT melts with N = 32. For
comparison, the limit 1/S(q → 0) = (κ̄/kBT ) + 1/N , obtained
using the mean field estimation for the isothermal compressibility,
is marked by the red arrow. (c) Pair correlation function, g(r), cal-
culated in the same system. The dashed line indicates the distance
1.2 nm, below which segments start interacting. For all calcula-
tions, T = T0 = 500K and κ̄ = 6kBT0 were used.

can be estimated from the structure factor, defined as:

S(q) =
1

nN

〈∣
∣
∣
∣
∣

n,N
∑

i,s

exp (iq · ri(s))
∣
∣
∣
∣
∣

2〉

. (4.12)

The brackets denote an average over the directions of the wave vector q and

the configurations of the system. The isothermal compressibility is obtained
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[24] as

ρ0kBTkT = S(q → 0). (4.13)

In Fig. 4.7b, the behavior of 1/S(q) as a function of q2 is demonstrated for

small wave vectors. It can be seen that 1/S(q) has a linear dependence on

q2. This dependence is highlighted by fitting the data with q2 . 10 nm−2 to a

straight line. Interestingly, the compressibility is rather close to the approxi-

mate mean field prediction (compare eq. 4.9),

1/ρ0kBTkT = (κ̄/kBT ) + 1/N, (4.14)

although the experimental densities realized in the simulations are low com-

paring to the “infinitely high” density limit assumed in the former. This is

illustrated in Fig. 4.7c by the radial distribution function g(r), exhibiting a

weak but distinct structuring, which contrasts g(r) = 1 of the mean field limit

[220]. Atomistic simulations of P3HT melts at high temperatures estimate

the region of “hard” excluded volume between hexylthiophene groups to be

r ≈ 0.5 nm [185]. Although the excluded volume constraint is relaxed in the

simulations, it can be seen that after the first coordination shell, set by the size

of the isotropic core 2σ, the g(r) drops substantially to g(r = 0.5 nm) ≈ 0.3.

The latter point is important for the re-introduction of atomistic details into the

configurations obtained with the soft model, which will be the topic of ch. 5.

Isotropic/biaxial nematic transition

Uniaxial or biaxial nematic ordering of P3HT chains in the system can be

identified with uniaxial and biaxial order parameters [28], S andB, which have

been used according to the definition presented in Ref. [221]. The parameter S

is the standard nematic order parameter, eq. 3.7, defined for the nematic order

tensor Qmax (the superscript is explained in the following). All details about

the definition of the biaxial order parameter B, which is straightforward but
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long however, are rephrased in the appendix ch. 3. Here, only a brief summary

is given. Following the Refs. [221, 222], the orientation tensors Q(k) (where

k = 1, 2, 3), defined as

Q
(k)
αβ =

1

nN

n,N
∑

i,s

q
(k)
i,αβ(s) (4.15)

are calculated, in which the molecular tensors q
(k)
i (s) have been introduced

in eq. 4.5. Subsequently, the nine eigenvalues (three for each tensor) are de-

termined and the maximum absolute eigenvalue λmax is identified. The order

parameter S, in this language, can be obtained from

S = |vT
maxQ

maxvmax|. (4.16)

In the above, Qmax and vmax (with |vmax| = 1) stand for the orientation tensor

and the eigenvector corresponding to λmax. Isotropic phases are characterized

by a vanishing S (within corrections for a finite number of particles[223]),

while S > 0 indicates nematic orientation parallel to vmax. Two types of uni-

axial nematic ordering are observed in the simulations: a) rod-like, with on av-

erage n(1)
i (s) ‖ vmax, and b) plate-like, with on average n(3)

i (s) ‖ vmax. A rep-

resentative snapshot of a plate-like nematic mesophase is shown in Fig. 4.8a.

With the definition of S used in this approach, the nematic order parameter

is always positive (this is different from the definition for a single molecular

director used in ch. 3). For plate-like particles, a straightforward way to dis-

tinguish between the two uniaxial mesophases is to monitor the sign of the

maximum absolute eigenvalue of Q(1), which will be positive in the first and

negative in the second case.

To facilitate the decision if the system shows additional order perpendicular

to vmax, out of the six eigenvalues of the remaining two orientation tensors,

the one with the maximum positive value λ2,max is chosen. The orientation
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26 nm

(a) (b)

z

x

Figure 4.8: Both panels show a snapshot of an equilibrated system contain-
ing 2169 molecules with polymerization degree N = 32, obtained
from simulations started from a pre-stacked configuration. To fa-
cilitate visualization, a configuration of a relatively small system
with L ≃ 26 nm is presented. Colors are arbitrarily chosen to im-
prove the visibility of chain contours. (a) System in a plate-like
nematic phase with the coupling strength set to λ̄ = 4kBT0 (Or-
der parameters S = 0.57, B = 0.12). (b) Biaxial-nematic sys-
tem, obtained at a stronger coupling λ̄ = 5.5kBT0 (Order param-
eters S = 0.79, B = 0.59). The thiophenes have their n(1)

i (s),
n

(2)
i (s), and n

(3)
i (s) vectors aligned on average along the z, x,

and y-directions, respectively. In both cases, ν̄ = µ̄ = 0 and
T = T0 = 500K.

tensor and the eigenvector associated with this eigenvalue are denoted as Q2nd

and v2,max, respectively. After projecting [221] v2,max to the plane perpen-

dicular to vmax, one completes the resulting set of directors vmax, vpr
2,max to a

right-handed orthonormal system with v
pr
3,max (see appendix ch. 3 for techni-

cal details). With the help of the remaining orientation tensor, Q3rd, the order
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parameter B is calculated as:

B =
1

3
|v pr,T

2,maxQ
2ndv

pr
2,max + v

pr,T
3,maxQ

3rdv
pr
3,max

− v
pr,T
2,maxQ

3rdv
pr
2,max − v

pr,T
3,maxQ

2ndv
pr
3,max| (4.17)

B is a measure of biaxial order: it grows only when two independent axes of

mesogenes are ordered along the corresponding directors. It vanishes in purely

uniaxial phases. A representative snapshot of a biaxial nematic mesophase is

shown in Fig. 4.8b.

Fig. 4.9 shows an example plot from which a rough estimate of the location

of phase transitions can be obtained, for the example of a N = 16 melt for

increasing coupling λ̄. Following this approach systematically, the phase be-

havior for T = T0 as a function of chain length and orientation coupling λ̄ is

estimated, while keeping, as explained in sec. 4.3.3, ν̄ = µ̄ = 0. The results

are summarized in Fig. 4.10a, showing the approximate (details follow below)

location of the different phases as a function of λ̄ and inverse polymerization

degree, 1/N . It can be seen, that for all N considered here, the onset of bi-

axial ordering as a function of λ̄ occurs in two steps (compare also Fig. 4.9).

For moderate coupling strengths, as shown in the example of Fig. 4.9, one

observes a change from an isotropic to a plate-like nematic mesophase, char-

acterized by S ≈ 0.5− 0.8. Although in the plate-like nematic mesophase the

biaxial order parameter B increases slightly, comparing to isotropic systems,

it remains small, i.e. B ≤ 0.1. By increasing λ̄ further, mesophases with

biaxial structuring are obtained, characterized by B ≈ 0.3 − 0.6. Notably,

for the systems considered in the simulations, B is always lower than S and

usually shows larger fluctuations. For each N , the phase boundaries have been

located by observing spontaneous ordering of the system from a random initial

configuration. In this scope, the error bars represent the regimes close to the

transition, for which strong fluctuations of S and B did not allow for a definite
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Figure 4.9: Uniaxial and biaxial nematic order parameters, S andB, as a func-
tion of the coupling strength λ for a system with chain length
N = 16. Two visible phase changes can be observed: First, from
isotropic to nematic plate-like, indicated by an increase of S, fol-
lowed by a change to a biaxial-nematic phase, as seen from an
increase of B. The transition is not sharp, and the width of the
regime for which the order parameters rise steeply is reflected in
the error bars plotted in Fig. 4.10. Additionally, the largest absolute
eigenvalue of Q(1) is shown, which can be used for distinguish-
ing uniaxial plate-like (negative eigenvalue) and rod-like ordering
(positive eigenvalue).

conclusion regarding the state of the system (see Fig. 4.9). For the longest

chains, N = 32, for which the most significant finite size effects are expected,

the phase boundaries were estimated for two different box sizes, L = 64 b and

L = 128 b, yielding the same results within the accuracy of the current study.

The same behavior has also been obtained from simulations started from ini-

tially pre-ordered systems.

Fig. 4.10a highlights that for longer chains, the biaxial nematic ordering takes

place at weaker orientation couplings, as it has already been mentioned in

sec. 4.3.3. Similar effects of molecular weight on the onset of LC ordering

are observed in the case of uniaxial rod-like mesophases. As an illustration,
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Figure 4.10: (a) Phase behavior as a function of inverse degree of polymer-
ization, 1/N , and orientation-coupling strength λ̄ (in units of
kBT ), for ν̄ = µ̄ = 0. The dashed red line marks the value
λ̄ = 5.5kBT0, used for obtaining morphologies with biaxial struc-
turing. (b) Phase behavior as a function of inverse degree of poly-
merization, 1/N , and orientation coupling strength ν̄ (in units of
kBT ) for λ̄ = µ̄ = 0. In both cases, the highest temperature
T = T0 = 500K was considered.

Fig. 4.10b demonstrates the phase behavior obtained at T = T0, as a func-

tion of chain length and orientation coupling ν̄, while keeping µ̄ = λ̄ = 0.

This result agrees with earlier simulations of rod-like nematic phases of P3HT

based on a simpler model [69] and with experimental observations [148]. The

latter report that increasing the molecular weight of the polymer shifts the

isotropic/nematic transition to higher temperatures, i.e. for longer chains,

weaker thermodynamic orientational forces (∼ ν̄/kBT ) are required to obtain

nematic LC ordering.
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Elastic properties in nematic phase

In ch. 3, the spatial fluctuations of the nematic director have been considered

within a continuum description with the Frank free energy, eq. 3.8. Following

this approach, one can readily use the analysis schemes for the more elaborated

P3HT model in this chapter. Hence, a set of non-biaxial nematic mesophases

(rod-like ordering along the chain backbones) has been generated for a set of

different coupling strengths, i.e. ν̄ = 1.8kBT0, 2kBT0, and 2.5kBT0. µ̄ = λ̄ =

0 has been employed in all cases, and melts of P3HT chains with N = 32

were considered at T = T0. Two different box-sizes L = 64 b and 128 b

(corresponding to roughly two and four times the end-to-end distance of a fully

stretched P3HT molecule, respectively) were considered to ensure that there

were no significant finite system size effects. The MC simulations were started

from a perfect biaxial nematic mesophase with all P3HT chains in a trans

configuration and all thiophene units having their n(1)
i (s) and n

(3)
i (s) vectors

aligned along the z- and the y-axis of the box, respectively. After relaxation,

a rod-like nematic mesophase was obtained. A large number of equilibrated

configurations have been analyzed, calculating the Fourier transformation of

the local nematic tensor defined through the tensor associated with the primary

molecular axis n(1),

Q̂
(1)
αβ(q) =

1

ρ0

n∑

i=1

N∑

s=1

q
(1)
i,αβ(s) exp (iq · ri(s)) . (4.18)

The three Frank elastic constants with respect to splay, twist and bend, i.e.

K1, K2 and K3 have subsequently been extracted from fitting the fluctuation

spectra eqs. 3.36 with constant K1, i.e. the form of the spectra similar to that

of small mesogene scattering, to the simulation data in the low wave length

regime. Wave vectors qα = 2πmα/L with −4 ≤ mα ≤ 4 have been taken

into account for the analysis. For a detailed discussion it is referred to ch. 3, in

particular chs. 3.1, 3.5 and 3.6.4.
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Figure 4.11: Dependence of the three Frank elastic constants on the degree
of polymerization, N , in a uniaxial rod-like nematic mesophase.
The coupling strength was set to ν̄ = 2.5kBT0 and the tempera-
ture to T = T0 = 500K.

For ν̄ = 2.5kBT0, the values K2 = 0.8 × 10−11 N and K3 = 2.2 × 10−11 N

have been obtained. For the splay constant, K1 = 5.2 × 10−11 N is measured

from the simulations. The best fit is obtained by assuming that K1 is indepen-

dent of qz in the small wave vector regime. It is noted that the elastic constants

remain on the order of 10−11 N also for the other strengths of nematic cou-

pling, i.e. for ν̄ = 1.8kBT0 and 2kBT0. It is noteworthy that for the largest

chain length considered, the magnitudes of the twist and bend constants, K2

and K3, are very close to the values obtained in ch. 3 with the model based on

a simpler chain representation.

In low molecular weight liquid crystals, the twist and bend elastic constants

are typically on the order of 10−12 N [100]. Experimental measurements in

thermotropic main-chain polymer nematics have reported K2 and K3 that are

either comparable [97, 98] or two orders of magnitude [99] larger. For the soft

model, the K2 and K3 are on the order of 10−11 N, which fits well into the
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window of values reported experimentally. The relative magnitude of the two

constants observed in the simulations, that is K3 > K2, agrees with experi-

mental trends [98].

Experiments demonstrate that the splay constant should be one [97, 98] or

two [99] orders of magnitude larger than the twist and bend constants. For the

rather short chains considered in the simulations, the K1 is substantially larger

than K2 and K3, although it is still of the order of 10−11 N. It is expected, that

in simulations with chains of higher molecular weight the splay constant will

significantly increase. To support this statement, the three elastic constants

were calculated for systems with N = 8, N = 16 and N = 32 (ν̄ = 2.5kBT0)

using the same method. The K1, K2, and K3 as a function of polymeriza-

tion degree are presented in Fig. 4.11, demonstrating that indeed K1 increases

monotonically with N . Modeling longer chains is necessary to determine the

form of the functional dependence, which has been investigated with a more

simple generic chain model, see ch. 3. For the comparably short chains in this

chapter, an initial increase of the twist and bend constants, from the shortest

chain length N = 8 to longer chains, is observed. Both the twist and the bend

constant however saturate and remain small.

It is briefly mentioned that an extension of the director fluctuation analysis to

biaxial-nematic mesophases, with an enlarged set of elastic constants [224], is

in principle possible. This is however outside the scope of this study.

4.5.2 Morphology and properties related to charge transport

Molecular conformations and cooperative chain alignment will now be linked

to properties relevant to charge transport in the material. The results presented

in this section stem from a collaboration with Carl Poelking and Denis An-

drienko. More details of the charge transfer related calculations can be found

in the publication this chapter is based on, see Ref. [1].
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As already outlined in the introduction to this chapter, charge transport in

partially ordered organic semiconductors can be described as a sum of in-

tra and inter-chain contributions [174]. Charges are typically localized on

molecules, while within the molecule, they might delocalize due to π-con-

jugation. For polymers, i.e., large molecules which introduce long-rang cor-

relations in the material due to chain connectivity, charge delocalization is

restricted to conjugated sub-segments. The morphology, in these terms, is a

heterogenous distribution of such conjugated segments, and charge transfer

can be essentially described as a series of hopping events between localized

states. The mobility of charges depends sensitively on the “ruggedness” of

site distributions, i.e. the energetic landscape [225–227].

For polymer chains, structural defects such as backbone twists break the

conjugation between adjacent monomers and chains exhibit partitioning into

conjugated segments [228]. The segment lengths are thus statistically dis-

tributed, broadening the distribution of site energies that contribute to the over-

all density-of-states (DOS). The broadening is intimately linked to the micro-

and mesoscale morphology of a partially ordered system [229]. In computer

simulations, accounting for both short and long-range correlations is challeng-

ing.

Evaluation of the external contribution to the site energies, which accounts

for electrostatic and induction interactions between segments [230], requires

the substitution of the atomistic detail back into the soft CG morphologies. For

the CG morphologies described in this thesis, such a re-insertion of atomistic

details has been addressed and will be presented in ch. 5. Before proceeding

with refining the morphologies, here, to a first approximation, intermolecular

contribution to the DOS are neglected. Hence, the variation of energy levels

due to a change in conjugation length dominates in this case the width of the

density of states. With the soft CG morphologies at hand, the internal contri-

bution to the DOS, spatial correlations of site energies, and the temperature

dependence can be evaluated.
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For this purpose, ν̄ = µ̄ = 0 and λ̄ = 5.5kBT0 are chosen, i.e., a set of pa-

rameters well inside the biaxial phase is selected (see Fig. 4.10a) for all con-

sidered chain lengths. In a limited number of cases, for the two longest chains

N = 16 and N = 32, a weaker coupling strength λ̄ = 5kBT0 has been consid-

ered, in order to increase sensitivity to temperature changes. A representative

snapshot of an equilibrated system used for calculating properties related to

charge-transport is shown in Fig. 4.8b.

Distribution of conjugation lengths

Distributions of conjugation lengths in the isotropic and biaxial nematic phases

are first evaluated as a function of length and temperature. To partition a chain

into conjugated segments, an identification based on the dihedral angle be-

tween two successive monomers is employed: If this angle deviates from the

planar cis and trans conformations by more than ±45◦, the conjugation is as-

sumed to be broken across the monomer-monomer bond [231]. The conjuga-

tion length is then the number of monomers l that are part of this conjugated

segment. Fig. 4.12c is a qualitative illustration of such a chain partitioning.

By analyzing a large number of Monte Carlo snapshots of systems with differ-

ent ordering and molecular weights, the number density ρs(l, N) is obtained,

that is, the number of conjugated segments of length l per unit volume. These

number densities are shown in Fig. 4.12a for both isotropic and biaxial melts.

The functional dependence of ρs on l for different molecular weights can be

understood with a simple analytical estimation. Therefore, a probability p of

preserving the conjugation across a monomer-monomer bond is introduced, in

a way that p = 0 implies N conjugated segments in each chain, while p = 1

corresponds to one conjugated segment of length N (i.e., the entire chain is

conjugated). The probability to find a conjugated segment of length l inside a

chain of length N is proportional to the probability of finding l− 1 conjugated

bonds, pl−1, and two broken conjugations, (1 − p)2, weighted by the number
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Figure 4.12: (a) Volume number density ρs(l, N) of conjugated segments of
length l and fit to eq. 4.19 in the limit l ≪ N . Inset: Volume
density ratio of monomers belonging to a conjugated segment of
length l divided by the density of chains in the system, ρ0/N .
λ̄ = 5.5kBT0 and T = T0 = 500K. (b) Distribution of l, calcu-
lated for long chains interacting with a constant background field,
dominated by short conjugated segments for large N . (c) Qual-
itative illustration of the partitioning of chains into conjugated
segments. Different colors label different l. (d) Temperature de-
pendence of the partial density of monomers in the range from
300 K to 500 K, with N = 32 and λ̄ = 5kBT0. The defect density
has been fit to eq. 4.19 in the limit of p → 1 via the bond conju-
gation probability p. Inset: Dependence of p on the temperature.
For N = 16, p, as well as its temperature dependence, is identical
to the case of N = 32.

121



4 Modeling biaxial mesophases of poly(3-hexylthiophene)

of possible placements of a segment of length l along a chain of length N ,

(N − l − 1). Similarly, the probability of finding a conjugated segment of

length l at the chain ends is proportional to 2(1 − p)pl−1. Hence, the number

density of segments of length l, ρs(l), reads

ρs(l)

ρ0
≃
[(

1− l + 1

N

)

(1− p)2 +
2

N
(1− p)

]

pl−1, (4.19)

where ρ0 is the average number density of the thiophene monomers in the

system. The derivation of eq. 4.19 ignores intra-chain torsional correlations.

Hence, it is distinguished between “internal” and “tail” segments whereas the

constraint that the lengths of all conjugated segments in a chain should add up

to N is ignored. Such a constraint may be taken into account [232], but for a

qualitative description, eq. 4.19 suffices.

Considering the conjugation criterion of ±45◦ and assuming that in the

isotropic mesophase all torsional degrees of freedom are independently and

canonically sampled, one can estimate p as

p = 1− 2Z−1

∫ 3π/4

π/4

exp(−Vφ/kT ) dφ, (4.20)

with

Z =

∫ 2π

0

exp(−Vφ/kT ) dφ. (4.21)

The resulting p = 0.58 gives rise to a substantial population of short “internal”

segments and end-effects become insignificant, i.e., the limit of the infinitely

long chain is applicable. In this case (l ≪ N , (1− p) ≫ 2/N ), eq. 4.19 yields

ρs/ρ0 ∼ (1− p)2pl−1, (4.22)

i.e., ln ρs scales as l − 1 and is independent of N as observed in Fig. 4.12a.

The probability p = 0.56, extracted from the fit in Fig. 4.12a, is very close to
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the initial estimate.

In a biaxial-nematic mesophase, polymer backbones are planar and p ∼
1. The conjugated segments are long and, for relatively short polymers, end-

effects lead to a chain-length dependent ρs, as shown in Fig. 4.12a. Eq. 4.19

in the limit of (1− p) ≪ 2/N predicts

ρs/ρ0 ∼ (1/N)(1− p)pl−1. (4.23)

Plotting the ratio Nlρs/ρ0 versus l, it is verified that the condition (1 − p) ≪
2/N is fulfilled for the generated morphologies. The inset of Fig. 4.12a shows

the collapse of all distributions on a single master curve. For longer chains,

however, one may find that 2/N ≪ (1− p), and ρs may be dominated by con-

tributions from “internal” conjugated segments, as in the isotropic mesophase.

For the system at 400K, in which p = 0.98 (see the inset of Fig. 4.12d), this

should be observed for chains with N ≫ 100, which is well beyond the chain

lengths studied in this thesis. However, to a first approximation, one can study

the conjugation length distributions from a sampling of longer chains which

are biaxially coupled to a constant background field, i.e. from a simple mean-

field consideration. Fig. 4.12b shows the conjugation length distributions ob-

tained for such calculations. Indeed, as expected for long chains [232], the

distributions are dominated by relatively short conjugated segments.

The bond conjugation probability p can, to some extent, serve as an order

parameter for chain conjugation: As shown in Fig. 4.12d, starting at low tem-

peratures and strong biaxial order, p decreases upon increasing temperature.

The T -dependence of p is shown in the inset of Fig. 4.12d, together with a fit

to a power-law dependence

p(T ) = p0 + a (1− T/T ′)
b
, (4.24)

with b ≃ 0.06, a ≃ 0.5, and T ′ = 540K.
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Figure 4.13: Partial density ρs(l, N, s) of segments with conjugation length l
at position s in the chain, normalized by the integrated segment
density ρs(l, N), for the (a) isotropic and (b) biaxial morpholo-
gies. The plots highlight how conjugation defects tend to localize
near the terminal monomers in the case of biaxial nematic order,
as opposed to a homogeneous along-the-chain defect distribution
for isotropic systems. The data were obtained for N = 32 at
λ̄ = 5.5kBT0 and T = T0 = 500K.

As discussed above for the biaxial mesophases, the distribution of conjuga-

tion lengths (for l 6= N ) is well described by a model accounting only for the

segments at the chain ends. One can therefore conclude that for the lengths of

chains considered here, there will be an increased concentration of torsional

defects towards the terminal monomers. The situation is very different in

isotropic melts, where, due to the large number of “internal” conjugated seg-

ments, the defects are distributed more homogeneously along the backbone.

This is illustrated in Fig. 4.13, with the density ratio ρs(l, N, s)/ρs(l, N), i.e.,

the probability for the center of a conjugated segment of length l to be at a

position s along the chain, shown for isotropic and biaxial morphologies, re-

spectively. For short polymers, the reason for defects to concentrate towards
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the chain ends in the case of biaxial order is intuitively clear: First, creating

an isolated (in terms of conjugation) monomer in the middle of a conjugated

polymer chain requires two torsional defects instead of just one for terminating

thiophenes (compare eq. 4.19). Second, for polythiophenes, a change in the

dihedral angle results in a change in chain direction due to the zig-zag molec-

ular architecture of P3HT. This change in direction has a high energetic cost

due to the tilting of chain segments away from the mesoscopic director and,

hence, increased overlap with neighboring chains.

Density of states

In this section, the discussion is focussed on linking the morphology in terms

of polymer backbone statistics to the site energy distribution of charge carriers

localized on conjugated segments. The density of conjugated segments can

be translated into the energetic density of states (DOS) for holes according

to the relation between the conjugation length l and the gas-phase ionization

potential (IP, Fig. 4.14a). In order to reflect charge transport conditions, a

two-site DOS P (∆E) based on pairs of segments is considered. These pairs

of conjugated segments are drawn from a monomer-based neighbor-list with

cut-off Rc = 1.0 nm. The energy ∆E entering into the two-site DOS is the

site-energy difference between the two participating segments. The associated

probability density P (∆E) is by definition symmetric about ∆E = 0, see

Fig. 4.14b. The advantages of the two-site DOS are twofold: First, it not

only takes into account the conventional single-site DOS, but also correlations

of the energy landscape (see the next subsection and Refs. [228, 233, 234]).

Second, charge transfer rates within Marcus theory only depend on site-energy

differences ∆E, thus making P (∆E) the preferred measure to assess transport

conditions.

Before discussing molecular weight, the spectrum structure is analyzed.

Note that only the internal contribution to the site energies are considered,
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Figure 4.14: (a) Gas-phase ionization potentials and charge-transfer reorgani-
zation energies for different conjugation lengths l, obtained using
electron density functional theory (DFT). The DFT calculations
were performed by Carl Poelking. For details, see the original
Ref. [1], which this chapter is based on, and Ref. [228] for calcu-
lation details. (b) Top three panels: discrete pair-energy distribu-
tions for biaxial systems with chain lengths N = 8, N = 16 and
N = 32, calculated from a particle-based neighbor-list with cut-
off 1.0 nm. Bottom panel: cumulative pair-energy distribution.
Increasing molecular weight leads to a stronger fragmentation of
energy levels, yet the shape of the cumulative distribution is un-
affected by the chain-length increase. The data were obtained for
λ̄ = 5.5kBT0 and T = T0 = 500K.

hence the pair-energy distribution features delta-peaks at characteristic en-

ergy level separations. For all molecular weights, the spike at ∆E = 0 with

P > 0.1 is by far the most pronounced (note the semi-logarithmic scale in

Fig. 4.14b), as is a result of the strong biaxial nematic order in these systems,

with a large fraction of the chains in their fully conjugated configuration.

Next, there is a number of peaks of intensity P ∼ 0.01 distributed over a

very wide energy range 0 eV < |∆E| < 4 eV: These are related to hopping

pairs formed between a fully conjugated chain (l = N ) and a conjugated sub-

unit (l < N ). The peaks that can be allocated to pairs of this nature are all
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located around the same density level, P ∼ 0.01. Hence, located on a fully-

conjugated chain, a hole encounters mostly neighboring segments with l = N ,

and then, with a reduced but constant probability, a set of partially conjugated

hopping destinations with delocalization length l anywhere from 1 to N − 1.

This can be related back to the density of segments ρs(l, N), which exhibits a

broad plateau when reweighted according to the volume, as in lρs(l, N).

Finally, a third type of pairs, with a probability density of P ∼ 0.001 and

pair energies again spread over the whole spectrum, is associated with neigh-

bors formed between two conjugated sub-units of length l < N . These pairs

are, however, sparse, and their effect on transport is expected to be small.

If the chain length is increased from N = 8 to N = 32, more and more

energy levels are introduced to the system. Yet, the cumulative two-site DOS,
∫ ∆E

−∞
P (E)dE, illustrates that the overall distribution remains almost unchanged:

The largest differences occur towards the center (∆E = 0) of the distribution

(where the introduction of more energy levels for higher molecular weights

broadens the DOS), and at the periphery (where the distribution extends to

larger |∆E| due to longer available conjugation lengths). Within the range of

molecular weights studied here, the dependence of transport on chain length is

indeed small, as previously suggested by experiments [235].

Spatial correlations

Site energies in amorphous organic semiconductors are often spatially corre-

lated, because of the long-range nature of electrostatic interactions [229]. For

polymers, the internal contributions to the density-of-states may well be spa-

tially correlated, due to long-range orientational ordering. Additionally, one

may think of an anticorrelation due to the finite length of the polymer chain,

since conjugated segment lengths cannot be distributed arbitrarily along the

backbone.

Fig. 4.15a shows a contour plot of the local average conjugation length,
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Figure 4.15: (a) Contour plot of the local average conjugation length, 〈l(x, z)〉,
where averaging occurs over a 5 nm slice in the y-direction and
0.16 nm2 bins in the x-z plane. The thiophenes have their n(1)

i (s),
n

(2)
i (s), and n

(3)
i (s) vectors aligned on average along the z, x, and

y-directions, respectively (i.e., the backbones are oriented with
their longest axis along z, compare Fig. 4.8b). (b) Spatial internal
site-energy correlation function for biaxial ordering. The data
were obtained at λ̄ = 5.5kBT0 and T = T0 = 500K (Order
parameters S = 0.79, B = 0.59).

which is obtained from a 5 nm thick slice, averaged over the y-direction, and a

fine binning in the x-z-plane. Long-range inhomogeneities are clearly visible.

In order to quantify these effects, the spatial correlation function CE(R) of

internal site energies is calculated,

CE(R) =
〈(Ei − 〈E〉)(Ej − 〈E〉)〉rij=R

σ2
E

, (4.25)

with 〈E〉 being the average and σ2
E the variance of the site-energy distribution.

Averaging occurs over all pairs (i, j) of conjugated segments of smallest dis-

tance of approach rij with R ≤ rij ≤ R + dR. This correlation function is

shown for biaxial phases in Fig. 4.15b. Note that the dip at 0.4 nm, correspond-
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ing to the bond length between successive monomers of the same chain, points

to a negative intra-chain correlation of site energies, as is expected due to the

finite length of the chain. Interestingly, only by taking the internal contribu-

tion to the site energies into account, the energetic landscape is weakly and

positively correlated over a range of 1.2 nm, with a tail as far down as 3 nm.

The correlation becomes more pronounced as N increases and can be traced

back to the coexistence of ordered and disordered regions in the morphology

as illustrated by Fig. 4.15a (dark and light “patches”, with the color code in-

dicating the local average conjugation length). In ch. 5, the correlation of the

energetic landscape will be discussed for atomistically resolved morphologies,

i.e. after having refined the local structure of the samples.

129



4 Modeling biaxial mesophases of poly(3-hexylthiophene)

4.6 Outlook: Modeling multi-component systems

In this short outlook, first steps towards the extension of the model, in order

to describe P3HT:PCBM blends, are discussed. The approach is discussed for

the most simple polymer model exhibiting nematic orientation without biaxial

coupling, namely the model which was introduced in ch. 3. The blend of

a polymer, which tends to align nematically, and a fullerene-type molecule,

which is approximated as a spherical object, can be described by the following

functional:

Hnb =
κρ∗0
2

∫ (

(1− α)
ρ̂P3HT(r)

ρ∗0
+ (1 + α)

ρ̂PCBM(r)

ρ∗0
− 1

)2

dr (4.26)

+
χρ∗0
2

∫
ρ̂P3HT(r)

ρ∗0

ρ̂PCBM(r)

ρ∗0
dr − νρP3HT

3

∫

Q̂(r) : Q̂(r)dr.

Considering the last term in this expression, the notation from earlier chapters

was adopted. However, as a new feature, two different species were intro-

duced, namely P3HT monomers and PCBM molecules, with local densities

ρ̂P3HT and ρ̂PCBM, respectively. The parameter χ controls the interaction be-

tween different species, with a positive value introducing a repulsion between

the latter. The parameter κ is, as in the approaches in earlier chapters, a phe-

nomenological constant that sets the repulsion strength in the pure phases.

Nevertheless, the parameter ρ∗0 in eq. 4.26 is a reference number density, which

can be approximated by the arithmetic mean of the number densities of the

pure phases, ρ∗0 = 1
2
(ρP3HT

0 + ρPCBM
0 ). α, in this notation, accounts for the

difference in the molar volume of the two species. Irrespective of this nota-

tion, the part of eq. 4.26 that depends on the local segment densities is the

analog to a standard Flory-Huggins description of a two-component mixture

[17, 78, 79]. The functional, eq. 4.26, is transformed into pairwise potentials,

different for each possible combination of P3HT and PCBM particles, similar

to the approach in ch. 3. Here, different density distributions (clouds) for dif-
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4.6 Outlook: Modeling multi-component systems

ferent species introduce additional free parameters to the model. In this way,

the model can account for a more pronounced structuring of PCBM particles

when the density cloud is chosen with a significantly smaller radius than in the

previous approaches. In the simulations, both the value of the χ-parameter, as

well as the specific choice of density cloud, affects the phase behavior signif-

icantly. The interplay of collective molecular ordering of polymer segments,

the local packing in the pure phases in the model, and the resulting effect on

the phase separation may be seen as a generic analog for the cooperative be-

havior of crystallization effects and phase separation of the real blend.

The radii of the density clouds were fixed to σP3HT = 0.79 nm and σPCBM =

0.55 nm. The value for the PCBM radius is determined empirically, guided by

the radius at which particles start overlapping in a system with the experimen-

tally reported density of the pure PCBM phase. Similar to the evaluation of

pairwise potentials through the density cloud approach in the previous chap-

ters (compare eq. 3.22), the transformation of the coupling term in eq. 4.26

with respect to P3HT-PCBM interaction reduces to the solution of an overlap

integral,

1

ρ∗0

∫

drωP3HT(|r − rP3HT
i (s)|)ωPCBM(|r − rPCBM

j |), (4.27)

with density clouds of different radii for coarse-grained P3HT segments and

PCBM particles,

ωP3HT(r) = 3/4πσ3
P3HT for r < 2σP3HT,

ωPCBM(r) = 3/4πσ3
PCBM for r < 2σPCBM, (4.28)

and both equal to zero outside the specified range. In this expressions, r de-

notes the distance from the respective coarse-grained interaction site (the cen-

ter of the density cloud). While the overall form of the integral (eq. 4.27) is
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Figure 4.16: (a) Isotropic, repulsive part of the pair potentials describ-
ing P3HT-P3HT (blue curve), P3HT-PCBM (black curve) and
PCBM-PCBM (orange curve) interactions. The values of the po-
tentials at close distances, i.e. for significant overlap of coarse-
grained segments, illustrates the different magnitude of the repul-
sion for the different combinations of species in the simulation
(∼ 30 kBT for full PCBM-PCBM overlap, which is not shown on
this scale). In this example, χ = 0 is chosen. Values for χ dif-
ferent from zero modify the strength of the P3HT-PCBM overlap
potential additionally. (b) Pair correlation, calculated in the pure
PCBM phase. The inset shows the structure factor obtained from
the same system.

similar to the corresponding expression for a pure P3HT system (eq. 3.22),

performing the explicit integration for different cloud radii is more involved.

However, one can make use of a mathematical simplification by performing

the calculation in Fourier space. Therefore, the Fourier transformation (in

spherical coordinates) for both cloud functions ωP3HT(r) and ωPCBM(r) is per-

formed. Using the convolution theorem [236], which states that the product of

the Fourier transformations of two functions equals the Fourier transformation

of the convolution of the latter, the integration reduces to a multiplication in

q-space [110]. The solution, which is directly proportional to the pair potential
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4.6 Outlook: Modeling multi-component systems

shown in Fig. 4.16a (black curve), using the abbreviated notations A = P3HT

and B = PCBM and r for the distance between the coarse-grained interaction

sites, reads:

For (σA + σB) > r > (σA − σB) :

− 3

64πσ3
Aσ

3
Br

(σA + σB − r)2
(
3(σA − σB)

2 − 2(σA + σB)r − r2
)
,

For 0 ≤ r ≤ (σA − σB) :

3

4πσ3
A

,

Else 0. (4.29)

The different interaction radii have the following effect on the relative strength

of the coarse-grained potentials: While the PCBM-PCBM repulsion is strong,

with essentially no overlap below a distance of approximately 1 nm, both the

P3HT-PCBM and the P3HT-P3HT interactions remain soft, i.e. on the order

of a few kBT for fully overlapping monomers. This is illustrated in Fig. 4.16a

for all three possible combinations of coarse-grained interaction sites. The

potential strength of ∼ 30 kBT for a fully overlapping PCBM-PCBM pair is

not shown. The relatively hard repulsive core for the PCBM-PCBM interac-

tion leads to a pronounced structuring for PCBM-rich domains. This is illus-

trated with the pair correlation function measured in the pure PCBM phase in

Fig. 4.16b. The interaction between PCBM particles leads indeed to a strong

repulsion of neighbors below a distance of approximately 1 nm. The inset in

Fig. 4.16b shows the structure factor, obtained for the same system, accord-

ingly. It follows that the overall phase behavior of the system is sensitive to

the specific choice of the PCBM cloud radius, which may render this param-

eter a good candidate for a future tuning of the generic phase behavior with

respect to a real system.

In Fig. 4.17, a mixture is shown at an intermediate composition with 60
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(a) (b)

Figure 4.17: (a) Sample snapshot of a morphology obtained for a blend with
60 weight-% P3HT and polymerization degree N = 17 hexylth-
iophenes (i.e., 8 coarse-grained segments). No orientation cou-
pling is present, i.e. ν = 0. (b) Sample morphology of the same
system, with activated orientation dependent interactions. In both
cases, the Flory-Huggins parameter was chosen χ = 0.

weight-% P3HT for a chain length of 8 coarse-grained segments, which equals

a polymerization degree ofN = 17 hexylthiophenes according to the mapping

of a P3HT chain. First, Fig. 4.17a illustrates a representative morphology for

ν = 0, i.e. without anisotropic interactions between polymer segments. The

mesostructure has no notable domains of pure phases and is homogeneously

intermixed. In Fig. 4.17b, the same system is shown with activated orientation

coupling, i.e. for ν = 6.81. Obviously, the system has started mesoscopic

phase separation, with visible domains enriched by either of the pure species.

The polymer has visible nematic domains, while other areas of the morphol-

ogy are amorphous. The onset of phase separation in the system can be mon-

itored by a set of quantifiers. In Fig. 4.18a, the radial distribution function

with respect to mutually different pairs of segments/particles is shown. The

function exhibits a characteristic hump at distances r ≈ 6 − 7 nm for a com-
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Figure 4.18: (a) The pair correlation function, calculated over pairs of mutu-
ally different species, is shown for different compositions, i.e.
weight-% of polymers. Calculations were performed for χ = 0,
ν = 6.81 and polymerization degree N = 17 hexylthiophenes.
(b) The structure factor, calculated from the PCBM particle cen-
ters, for a composition for which the phase segregation is strong.
A clearly visible peak evolves at low q-values, indicating a char-
acteristic mesoscopic length scale at d ≈ 12 nm.

position with less than 70 weight-% of polymers, indicating the evolution of

polymer-enriched domains on mesoscopic length scales in these systems. The

evolution of a mesoscopic length scale, indicating the onset of phase segre-

gation, can additionally be monitored in the structure factor, calculated from

the PCBM particle positions. An example is shown in Fig. 4.18b, in which a

clearly visible peak at q∗ ≈ 0.55 nm−1 arises, corresponding to a length scale

of approximately 12 nm.

For a brief conclusion, the model study suggests that the generic behavior of

polymer ordering enhances the overall phase separation of the system.
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4.7 Conclusions

In this part of the thesis, a coarse-grained modeling approach for partially or-

dered, liquid crystalline biaxial-nematic mesophases of poly(3-hexylthiophene)

was introduced. It combines a top-down approach for modeling the macro-

scopic thermodynamic behavior of the system with a bottom-up coarse-graining

scheme for polymer backbone configurations, retaining a relatively detailed

molecular representation. This offered the possibility of charge transport re-

lated calculations.

Despite the fact that the non-bonded interactions are soft, it was found that

the macroscopic material properties described with this method, for example

Frank elastic constants, have typical values reported for real polymer LC mate-

rial [98, 99]. Furthermore, the dependence of the isotropic-nematic transition

on chain length agrees qualitatively with experimental findings [148].

In the isotropic melt, a majority of rather short conjugated segments was found,

due to frequent torsional defects which are homogeneously distributed along

the chain backbone. For biaxially ordered morphologies, a significant amount

of chains was found in a fully conjugated state (the distribution of the con-

jugation length is peaked at l = N ) and the torsional defects tend to localize

near the chain ends. The specific distribution of conjugation lengths influences

the density of states for such systems, which was found to have a three-level

structure. Interestingly, site energies have been found weakly correlated.

The model incorporates many of the microscopic details that are crucial

for reintroducing atomistic details into the coarse-grained morphologies, e.g.

backbone conformations and thus the explicit spatial orientation of thiophene

rings. This motivated a further elaboration of a multiscale modeling approach

in order to reintroduce atomistic degrees of freedom via an intermediate coarse-

graining step. This will be the topic of the following chapter.
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into coarse-grained

morphologies

Parts of this chapter have been accepted for publication:

P. Gemünden, C. Poelking, K. Kremer, K. Ch. Daoulas, and D. Andrienko, “Ef-

fect of Mesoscale Ordering on the Density of States of Polymeric Semiconduc-

tors”, Macromolecular Rapid Communications (2015), DOI:10.1002/marc.201400725.

5.1 Motivation

The model presented in the previous chapter aimed at the approximation of

large-scale, partially ordered morphologies of polymeric semiconductors - here,

as a test case, of P3HT. For the ansatz, a high degree of coarse-graining was

used (one CG interaction site represents a whole thiophone unit including the

hexyl side chain), which allows for a significant overlap of coarse-grained

segments. Hence, the equilibration of liquid crystalline mesophases on large

scales was possible.

In order to use the generated morphologies further for calculations related to

charge transport, ultimately, an atomistically resolved morphology is crucial.

The resulting coarse-grained structures cannot be used directly for such cal-
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5 Reinsertion of atomistic details into coarse-grained morphologies

culations, since monomers show significant overlap and side chains are not

explicitly present (compare results discussed in ch. 4.5.2).

In this chapter, a backmapping scheme for atomistic details is developed. This

scheme enables to reiterate the local structure of the coarse-grained morpholo-

gies and, eventually, reintroduce atoms on backbones and side chains. At the

final stage, the backmapping leads to large-scale samples with atomistic de-

tails.

For polymers, strategies for the backmapping of atomistic details have been

reported for a variety of systems. In a first systematic approach [8, 9], a pro-

cedure was presented to first parameterize a coarse-grained bead-spring model

from an underlying atomistic representation at a rather high temperature. In a

second step, the atoms were put back systematically, and the structures were

relaxed at full atomistic detail. The structural properties, such as neutron scat-

tering patterns, have been compared to experiments and showed relatively

good agreement. However, simulations have been performed for high tem-

perature melts, and in this regime the local packing of the liquid does not rely

on many structural details. For more ordered structures, the systematic ap-

proach of generating a coarse-grained potential from an atomistic reference

system is more involved. A recent study demonstrated a full coarse-graining -

fine-graining cycle for liquid crystalline mesophases of macromolecules [199].

In this work, the idea was to sample the coarse-grained potential parame-

ters from an atomistic reference system close to the disorder-order transition.

The coarse-grained simulation was subsequently used to drive the system to-

wards the transition to liquid crystalline order, which was preserved after the

backmapping of atoms [199]. In many other cases, however, the transferabil-

ity, i.e. the ability of using the same coarse-grained potential at different state

points of the systems, is rather limited [14, 16].

The relaxation of a system after backmapping at the atomistic level is usu-
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ally not an equilibration with respect to the global energy minimum. The dy-

namics is, already for moderate system sizes and complexity, too slow when all

atoms are present. Having reintroduced atomistic details, the global structure

may relax to a local energy minimum, and further equilibration may not be ob-

served in finite simulation time. With the ansatz presented in this chapter, the

equilibration of the system is performed on different length scales separately,

starting from the coarse level via an intermediate stage to the fine scale.

In chapter 4, a model was developed in order to generate large-scale liq-

uid crystalline mesophases of conjugated polymers with a different degree of

mesoscopic order (amorphous, uniaxial-nematic, biaxial-nematic). Despite the

fact that in such systems liquid crystalline phases are important on their own,

the liquid crystalline mesophase may be seen as an approximation to the par-

tially ordered, semi-crystalline structure of the real material (see ch. 4.1 for a

more general motivation). The generated morphologies capture the main as-

pects of the mesophase symmetry and molecular details of the real system. A

reintroduction of atomistic details and subsequent equilibration allows for a

generic investigation of structure-property relations from fully atomistic large-

scale samples. For example, in the spirit of the investigations in ch. 4, one can

study the relationship between mesoscale order and the energetic landscape

that is important for charge transport.

Compared to other available coarse-graining schemes for similar systems in

the literature [54, 69, 185], the biaxial model in this work takes structural de-

tails into account that enhance the backmapping. For example, it incorporates

the information about explicit thiophene ring orientation. However, the main

challenge is the reintroduction of explicit side chains.

In order to approach this challenge, a full backmapping strategy is developed,

first for the most simple case of disordered melts. Following that, a strategy for

the systematic backmapping of atoms into more ordered, biaxial liquid crys-

talline structures is presented. A brief outlook summarizes how this strategy
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5 Reinsertion of atomistic details into coarse-grained morphologies

can be used for a systematic study of charge transport related properties in

partially ordered mesophases.
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5.2 Backmapping in P3HT: Roadmap

The backmapping is performed in several intermediate steps, illustrated in a

workflow diagram in Fig. 5.1. For the test configurations, in which atom-

istic details are backmapped, three representative configurations are chosen,

obtained with the soft coarse-grained model described in ch. 4. A fully amor-

phous mesophase as well as a uniaxially and a biaxially ordered mesophase are

considered. These configurations were obtained at the reference temperature

T = 500K, with interaction parameters κ = 6kBT, ν = 2.5 kBT (uniaxial

mesophase, λ = 0) and λ = 5.5 kBT (biaxial mesophase, ν = 0). For the ini-

tial density, 4 hexylthiophenes/nm3 is set, motivated by previous experimental

data (see ch. 4 for details). The volumetric properties of each phase (uniaxial,

biaxial or amorphous) after backmapping are fine-tuned during a final relax-

ation in the nPT ensemble.

The local packing of these configurations is refined with an intermediate coarse-

grained potential, which is derived from an atomistic reference melt. There-

fore, an existing P3HT structure in the crystalline phase was heated above

the melting temperature and quenched to the reference temperature. For the

derivation of the intermediate coarse-grained potential, the interactions be-

tween thiophene units were obtained from an Iterative Boltzmann Inversion

(IBI). This algorithm was described earlier (see ch. 2.1.2 and middle panel in

Fig. 5.1).

In the last step, the original atomistic force field is gradually restored and

the system is locally relaxed at full atomistic details (see right upper panel

in Fig. 5.1).
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Figure 5.1: Workflow diagram for generation of large-scale amorphous and liquid crystalline morphologies of
conjugated polymers with full atomistic details. The morphology on large scales (i.e., low resolu-
tion) is obtained with the soft coarse-grained model described in ch. 4. An atomistic single chain
reference serves as an input for the parameterization (top left and lower panel). The local structure
is reiterated with an intermediate CG model, creating the excluded volume of monomers (top mid-
dle panel). The intermediate model is parameterized from small atomistic bulk simulations (middle
lower panel). Eventually, all atoms on backbones and side chains are reintroduced and structures are
locally relaxed at full atomistic detail (top right panel). They serve as an input for the calculation of
electronic properties (right bottom panel).
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5.2 Backmapping in P3HT: Roadmap

5.2.1 Intermediate model - relaxing local structure

The morphologies obtained from the approach with soft anisotropic potentials

are lacking a realistic local packing since segments are overlapping.

In order to correct for the latter, the liquid structure is reiterated in an in-

termediate backmapping step, recovering the realistic excluded volume of a

thiophene in the bulk. This step is particularly important in the scope of the

reinsertion of explicit side chains (see sec. 5.2.2). The coarse-grained potential

which generates the correct packing is derived iteratively from a small atom-

istic bulk reference simulation, which was used to obtain the specific target

structure for the reiteration step (see middle panel of Fig. 5.1 for an illustra-

tion).

Prior to the derivation of the intermediate CG potential, the prerequisite step

of generating a bulk reference structure is shortly described. For this purpose,

the atomistic reference melt was generated from a Molecular Dynamics sim-

ulation of a bulk structure of 400 regio-regular P3HT chains, with 20 repeat

units per chain. The sample was heated well above the melting temperature

to T = 750K and was subsequently quenched to the reference temperature

T = 500K. As an initial starting configuration, a crystalline P3HT struc-

ture was used. This configuration was kindly provided by Carl Poelking and

stems from earlier Molecular Dynamics studies of such systems. Conventional

Berendsen thermostat and barostat coupling algorithms [237] were applied, in

order to achieve a fast equilibration towards the target structure (coupling con-

stants were set 0.1 ps and 0.5 ps, respectively, with a reference pressure of

1 bar).

All MD simulations were performed using the GROMACS package [47] with a

reparameterized version of the OPLS force field [194, 195]. A long trajectory,

i.e. several nanoseconds, was prepared, in order to ensure the equilibration

of the main system quantifiers, e.g. the total energy and density, illustrated in

Fig. 5.2.
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Figure 5.2: Example for the monitoring of main system quantifiers during the
quench of the atomistic reference system (400 P3HT chains) at the
reference temperature T = 500K.

The RDF is extracted from the atomistic reference trajectory with respect to

the CG mapping points. Neighbors across more than two monomers (up to

1-4 interactions) are excluded from the analysis, in accordance with the single

chain sampling described in ch. 4. For the density, ρ = 0.89 g
cm3 is measured

(see Fig. 5.2), which is close to values reported for an amorphous melt of

P3HT 20mers at the same reference temperature in similar simulation studies

[238] (note, however, that the system density might depend on the choice of

the atomistic force field).

With the atomistic bulk reference at hand, the intermediate CG potential is

prepared for the reiteration of local packing of thiophene segments, using the

reference RDF obtained as described above. Interactions are active with re-

spect to the CG mapping points (see middle panel of Fig. 5.1). The first guess

for a suitable distance dependent pair potential is drawn from the potential

of average force by inverting the reference RDF (see Fig. 5.3b). A sequence
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Figure 5.3: (a) RDF, as evolved during an Iterative Boltzmann Inversion (IBI),
compared with the atomistic reference structure (thick, broken red
line), and the RDF obtained from the soft coarse-grained model
(thin orange line). Note that the local packing which is generated
by the soft CG model approximates the real liquid packing, which
allows for a fast reiteration towards the target RDF. (b) Pair poten-
tial, iteratively updated during IBI.
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5 Reinsertion of atomistic details into coarse-grained morphologies

of short cycles of MD simulations is started in the NV T -ensemble with this

potential. In each step, it is updated according to the Iterative Boltzmann In-

version (IBI) scheme [11, 185] using the VOTCA-CSG package [44] (here,

without pressure correction in the IBI). Fig. 5.3a shows the RDF for the first

few and the last iteration cycles of the IBI, as well as the corresponding pair

potential in Fig. 5.3b, obtained in tabulated form. After ∼ 18 iteration cycles,

the RDF of the CG system cannot be distinguished from the reference. The

convergence is monitored by running a few longer test simulations.

Eventually, the intermediate relaxation potential is applied to the amorphous

and biaxial CG mesophases. Technically, this is done with all atoms already

present in the system, however they are non-interacting with respect to non-

bonded potentials. Atomistic coordinates are resolved by fine-graining coarse-

grained chain backbones under the constraint that the mapping points of hexyl-

thiophenes in the atomistic and CG representations are equal. Additionally,

each thiophene is rotated in order to match its molecular axis, with the segment

orientation read directly from the CG configurations. It is stressed that this is a

significant advantage compared to models for which the ring orientation has to

be build or guessed during the backmapping step [9, 54]. Technically, atoms

belonging to a hexylthiophene are moved according to the mapping center dur-

ing the intermediate relaxation, being constrained by a virtual site construction

to their reference CG mapping centers (atoms are not shown in Fig. 5.1 at this

stage). The virtual site constraints were used as implemented in the GRO-

MACS package [47].

During the intermediate relaxation step, global chain conformations are mon-

itored not to change significantly from the initial state, i.e. segments are only

moving on length scales much smaller than the extension of a polymer chain.

Therefore, simulation time is kept short, i.e. t ≈ 20 ps (in the CG simulation).

Since the collective order of segments with respect to the plane normal is more

sensitive to local translation and rotation of CG segments, this is more impor-

tant for the biaxial mesophases. Side chains are not explicitly present (non-
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5.2 Backmapping in P3HT: Roadmap

interacting) and chain backbones are essentially cylindrically symmetric. In

the amorphous phase, the average end-to-end distance of chains is measured,

ensuring a change of less than 1% during the local relaxation step.

5.2.2 Recovering atomistic morphologies

In the last step, all atoms are reintroduced explicitly (i.e. the full atomistic

force field is applied) and a local relaxation of atomistically detailed morpholo-

gies is performed (“backmapping”). In the following, the individual steps used

for the reintroduction of details are briefly explained.

Step 1: A realistic packing of side chains is recovered. This step is crucial,

since atoms belonging to a hexyl chain potentially overlap with neighboring

groups (this procedure is similar to the local reiteration of excluded volume

on the level of CG segments, see sec. 5.2.1). For this purpose, backbone con-

formations are practically frozen, using a strong restraining potential which

constraints CG mapping centers to their instantaneous positions. In this way,

the global morphology is preserved. A Stochastic Dynamics (SD) integrator

is used together with force-capped Lennard-Jones (LJ) interactions, as imple-

mented in the GROMACS package [47], for the removal of overlap on atom-

istic scale in the early stage of simulations. Thereby, hard excluded volume

repulsion is modified by interpolating the original LJ potential at short dis-

tances with a soft-core interaction, in order to remove the unphysical overlap

in a controlled way. Hence, side chain conformations can relax with respect

to their local environment. It is monitored that an end group has moved a dis-

tance of only a few carbon bond lengths on average. Empirically, the removal

of atomistic overlap is obtained fast, on time scales below 100 ps. In the first

step of atomistic backmapping, Coulomb interactions are not present. The

temperature is coupled with the Berendsen thermostat [237] to the reference

value T = 500K. Following this first relaxation with force-capped LJ poten-
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Figure 5.4: Spatial extension of the simulation box for the example of a back-
mapped biaxial mesophase, during the last stage of full atomistic
backmapping.

tials, the full LJ interaction is recovered, while Coulomb interactions remain

deactivated. The simulation is continued for t = 100 ps.

Step 2: Second, simulations in the NPT -ensemble are performed, in order

to correct for a realistic packing density in the mesophase of choice. For the

morphologies obtained with the soft CG model (see ch. 4) an initial guess for

the number density is used, according to the value reported from experiments

on crystalline P3HT at room temperature [177]. In particular for the biaxial

mesophase, this is an important step, as the intermediate CG model was con-

structed by default with an isotropic potential, which cannot correct for the

anisotropic packing density in the real material. Fig. 5.4 shows an example of

the evolution of the simulation box length in all three spatial dimensions dur-

ing the last step of full atomistic backmapping. Note that chains are aligned

along the x-axis in this example, while thiophene plane normals are collec-

tively aligned along z. The simulation box becomes clearly anisotropic, in
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Figure 5.5: RDF, measured after a full backmapping cycle (orange squares)
for a large amorphous system (1.8 × 106 atoms) at the reference
temperature T = 500K, compared with the atomistic reference
structure (thick red line) and the soft CG model (solid purple line).

contrast to the backmapped amorphous and uniaxial-nematic phases.

For amorphous mesophases, structures have been relaxed with unconstrained

MD simulations (NPT -ensemble) for a few nanoseconds at the reference tem-

perature, until the total energy and the density have stabilized. Fig. 5.5 shows

a comparison of the radial distribution function calculated after backmapping

(orange squares) with the structure of the initial atomistic reference system

(solid red line). Both structures are very close to each other and cannot be
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Figure 5.6: Evolution of order parameters in the second step of backmapping
for a partially ordered, biaxial mesophase. S quantifies uniaxial-
nematic alignment of chain backbones. B is a “true” biaxial
measure, vanishing in the amorphous and in the uniaxial-nematic
mesophase. Data is shown for T = 300K, for which significant
biaxial order (i.e., B ≈ 0.2) is preserved after a full backmapping
cycle. The dashed line indicates the release of dihedral restraining
potentials, which were used for preserving the planar chain con-
formations in the early stage of relaxation.

distinguished by eye. The system was quenched to 300K for all following

analysis, since charge transport related measurements are typically performed

at room temperature. At this temperature, a density ρ ≈ 1.03 g
cm3 is measured,

which is close to the regime reported experimentally for P3HT (note however

that experiments typically involve much higher molecular weights) [177].

For biaxially ordered mesophases, the last stage of backmapping is more

challenging. In order to prevent the mesophase to loose the biaxial order of

chain segments, dihedral angles are coupled to a strong restraining potential,
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Figure 5.7: Distribution of torsion angles (normalized), after backmapping in
the amorphous (red squares) and the biaxial phase (black circles).
For comparison, a distribution sampled from the CG potential is
shown, which was initially obtained from a reference simulation of
a single chain at T = 370K (compare ch. 4.3.2). All distributions
are shown for the final stage of backmapping, at temperature T =
300K.

fixing the individual torsional conformations of chains. The systems are sub-

sequently relaxed in SD simulations for 800 ps, see Fig. 5.6. Following that,

an unconstrained MD simulation is performed for several nanoseconds, until

the total energy and the density stabilized. Fig. 5.6 shows the uniaxial and bi-

axial nematic order parameter for the last stage of full atomistic backmapping.

The uniaxial nematic order (S ≈ 0.6) is found relatively stable over time. For

biaxial order, quantified by the order parameter B (see ch. 4 for details), a sig-

nificant decrease at the initial stages of constrained and unconstrained runs is

observed. However, both parameters stabilize within a few nanoseconds run-
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5 Reinsertion of atomistic details into coarse-grained morphologies

time at S ≈ 0.6 and B ≈ 0.2, respectively.

Fig. 5.7 shows a comparison of torsion angle distributions for the backmapped

amorphous (red squares) and biaxial phase (black circles), both at the refer-

ence temperature T = 300K. A pronounced increase in torsion angles close

to φ ± 180◦ can be observed for the biaxial phase, which indicates the pro-

nounced planarization of chain backbones compared to the amorphous phase.

Additionally, a distribution sampled from the CG potential is shown (solid

line), obtained from a Boltzmann-Inversion of the corresponding distribution

from an atomistic reference simulation of a single chain in Θ-solvent condition

at the reference temperature T = 370K (see ch. 4.3.2). Assuming transfer-

ability (compare ch. 4.3.2), the distribution was rescaled to the same reference

temperature T = 300K.

It is briefly noted that for significantly higher temperatures, above T ≈ 400K,

the global biaxial order could not be stabilized, i.e. the system tends to drive

into an uniaxial mesophase in this case.

5.2.3 Applications

In this chapter, the ability to generate atomistically resolved mesophases at

large scales with different degree of mesoscopic order - from amorphous via

nematic to biaxial nematic ordering - was demonstrated. In a collaboration

with Carl Poelking and Denis Andrienko, these structures have been analyzed

in order to understand the role of mesoscale chain ordering for charge trans-

port. The atomistic resolution which was restored with the backmapping pro-

cedure allows the accurate parameterization of molecular fields and field re-

sponses, that give rise to electrostatic and polarization effects.

Figure 5.8 shows the ionization energy landscape averaged over a 2 nm thick

slice of the amorphous and biaxial mesophase. The calculations of the results

shown in this figure were carried out by collaborator Carl Poelking, taking
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Figure 5.8: Spatially resolved ionization energy for holes, averaged over a
2 nm-thick slice of an (a) amorphous and (b) biaxial mesophase.
The chains are aligned with their backbones along the x-axis. For
the biaxial mesophase, correlation “islands” are visibly aligned
with the nematic director. (c) The spatial site-energy correla-
tion function for the amorphous, uniaxial-nematic and biaxial
mesophase. The increase of correlations is partially due to long-
range order (compare with Fig. 4.15).
All calculations for the results shown in this figure have been per-
formed by Carl Poelking. For more results and discussions on the
charge transport related properties, see Refs. [3, 239]

153



5 Reinsertion of atomistic details into coarse-grained morphologies

into account electrostatic and polarization contributions (for further details,

see Refs. [228, 229], as well as the publication underlying this chapter). The

energetic landscape is increasingly correlated for liquid crystalline morpholo-

gies, most pronounced for the biaxial mesophase. Fig 5.8a shows an example

for an amorphous mesophase, in which the energy landscape is fragmented.

Fig 5.8b presents the analog for a biaxial mesophase, in which correlations are

visible as patches of low ionization energy that align with the nematic director

(along the x-axis). Fig 5.8c summarizes the increase of the site-energy corre-

lation function from the amorphous via the nematic to the biaxial mesophase.

Partially, this correlation is due to long-range order (compare with the analysis

presented earlier in ch. 4.5.2), and partially due to electrostatic interactions.

An increasing correlation of the energetic landscape reduces the site energy

differences in the system, facilitating charge transfer in the material. For a

detailed discussion of the charge transport related investigations, see the pub-

lication underlying this chapter [3].
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5.3 Conclusions

5.3 Conclusions

In this chapter, a hierarchical scheme for backmapping of atomistic details into

partially ordered, large-scale morphologies of conjugated polymers was pre-

sented. As a test case, the method has been validated for poly(3-hexylthiophene)

(P3HT). In this scheme, morphologies with increasing mesoscopic order -

from amorphous to uniaxial-nematic to biaxial-nematic order - have been equi-

librated on large scales with the soft coarse-grained model introduced in chap-

ter 4. With the help of an intermediate coarse-grained model, derived system-

atically from small atomistic reference simulations, a realistic local packing of

thiophene units was recovered, which is a crucial step in order to reintroduce

explicit side chains in the following. In a last step, all atoms on backbones and

side chains were reintroduced and the structures were locally relaxed with the

full atomistic force field.

It was found that large scale ordering can be retained after backmapping.

Therefore, a number of positional and conformational constraints have been

used for retaining most aspects of molecular ordering in the mesophase while

backmapping. For the amorphous phase, relaxation is fast and no additional

constraints are needed for retaining the global conformations of the chains.

This was not surprising, since the intermediate coarse-grained model was de-

rived from the same amorphous structure, thus the intermediate model samples

(approximately) the same global conformations than those obtained with the

soft coarse-grained model.

For the biaxial mesophase, the situation is more difficulties. A substantial de-

gree of planar ordering is lost during the last steps of backmapping into biaxial

liquid crystalline morphologies (compare sec. 5.2.2). Therefore, a strong re-

straining potential for the torsional angles was used, in order to preserve the

planar order of chain backbones.

However, two questions remain. First, it is not obvious if the amount of biaxial

order which was found after backmapping (B ≈ 0.2) is limited by the struc-
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5 Reinsertion of atomistic details into coarse-grained morphologies

ture at atomistic detail itself. In other words, it is not clear if the strength of

ordering is limited by the fact that the morphology at atomistic detail is signif-

icantly unstable in a biaxially ordered mesophase. The biaxial order does not

take into account the preferential lamellar stacking of thiophenes in the crys-

talline phase, i.e. there is no periodicity in the density distribution. The second

question is how one could improve the intermediate coarse-grained model, in

order to arrive at atomistic structures with an increased degree of planar order-

ing - and, eventually, an increased amount of π-overlap. In the following, it is

briefly outlined how these two questions could be adressed in future work.

In order to understand the reason why the biaxial order parameter drops sig-

nificantly during the backmapping procedure, there is a demand for a further,

systematic accounting of simulation parameters while backmapping. These

parameters are diverse. One first way of improving the backmapping could be

the iterative refinement of the initial starting volume used for the soft coarse-

grained simulations (compare ch. 4). In this study, this was assumed from ex-

perimentally reported values of a P3HT structure at room temperature. Since

after a backmapping cycle, the approximate target volume at the chosen tem-

perature is known, this information could be used for improving the starting

configurations in a self-consistent way. This may reduce the very high forces

at the first initial steps of relaxation, which negatively affect the planar orien-

tation.

The second question was how one could improve on the planar ordering and π-

packing of chains on the level of the coarse-grained models. Currently, there

may be two possible pathways. First, the soft coarse-grained model could

be extended in order to account for a packing with positional periodicity, i.e.

biaxial smectic ordering [240, 241]. In that way, chains could not only be

brought to structures with planarization of chain backbones, but also with a

strong π-overlap once the atomistic details are backmapped. A second, pos-

sibly alternative improvement could be made at the stage of the intermediate

coarse-grained model. The potential derived from the Iterative Boltzmann In-
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version was calculated from an amorphous structure. The potential has one

pronounced minimum and, thus, does not resolve many of the microscopic

structural details such as monomer anisotropy. In other approaches, a local

packing which takes into account the π-stacking of monomers was introduced

on the basis of a pair potential which was parameterized from a crystalline

structure [242, 243]. Such pair potentials have many minima, resolving the

underlying details of non-isotropic packing at close distances.

To summarize, both strategies, a refined soft coarse-grained potential and/or

a refined intermediate potential could improve for a generation of large-scale,

partially ordered mesophases which are closer to the real material.
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6 Summary and outlook

This thesis addresses the development of generic, particle-based models for

polymeric soft matter systems at large scales, in which the microscopic details

are linked to the large-scale morphology of the material. The models are de-

veloped in a top down approach, in order to reproduce the macroscopic phase

behavior of the system and, at the same time, incorporate the essential molec-

ular features at the microscale. A representative example of such an interplay

between the molecular details and long range order are polymeric materials

which tend to crystallize. This behavior is observed for many polymeric semi-

conductors, for which the effect of anisotropic π-stacking interactions leads to

lamellar-like, crystalline packing [177]. The problem of modeling such hierar-

chically ordered morphologies is approached in this thesis starting from a less

ordered state of matter - the liquid crystalline phase.

Methodologically, the basic idea of the modeling framework is to impose a

generic phase behavior through a Hamiltonian given as a functional of local

order parameters, similar to the ansatz in field-theoretical approaches to liq-

uid crystalline polymers [26, 121–124]. Models developed in this spirit have

been used earlier for functionals expressed through scalar order parameters,

e.g. the local segment density [32–34, 93, 94]. In these approaches, particle-

based, pairwise interactions are explicitly derived from the functional. The

connection between a particle-based and a field-based representation helps to

parameterize the pairwise potentials, because the interaction parameters can

be estimated from the functional in the mean field limit [31, 34].

As one of the main developments in this thesis, the approach in which pair-
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wise potentials are derived from a functional is extended to account for more

complex, tensorial liquid crystalline order parameters, capturing nematic and

biaxial-nematic symmetry.

In chapter 3, a generic model for nematic liquid crystalline polymers (LCP),

which was used in Ref. [69], was developed further. It is based on pairwise in-

teractions, derived from a functional of the local density and the local nematic

orientation tensor. The interactions are soft, i.e. on the order of the thermal

energy kBT even for fully overlapping segments. The generic polymer model

was investigated with Monte Carlo simulations, in order to generate and ana-

lyze large-scale nematic LCP morphologies. It was shown that the modeling

framework can be used to address fundamental physical questions about the

macroscopic behavior of LCP. Accordingly, the density and director fluctu-

ation spectra in the system were measured. The long-wave length behavior

of these fluctuation spectra is connected to macroscopic material properties,

i.e. elastic constants. The generic characteristics of the scattering contours

predicted by theories for LCP and reported from experiments, as for example

the bowtie-shaped pattern of the density structure factor, is confirmed by the

simulations. One of the main results presented in this thesis is the linear de-

pendence of the splay Frank elastic constant on the chain length, which is in

agreement with the predictions by Meyer [103] and following theories [103–

105, 108]. The result disagrees with an earlier estimation by de Gennes [101],

who predicted a quadratic scaling with chain length.

In chapter 4, the modeling scheme was extended to more complex molecular

geometries and more complex macroscopic phase behavior. A first step was

presented towards reflecting more closely the main additional features of the

mesoscale structure found for many polymeric semiconductors. Namely, the

ordered phase exhibits an alignment of chain backbones on average parallel to

each other and, additionally, co-planar, biaxially oriented chain segments due
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to π-stacking interactions. The model accounts for the interplay of the under-

lying anisotropy of the molecular architecture and π-stacking interactions and

the biaxial mesoscale symmetry.

As a test case, biaxial liquid crystalline mesophases of poly(3-hexylthiophene)

(P3HT) were studied, assuming that each thiophene segment including the at-

tached side chain can be described as an object with plate-like symmetry. The

bonded potentials were derived in a systematic way from an atomistic refer-

ence system. Using Monte Carlo simulation techniques, it was possible to

equilibrate systems in the biaxial state with a box length up to ∼ 50 nm and

chains with 32 repeat units.

The model is general and can be applied to various molecular architectures.

It has been found that the director fluctuations measured from the simulation

reflect a realistic order of magnitude for the elastic constants. Furthermore, the

transition from the isotropic to the liquid crystalline phases appears at weaker

coupling strength for increasing chain length, in agreement with experimental

findings. Even without considering atomistic degrees of freedom in the coarse-

grained model, it was possible to analyze the morphologies with respect to

properties that are important for charge transport. For example, it was possible

to connect the conjugation length distribution of the chains to the mesoscopic

order in the material. For the biaxial phase, a correlated energetic landscape

was observed, even though no electrostatic interactions were considered.

In chapter 5, the biaxially ordered large-scale morphologies described in

ch. 4 were investigated further regarding the properties that are relevant for

charge transport. Ultimately, an accurate description of the latter relies on the

atomistic structure. In order to reach the atomistic level, a hierarchical scheme

for the reinsertion of atomistic details (backmapping) into LCP mesophases

with different degrees of order was developed. The scheme was tested for a

sequence of an amorphous, a nematic and a biaxial system. The method is

based on the idea to restore an approximate excluded volume of chain seg-
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ments with an intermediate coarse-grained model, which facilitates the rein-

sertion of atomistic details and, in particular, the explicit side chains. The

methodological framework is general and not limited to P3HT. As an outlook,

an analysis of correlations in the energy landscape was briefly presented, tak-

ing into account electrostatic contributions.

A short outlook on the extension of the coarse-grained modeling scheme to

describe multicomponent systems was presented in ch. 4. Such blend systems

exhibit a complex interplay between ordering effects of each component in-

dividually (e.g. crystallization in the pure phase) and the phase behavior of

the mixture. A systematic understanding of the latter effects is important for

basic theory and practical applications, for example for the control of the bi-

continuous, phase separated morphologies in P3HT:PCBM blends. The model

developed in ch. 4 could serve as a tool for investigating the interplay of or-

dering effects and phase separation on a generic level. In first test simulations,

the model showed promising features in this respect, such as the sensitivity of

the phase behavior on the nematic coupling strength.

The investigation of generic relationships between mesoscopic order and molec-

ular conformations for polymeric semiconductors was described in the chap-

ters 4 and 5 for the sequence of amorphous via nematic to biaxial mesophases.

As already mentioned, a lamellar-like packing due to π-stacking interactions is

experimentally observed in the crystalline phase of real P3HT [177], which is

not captured by the biaxial model proposed in this thesis. Such patterns could

be described with the soft coarse-grained model when extended to account for

smectic ordering [240, 241]. Hence, the incorporation of smectic order pa-

rameters could refine the description of packing details and thereby facilitate

the backmapping procedure discussed in ch. 5. Along the same line, the inter-

mediate step of the backmapping scheme may be improved by substituting a

systematically coarse-grained model which considers a larger extend of local

packing effects, such as planar π-stacking (compare Refs. [242, 243]).
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Appendix

1 Pair potential evaluation

The following calculation illustrates the explicit transformation of the func-

tional of local density and the nematic and biaxial order tensors into a pairwise

potential using the density clouds discussed in the chapters 3 and 4.

Starting from the functional

Hbiaxial

[

ρ̂, Q̂, B̂
]

kBT
= ρ0

[
∫

dr
κ

2

(
ρ̂(r)

ρ0
− 1

)2

−ν
3

∫

dr Q̂(r) : Q̂(r)

−µ
3

∫

dr {Q̂(r) : B̂(r) + B̂(r) : Q̂(r)}

−λ
4

∫

dr B̂(r) : B̂(r)

]

, (1)

with Q̂ = Q̂(1) for brevity.

The averaged local segment density, as well as the nematic and biaxial orien-
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tation tensors are each defined by a weighted sum (see ch. 3 and 4):

Φ̂ω(r) =

∫

dr′ω(|r − r′|)ρ̂(r′),

Q̂ω(r) =

∫

dr′ω(|r − r′|)Q̂(r′),

B̂ω(r) =

∫

dr′ω(|r − r′|)B̂(r′), (2)

with ρ̂(r′) =
∑

i,s

δ(r − ri,s), using the short notation ri,s = ri(s) in this

appendix. The weight function ω(|r|) is normalized,

∫

drω(|r|) = 1, (3)

and its explicit form reads

ω(|r|) =







1
C
, for |r| ≤ σ

0, otherwise
. (4)

Thus, the value of the weight function is 1
C

within the radius σ, and is zero

outside.

The normalization yields

∫

drω(|r|) = 4πσ3

3

1

C
!
= 1, (5)

and finally

C =
4πσ3

3
. (6)

Subsequently, in the energy functional (eq. 1) expressed by local interactions

(i.e. by the delta-function), the quantities ρ̂(r), Q̂(r) and B̂(r) are substituted
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1 Pair potential evaluation

by the averaged quantities Φ̂ω(r), Q̂ω(r) and B̂ω(r).

Hbiaxial

kBT
= ρ0





∫

dr
κ

2








1

ρ0

∫

dr′ω(|r − r′|)
∑

(i,j)

δ(r′ − ri,j)



− 1












1

ρ0

∫

dr′′ω(|r − r′′|)
∑

(t,s)

δ(r′′ − rt,s)



− 1





−ν
3

∫

dr




1

ρ0

∫

dr′ω(|r − r′|)
∑

(i,j)

δ(r′ − ri,j)q(ri,j)



 :




1

ρ0

∫

dr′′ω(|r − r′′|)
∑

(t,s)

δ(r′′ − ri,j)q(rt,s)





−µ
3

∫

dr

{



1

ρ0

∫

dr′ω(|r − r′|)
∑

(i,j)

δ(r′ − ri,j)q(ri,j)



 :




1

ρ0

∫

dr′′ω(|r − r′′|)
∑

(t,s)

δ(r′′ − rt,s)b(rt,s)



+




1

ρ0

∫

dr′ω(|r − r′|)
∑

(i,j)

δ(r′ − ri,j)q(ri,j)



 :




1

ρ0

∫

dr′′ω(|r − r′′|)
∑

(t,s)

δ(r′′ − rt,s)b(rt,s)





}

−λ
4

∫

dr




1

ρ0

∫

dr′ω(|r − r′|)
∑

(i,j)

δ(r′ − ri,j)b(ri,j)



 :




1

ρ0

∫

dr′′ω(|r − r′′|)
∑

(t,s)

δ(r′′ − rt,s)b(rt,s)







 (7)
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=
κ

ρ02

∑

(i,j)

∑

(t,s)

∫

drω(|r − ri,j|)ω(|r − rt,s|)−
κ

2

∑

(i,j)

∫

drω(|r − ri,j|)

− κ

2

∑

(t,s)

∫

drω(|r − rt,s|) +
ρ0κ

2

∫

dr

− ν

ρ03

∑

(i,j)

∑

(t,s)

[∫

drω(|r − ri,j|)ω(|r − rt,s|)
]

q(ri,j) : q(rt,s)

− µ

ρ02

∑

(i,j)

∑

(t,s)

[∫

drω(|r − ri,j|)ω(|r − rt,s|)
]

× [q(ri,j) : b(rt,s) + b(ri,j) : q(rt,s)]

− λ

ρ03

∑

(i,j)

∑

(t,s)

[∫

drω(|r − ri,j|)ω(|r − rt,s|)
]

b(ri,j) : b(rt,s)

=
1

ρ0

∑

(i,j)

∑

(t,s)

[∫

drω(|r − ri,j|)ω(|r − rt,s|)
]

×
[κ

2
− ν

3
q(ri,j) : q(rt,s)

−µ
3
(q(ri,j) : q(rt,s) + b(ri,j) : q(rt,s))−

λ

4
b(ri,j) : b(rt,s)

]

− κnN

2
. (8)

In the nV T -ensemble, the last term is constant and can be neglected in the

simulation.

The expression

1

ρ0

∫

drω(|r − ri,j|)ω(|r − rt,s|) ≡ u(r = |ri,j − rt,s|) (9)

is, with the specific choice of the weighting function ω(r) in eq. 4, an isotropic

pair potential. It can be calculated analytically, which will be shown in the

following.
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1 Pair potential evaluation

ω(|r− ri,j|) and ω(|r− rt,s|) are spheres with radius σ around the segment

centers-of-masses ri,j and rt,s.

One possibility to calculate the overlap volume is to use a coordinate frame

in which the centers of the spheres lie along the x-axis, separated by a distance

r = |ri,j − rt,s|. In Ref. [244], it has been demonstrated to decompose the

overlap volume into smaller sub-volumes, which is briefly rephrased here. As-

sume that the vector which connects both centers-of-masses points along the

x-axis (freedom of choosing a coordinate system), see Fig. 1.

a

(r, 0, 0)(0, 0, 0)

S2S1

σ σ

x

r

Figure 1: Scheme, illustrating a possible choice of coordinate frame in order
to calculate the overlap integral eq. 9. This figure is adopted from
Ref. [244].

Again, using the freedom of choosing an appropriate reference coordinate

system, the origin is moved in a way that it coincides with the vector pointing

along the direction connecting the centers of the two density clouds [244]. For

all points in space within the area of the two spheres S1 and S2, the following
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relations hold [244]:

x2 + y2 + z2 = σ2 in S1, (10)

(x− r)2 + y2 + z2 = σ2 in S2, (11)

or equivalently

y2 + z2 = σ2 − x2, (12)

y2 + z2 = σ2 − (x− r)2. (13)

(12), (13) ⇒ σ2 − x2 = σ2 − (x− r)2 (14)

⇔ (x− r)2 − x2 = 0 in S1 ∩ S2 (15)

x2 − 2xr + r2 − x2 = 0

2xr = r2

x =
r

2
(16)

Substituting eq. 16 in eq. 10 gives [244]

y2 + z2 = σ2 − x2 = σ2 −
(r

2

)2

,

which is a relation that is true for all points lying on a circle with radius

a =

√

σ2 −
(r

2

)2

. (17)

The volume of the intersection of the spheres fixed at distance r is therefore

the volume of the two spherical caps with radius a [244]. Since the radii of the

spheres are equal, the volumes of the caps are equal.
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1 Pair potential evaluation

The distance from the sphere center to the base of the cap is

r′ =
r

2
(18)

and the height of the cap is [244]

h = σ − r

2
. (19)

The volume of the cap can thus be written

V (σ, h) =
1

3
πh2(3σ − h), (20)

and the total volume of the intersection [244]

V (σ, h) =
2

3
πh2(3σ − h)

=
2

3
π(2σ +

r

2
)(σ − r

2
)
2

=
2πσ3

3
(2 +

r

2σ
)(1− r

2σ
)
2

. (21)

Eventually, the pair potential, i.e. eq. 9, for a pair of segments with index (i, j)

and (t, s), reads [34, 244]

u(r) =







3
8ρ0πσ3

(
2 + r

2σ

) (
1− r

2σ

)2
, for r ≤ 2σ

0, otherwise
. (22)

For the special cases of minimum and maximum intersection, one finds:

u(2σ) = 0

and u(0) =
3

4πρ0σ3
=

1

ρ0volume(sphere)
. (23)
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2 Compressibility calculations

With the system energy defined by the energy functional

Hbiaxial

[

ρ̂, Q̂, B̂
]

kBT
= ρ0

[
∫

dr
κ

2

(
ρ̂(r)

ρ0
− 1

)2

−ν
3

∫

dr Q̂(r) : Q̂(r)

−µ
3

∫

dr {Q̂(r) : B̂(r) + B̂(r) : Q̂(r)}

−λ
4

∫

dr B̂(r) : B̂(r)

]

, (24)

and the translational entropy of the chains, the free energy can be expressed in

the mean field limit for ν = µ = λ = 0 by [69]

F

kBT
= V

[

ρ̄

N
ln
( ρ̄

N

)

+
κρ0
2

(
ρ̄

ρ0
− 1

)2
]

, (25)

in which the contribution of the conformational entropy of the chains is ne-

glected.

The orientational order tensors

Q̂αβ(r) =
1

ρ0

n∑

i=1

N∑

j=1

δ (r − ri(j))

[
3

2
n
(1)
i,α(j)n

(1)
i,β(j)−

δαβ
2

]

,

B̂αβ(r) =
1

ρ0

n∑

i=1

N∑

j=1

δ (r − ri(j))
[

n
(2)
i,α(j)n

(2)
i,β(j)− n

(3)
i,α(j)n

(3)
i,β(j)

]

(26)

can be calculated for a system with perfect biaxial order. Perfect alignment,

in this case, is understood as perfect nematic order with respect to the first
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2 Compressibility calculations

molecular axis,

n
(1)
i,x(j) = n

(1)
i,y (j) = 0,

n
(1)
i,z (j) = 1 ∀ i = {1, 2, . . . } and ∀ j = {1, 2, . . . }, (27)

as well as the perfect alignment of the secondary molecular axis,

n
(2)
i,y (j) = n

(2)
i,z (j) = 0,

n
(2)
i,x(j) = 1 ∀ i = {1, 2, . . . } and ∀ j = {1, 2, . . . },
n
(3)
i,x(j) = n

(3)
i,z (j) = 0,

n
(3)
i,y (j) = 1 ∀ i = {1, 2, . . . } and ∀ j = {1, 2, . . . }. (28)

The molecular orientation tensors are all diagonal in this case and they read

q̄ = diag(q̄xx, q̄yy, q̄zz) = diag(−1

2
,−1

2
, 1),

b̄ = diag(b̄xx, b̄yy, b̄zz) = diag(1,−1, 0). (29)

Averaging the operators eqs. 26 over all segments in the system,

Q̄ =

∫ n∏

i=1

N∏

j=1

(
dri(j)

V

)

Q̂ =
ρ̄

ρ0
q̄,

B̄ =

∫ n∏

i=1

N∏

j=1

(
dri(j)

V

)

B̂ =
ρ̄

ρ0
b̄, (30)
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the double dot products in the functional expression eq. 24 can be calculated

for the perfect biaxial state:

Q̄ : Q̄ =

(
ρ̄

ρ0

)2

q̄ : q̄ =

(

q̄2zz +
q̄2zz
4

+
q̄2zz
4

)(
ρ̄

ρ0

)2

=
3

2
q̄2zz

(
ρ̄

ρ0

)2

,

Q̄ : B̄ + B̄ : Q̄ =

(
ρ̄

ρ0

)2

2 q̄ : b̄ = 2

(
ρ̄

ρ0

)2 (

− q̄zz
2
b̄xx +

q̄zz
2
b̄xx

)

,

B̄ : B̄ =

(
ρ̄

ρ0

)2

b̄ : b̄ =
(
b̄2xx + b̄2xx

)
(
ρ̄

ρ0

)2

= 2b̄2xx

(
ρ̄

ρ0

)2

. (31)

Eventually, the free energy of the perfectly ordered liquid can be estimated in

the mean field limit,

F

kBT
= V

[

ρ̄

N
ln
( ρ̄

N

)

+
κρ0
2

(
ρ̄

ρ0
− 1

)2

− 1

2ρ0
(νq̄2zz + λb̄2xx)ρ̄

2

]

. (32)

The compressibility of the system can be derived with the help of the equation

of state, P = − ∂F
∂V

, through the relation

1

kBTκT
= −V ∂P

∂V
=

n

ρ0V 2

(
κnN2 − λb̄2xxnN

2 − νq̄2zznN
2 + ρ0V

)

=
κ

ρ0
ρ̄2 − νq̄2zz

ρ0
ρ̄2 − λb̄2xx

ρ0
ρ̄2 +

n

V

=
ρ̄

N
+

(
κ

ρ0
− νq̄2zz

ρ0
− λb̄2xx

ρ0

)

ρ̄2. (33)

In the special case ρ̄ = ρ0, this reduces to

1

kBTκT
=
n

V
+
(
κ− νq̄2zz − λb̄2xx

)
ρ0. (34)
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3 Definition of biaxial order parameters

3 Definition of biaxial order parameters

The molecular axes n(1), n(2) and n(3), defining the molecular orientation of

a biaxial coarse-grained segment in ch. 4, form a right-handed tripod n(1) ⊥
n(2) ⊥ n(3) that is rotated according to the movement of the molecule with

respect to the laboratory frame.

For quantifying the collective biaxial order of segments, an order parameter

that characterizes the cooperative alignment of two molecular axis has to be

considered [28, 245]. Straley used in Ref. [201] four relevant order parameters

in terms of Euler angles formed by three molecular axes with respect to a

laboratory frame:

S = 〈1
2

(
3 cos2(θ)− 1

)
〉,

T = 〈sin2(θ) cos(2φ)〉,
U = 〈sin2(θ) cos(2ψ)〉,

V = 〈1
2

(
1 + cos2(θ)

)
cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ)〉, (35)

for describing a biaxial phase of a system consisting of biaxial particles.

For a biaxial mesophase formed by biaxial segments, the parameters S and

V are the most important measures [222]. S describes nematic order of the

primary molecular axis n(1) along the director Z that corresponds to the same

molecular axis. One can rewrite S and V in cartesian form [222]. Imposing

|Z| = 1 and |n(1)| = 1, S can be rewritten as [221]
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S = 〈1
2

(

3
(
ZTn(1)

) (

n(1)TZ
)

−ZTdiag(1, 1, 1)Z
)

〉

= 〈ZT

(
3

2
n(1)n(1)T − 1

2
diag(1, 1, 1)

)

Z〉

= 〈ZTQzzZ〉. (36)

One can define similar definitions of the order matrices for the remaining

two molecular axes [222],

Qxx =
3

2
n(2)n(2)T − 1

2
diag(1, 1, 1),

Qyy =
3

2
n(3)n(3)T − 1

2
diag(1, 1, 1). (37)

Subsequently, the order parameter V , which indicates the biaxial order due to

the alignment of the second and third director, can be equally rewritten [222].

For a perfectly ordered biaxial system, the remaining two directors X and Y ,

with respect to the alignment of the molecular axes n(2) and n(3), respectively,

build an orthonormal system with Z, and V reads in cartesian form [222]

V =
1

3
〈XTQxxX + Y TQyyY −XTQyyX − Y TQxxY 〉. (38)

In order to define in a biaxial system with three molecular directions the

specific molecular axis for determining the order parameter S is in principle

arbitrary [221].

In this thesis, the convention described by Low in Ref. [221] is used, which is

a modification of the definitions used by Allen in Ref. [222]. This definition is

shortly rephrased in the following.

Given a sample {{n1,i,n2,i,n3,i}}, with n1,i, n2,i and n3,i the molecular axes

of the molecule with index i, and i running over all molecules in the system,

one calculates the ensemble averages of all three orientation tensors Qxx, Qyy

and Qzz. The corresponding eigenvectors and eigenvalues are calculated, and
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3 Definition of biaxial order parameters

the maximum absolute eigenvalue λmax = max{|λi|} and the corresponding

normalized eigenvector vmax are determined, with |vmax| = 1.

The dyadic Qmax, out of the three tensors Qxx, Qyy and Qzz, which corre-

sponds to vmax and λmax is taken, and the nematic order parameter

S = 〈vT
maxQ

maxvmax〉 (39)

is calculated. Subsequently, the remaining six eigenvalues of the remaining

two dyadics are determined, and from this subset the maximum positive eigen-

value λ2,max = max{λj} and the corresponding eigenvector v2,max are picked.

The eigenvector is projected to the plane perpendicular to vmax:

v
proj
2,max =

v2,max −
(
vT
maxv2,max

)
vmax

|v2,max − (vT
maxv2,max)vmax|

. (40)

The set of directors is then completed to a right-handed orthonormal system

with v
proj
3,max, by evaluating the cross product

v
proj
3,max = vmax × v

proj
2,max. (41)

The biaxial order parameter V is eventually calculated as

V =
1

3
〈v proj

2,maxQ
2ndv

proj
2,max + v

proj
3,maxQ

3rdv
proj
3,max

− v
proj
2,maxQ

3rdv
proj
2,max − v

proj
3,maxQ

2ndv
proj
3,max〉. (42)
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4 Local coordinate system

1

2

3

θ1b1

θ2b2

φ1

b3

Figure 2: Scheme, illustrating the local coordinate frame used for the sampling
of reptation moves according to the bonded potentials. The labeling
of the frame axes 1, 2 and 3 is arbitrary and denotes the frame that is
fixed to the molecular orientation. The first two bond vectors, b1 and
b2 lie in the 1-2-frame, while a positive φ moves the bond vector b3
towards the positive 3-axis out of the plane.

The figure shows the choice of a local molecular coordinate frame for the

sampling of the bond vectors in ch. 4, using the labeling and convention of the

dihedral angle given by Flory [17]. A dihedral angle φ = 0 therefore defines

the trans-configuration of the three consecutive bonds b1, b2 and b3. The trans-

formation to the molecular frame facilitates significantly the sampling of bond

vectors in a reptation (or in general a more complex) update move according

to the bonded potentials [215, 246]. In the following calculation, the length

of the bonds are kept explicitly. However, in the simulation the bonds are unit

vectors and therefore have equal lengths.
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4 Local coordinate system

The bond vectors b1 and b are assumed to lie in the 1-2-plane. Thus, one

can write all three bond vectors explicitly in terms of two bond vectors θ1, θ2
and the dihedral angle φ:

b1 =






b1 cos(π − θ1)

b1 sin(π − θ1)

0




 =






−b1 cos(θ1)
b1 sin(θ1)

0




 ,

b2 =






b2

0

0




 ,

b3 =






b3 cos(π − θ2)

b3 sin(π − θ2) cos(φ)

b3 sin(π − θ2) sin(φ)




 =






−b3 cos(θ2)
b3 sin(θ2) cos(φ)

b3 sin(θ2)




 . (43)

The third, out-of-plane bond b3 can be expanded in the basis {b1, b2, b1 ×
b2},

b3 = a b1 + b b2 + c [b1 × b2] . (44)

Scalar products of b3 with the remaining two bond vectors, using the expan-

sion in eq. 44, read:

(b3 · b1) = a b21 + b (b2 · b1) ,
(b3 · b2) = a (b1 · b2) + b b22. (45)

From a substitution of the explicit initial definitions in terms of the three angles

it follows that

b1 · b2 = −b1b2 cos(θ1),
b3 · b1 = b1b3 cos(θ1) cos(θ2) + b1b3 sin(θ1) sin(θ2) cos(φ),

b3 · b2 = −b2b3 cos(θ2). (46)
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This defines a set of linear equations,

b1b3 cos(θ1) cos(θ2) + b1b3 sin(θ1) sin(θ2) cos(φ) = a b21 − b b1b2 cos(θ1)

−b2b3 cos(θ2) = −a b1b2 cos(θ1) + b b22,

(

b21 −b1b2 cos(θ1)
−b1b2 cos(θ1) b22

)(

a

b

)

=

(

b1b3(cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(φ)

−b2b3 cos(θ2)

)

. (47)

The solution gives the three vector components of b3 in the basis {b1, b2, b1 ×
b2}:

a = (b3 cos(φ) csc(θ1) sin(θ2))/b1

b = (−b3 cos(θ2) + b3 cos(φ)cot(θ1) sin(θ2))/b2

c = (b3csc(θ1) sin(φ) sin(θ2))/(b1b2) (48)

178



Acknowledgements

This thesis would not have been possible without the support and encourage-

ment from many collaborators, colleagues and friends, whom I would like to

thank.

First of all, I am deeply grateful to my supervisor Prof. Kurt Kremer for the

opportunity to join the Theory Group of the Max-Planck-Institute for Polymer

Research in Mainz. I thank him for his many ideas and suggestions concerning

my doctoral project. It has been a great experience over the past years.

I would like to thank Prof. Ulrich Schwarz for acting as a second referee of

this thesis, as well as all committee members for their effort.

I am grateful to my project leader and direct supervisor Dr. Kostas Daoulas for

the time he spent sharing his knowledge and ideas in order to push the project

forward.

I thank the MORPHEUS project team within the InnovationLab GmbH in Hei-

delberg for collaborations and interesting discussions.

During the last three years, I very much enjoyed the inspiring atmosphere and

the collaborations with colleagues in the Theory Group. Among them, I would

like to especially point out Carl Poelking, whom I owe many thanks not only

for his help with technical questions but also for his valuable advice from

which I have learned a lot. Furthermore, I would like to thank Dr. Denis An-

drienko for the collaboration, which I very much enjoyed.

I met many colleagues and friends during the time spent on my doctoral project

at the MPIP in Mainz. Among them, I would like to mention Konstantin

Koschke, Olga Bezkorovaynaya, Rengin Peköz, Gustav Waschatko, Sang-

179



Acknowledgements

hamitra Neogi, Sebastian Fritsch, Jens Kahlen, Guojie Zhang, Livia Moreira,

Senbo Xiao, Jens Wehner, Nikita Tretyakov, Anton Melnyk and Pascal Kordt.

I thank Claudia Mangold for the time sharing the office and for her friendship.

Finally, I thank my family and Michèle for their love and support.

180



Bibliography

[1] Gemünden, P.; Poelking, C.; Kremer, K.; Andrienko, D.; Daoulas, K. C.

Macromolecules, 2013, 46, 5762–5774.

[2] Gemünden, P.; Daoulas, K. C. Soft Matter, 2014, 11, 532–544.

[3] Gemünden, P.; Poelking, C.; Kremer, K.; Daoulas, K. C.; Andrienko, D.

accepted for publication in: Macromolecular Rapid Communications,

2015, DOI: 10.1002/marc.201400725.

[4] Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids. Oxford

University Press, 1987.

[5] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P.

Molecular Biology of the Cell. Garland Science, 4th edition, 2002.

[6] Wang, Z.-J.; Deserno, M. J. Phys. Chem. B, 2010, 114, 11207–11220.

[7] Reynwar, B. J.; Illya, G.; Harmandaris, V. A.; Müller, M. M.; Kremer,

K.; Deserno, M. Nature, 2007, 447, 461–464.

[8] Tschöp, W.; Kremer, K.; Hahn, O.; Batoulis, J.; Bürger, T. Acta Poly-

merica, 1998, 49, 75–79.

[9] Tschöp, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Acta Poly-

merica, 1998, 49, 61–74.

[10] Müller-Plathe, F. ChemPhysChem, 2002, 3, 754–769.

181



Bibliography

[11] Reith, D.; Pütz, M.; Müller-Plathe, F. J. Comp. Chem., 2003, 24, 1624–

1636.

[12] Izvekov, S.; Voth, G. A. J. Phys. Chem. B, 2005, 109, 2469–2473.

[13] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth,

G. A.; Das, A.; Andersen, H. C. The Journal of Chemical Physics,

2008, 128, 244114.

[14] Peter, C.; Kremer, K. Soft Matter, 2009, 5, 4357–4366.

[15] Noid, W. G. Methods in Molecular Biology. Humana Press, 2013.

[16] Louis, A. A. J. Phys.: Condens. Matter, 2002, 14, 9187.

[17] Flory, P. J. Principles of Polymer Chemistry. Cornell University Press,

1953.

[18] Doi, M.; Edwards, S. F. The theory of polymer dynamics. Claren-

don Press ; Oxford University Press, Oxford [Oxfordshire]; New York,

1987.

[19] Cotton, J. P.; Decker, D.; Benoit, H.; Farnoux, B.; Higgins, J.; Jannink,

G.; Ober, R.; Picot, C.; des Cloizeaux, J. Macromolecules, 1974, 7,

863–872.

[20] Daoud, M.; Cotton, J. P.; Farnoux, B.; Jannink, G.; Sarma, G.; Benoit,

H.; Duplessix, C.; Picot, C.; de Gennes, P. G. Macromolecules, 1975,

8, 804–818.

[21] de Gennes, P.-G. Scaling Concepts in Polymer Physics. Cornell Uni-

versity Press, 1979.

[22] des Cloizeaux, J.; Jannink, G. Polymers in Solution: Their Modelling

and Structure. OUP Oxford, 2010.

182



Bibliography

[23] Evans, R. in Fundamentals of Inhomogeneous Fluids, Henderson, D.,

Ed. Marcel Dekker, Inc., New York, 1992.

[24] Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids: with Applica-

tions to Soft Matter. Academic Press, Elsevier, Oxford, UK, 4th edition,

2013.

[25] de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals. Clarendon

Press, Oxford, 1995.

[26] Hołyst, R.; Vilgis, T. A. Macromol. Theory Simul., 1996, 5, 573–643.

[27] Matteis, G. D.; Sonnet, A. M.; Virga, E. G. Continuum Mech. Thermo-

dyn., 2008, 20, 347–374.

[28] Zannoni, C. in Polarized Spectroscopy of Ordered Systems, Samori’, B.;

Thulstrup, E. W., Eds., NATO ASI Series, pp 57–83. Springer Nether-

lands, 1988.

[29] Laradji, M.; Guo, H.; Zuckermann, M. J. Phys. Rev. E, 1994, 49, 3199–

3206.

[30] Daoulas, K. C.; Müller, M. The Journal of Chemical Physics, 2006,

125, 184904–184904–18.

[31] Daoulas, K. C.; Müller, M.; de Pablo, J. J.; Nealey, P. F.; Smith, G. D.

Soft Matter, 2006, 2, 573.

[32] Pike, D. Q.; Detcheverry, F. A.; Müller, M.; de Pablo, J. J. The Journal

of Chemical Physics, 2009, 131, 084903.

[33] Detcheverry, F. A.; Pike, D. Q.; Nealey, P. F.; Müller, M.; de Pablo, J. J.

Faraday Discussions, 2010, 144, 111.

[34] Müller, M. Journal of Statistical Physics, 2011, 145, 967–1016.

183



Bibliography

[35] Daoulas, K. C. Bridging particle-based and field theoretical represen-

tations for modelling complex fluids. Habilitation thesis, Georg-August-

Universität Göttingen, Göttingen, 2011.

[36] Yin, W.; Dadmun, M. ACS Nano, 2011, 5, 4756–4768.

[37] Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J.

M. J.; Toney, M. F. Macromolecules, 2005, 38, 3312–3319.

[38] Pascui, O. F.; Lohwasser, R.; Sommer, M.; Thelakkat, M.; Thurn-

Albrecht, T.; Saalwächter, K. Macromolecules, 2010, 43, 9401–9410.

[39] Murtola, T.; Bunker, A.; Vattulainen, I.; Deserno, M.; Karttunen, M.

Phys. Chem. Chem. Phys., 2009, 11, 1869–1892.

[40] Deserno, M.; Kremer, K.; Paulsen, H.; Peter, C.; Schmid, F. in From

Single Molecules to Nanoscopically Structured Materials, Basché, T.;

Müllen, K.; Schmidt, M., Eds., Advances in Polymer Science, pp 237–

283. Springer International Publishing, 2013.

[41] Noid, W. G. The Journal of Chemical Physics, 2013, 139, 090901.

[42] Potestio, R.; Peter, C.; Kremer, K. Entropy, 2014, 16, 4199–4245.

[43] Ehrenfest, P.; Ehrenfest, T. Begriffliche Grundlagen der statistischen

Auffassung in der Mechanik. Encyklopädie Der mathematischen Wis-

senschaften, Nr. 4. Teubner, Leipzig, 1912.

[44] Rühle, V.; Junghans, C.; Lukyanov, A.; Kremer, K.; Andrienko, D. J.

Chem. Theory Comput., 2009, 5, 3211–3223.

[45] Likos, C. N. Physics Reports, 2001, 348, 267–439.

[46] Ercolessi, F.; Adams, J. B. EPL, 1994, 26, 583.

184



Bibliography

[47] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory

Comput., 2008, 4, 435–447.

[48] Plimpton, S.; Crozier, P.; Thompson, A. Sandia National Laboratories,

2007.

[49] Limbach, H. J.; Arnold, A.; Mann, B. A.; Holm, C. Computer Physics

Communications, 2006, 174, 704–727.

[50] Halverson, J. D.; Brandes, T.; Lenz, O.; Arnold, A.; Bevc, S.;

Starchenko, V.; Kremer, K.; Stuehn, T.; Reith, D. Computer Physics

Communications, 2013, 184, 1129–1149.

[51] Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Voth, G. A. J. Phys. Chem. B,

2007, 111, 4116–4127.

[52] Fritsch, S. Scale bridging concepts in molecular simulation:

coarse-graining and thermodynamic coupling. PhD thesis, Johannes

Gutenberg-Universität Mainz, 2013.

[53] Lyubartsev, A.; Laaksonen, A. Physical Review E, 1995, 52, 3730–

3737.

[54] Rühle, V.; Kirkpatrick, J.; Kremer, K.; Andrienko, D. phys. stat. sol.

(b), 2008, 245, 844–848.

[55] Jochum, M.; Andrienko, D.; Kremer, K.; Peter, C. The Journal of

Chemical Physics, 2012, 137, 064102–064102–9.

[56] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular theory of gases

and liquids. Structure of matter series. John Wiley & Sons, Inc., New

York, 1954.

[57] Chandler, D. Introduction to modern statistical mechanics. Oxford

University Press, New York, 1987.

185



Bibliography

[58] Soper, A. K. Chemical Physics, 1996, 202, 295–306.

[59] Henderson, R. L. Physics Letters A, 1974, 49, 197–198.

[60] Shell, M. S. The Journal of Chemical Physics, 2008, 129, 144108.

[61] Chaimovich, A.; Shell, M. S. The Journal of Chemical Physics, 2011,

134, 094112.

[62] Praprotnik, M.; Site, L. D.; Kremer, K. The Journal of Chemical

Physics, 2005, 123, 224106.

[63] Praprotnik, M.; Site, L. D.; Kremer, K. Annual Review of Physical

Chemistry, 2008, 59, 545–571.

[64] Fritsch, S.; Poblete, S.; Junghans, C.; Ciccotti, G.; Delle Site, L.; Kre-

mer, K. Phys. Rev. Lett., 2012, 108, 170602.

[65] Hirschfelder, J. O.; McClure, F. T.; Weeks, I. F. The Journal of Chemi-

cal Physics, 1942, 10, 201–214.

[66] Jones, J. E. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 1924, 106, 463–477.

[67] Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries,

A. H. J. Phys. Chem. B, 2007, 111, 7812–7824.

[68] Rossi, G.; Monticelli, L.; Puisto, S. R.; Vattulainen, I.; Ala-Nissila, T.

Soft Matter, 2011, 7, 698–708.

[69] Daoulas, K. C.; Rühle, V.; Kremer, K. Journal of Physics: Condensed

Matter, 2012, 24, 284121.

[70] Kremer, K.; Grest, G. S. The Journal of Chemical Physics, 1990, 92,

5057–5086.

186



Bibliography

[71] Düchs, D.; Schmid, F. J. Phys.: Condens. Matter, 2001, 13, 4853.

[72] Cooke, I. R.; Kremer, K.; Deserno, M. Phys. Rev. E, 2005, 72, 011506.

[73] Fraaije, J. G. E. M. The Journal of Chemical Physics, 1993, 99, 9202–

9212.

[74] Schmid, F. J. Phys.: Condens. Matter, 1998, 10, 8105.

[75] Fredrickson, G. The Equilibrium Theory of Inhomogeneous Polymers.

International series of monographs on physics. Oxford University Press,

2006.

[76] Müller, M.; de Pablo, J. J. Annual Review of Materials Research, 2013,

43, 1–34.

[77] Landau, L. D.; Ginzburg, V. L. Zh. Eksp. Teor. Fiz., 1950, 20, 1064.

[78] Flory, P. J. The Journal of Chemical Physics, 1942, 10, 51–61.

[79] Huggins, M. L. The Journal of Chemical Physics, 1941, 9, 440–440.

[80] Chen, L.-Q. Annual Review of Materials Research, 2002, 32, 113–140.

[81] Cahn, J. W.; Hilliard, J. E. The Journal of Chemical Physics, 1958, 28,

258–267.

[82] Chaikin, P. M.; Lubensky, T. C. Principles of Condensed Matter

Physics. Cambridge University Press, 1995.

[83] Baeurle, S. A. J Math Chem, 2008, 46, 363–426.

[84] Edwards, S. F. Proc. Phys. Soc., 1965, 85, 613.

[85] Soga, K. G.; Guo, H.; Zuckermann, M. J. EPL, 1995, 29, 531.

187



Bibliography

[86] Soga, K. G.; Zuckermann, M. J.; Guo, H. Macromolecules, 1996, 29,

1998–2005.

[87] Besold, G.; Guo, H.; Zuckermann, M. J. J. Polym. Sci. B Polym. Phys.,

2000, 38, 1053–1068.

[88] Eastwood, J. W.; Hockney, R. W.; Lawrence, D. N. Computer Physics

Communications, 1980, 19, 215–261.

[89] Deserno, M.; Holm, C. The Journal of Chemical Physics, 1998, 109,

7678–7693.

[90] Deserno, M.; Holm, C. The Journal of Chemical Physics, 1998, 109,

7694–7701.

[91] Gemünden, P.; Behringer, H. The Journal of Chemical Physics, 2013,

138, 024904.

[92] Poniewierski, A.; Hołyst, R. Phys. Rev. Lett., 1988, 61, 2461–2464.

[93] Detcheverry, F. A.; Pike, D. Q.; Nealey, P. F.; Müller, M.; de Pablo, J. J.

Phys. Rev. Lett., 2009, 102, 197801.

[94] Ramírez-Hernández, A.; Müller, M.; Pablo, J. J. d. Soft Matter, 2013,

9, 2030–2036.

[95] Oseen, C. W. Trans. Faraday Soc., 1933, 29, 883–899.

[96] Frank, F. C. Discuss. Faraday Soc., 1958, 25, 19–28.

[97] Zheng-Min, S.; Kléman, M. Molecular Crystals and Liquid Crystals,

1984, 111, 321–328.

[98] Kléman, M. Faraday Discuss. Chem. Soc., 1985, 79, 215–224.

188



Bibliography

[99] Frezzato, D.; Moro, G. J.; Tittelbach, M.; Kothe, G. The Journal of

Chemical Physics, 2003, 119, 4060–4069.

[100] Kléman, M.; Lavrentovich, O. D. Soft Matter Physics: An Introduction.

Springer Science & Business Media, 2003.

[101] de Gennes, P. G. Molecular Crystals and Liquid Crystals, 1976, 34,

177–182.

[102] de Gennes, P. G. in Polymer Liquid Crystals, Ciferri, A.; Krigbaum,

W. R.; Meyer, R. B., Eds. Academic Press, New York, 1982.

[103] Meyer, R. B. in Polymer Liquid Crystals, Ciferri, A.; Krigbaum, W. R.;

Meyer, R. B., Eds. Academic Press, New York, 1982.

[104] Le Doussal, P.; Nelson, D. R. EPL, 1991, 15, 161.

[105] Kamien, R. D.; Le Doussal, P.; Nelson, D. R. Phys. Rev. A, 1992, 45,

8727–8750.

[106] Kamien, R. D.; Le Doussal, P.; Nelson, D. R. Phys. Rev. E, 1993, 48,

4116–4117.

[107] Selinger, J. V.; Bruinsma, R. F. Phys. Rev. A, 1991, 43, 2910–2921.

[108] Nelson, D. R. Physica A: Statistical Mechanics and its Applications,

1991, 177, 220–232.

[109] Gay, J. G.; Berne, B. J. The Journal of Chemical Physics, 1981, 74,

3316–3319.

[110] Berardi, R.; Fava, C.; Zannoni, C. Chemical Physics Letters, 1995, 236,

462–468.

[111] Allen, M. P.; Warren, M. A.; Wilson, M. R.; Sauron, A.; Smith, W. The

Journal of Chemical Physics, 1996, 105, 2850–2858.

189



Bibliography

[112] Lebwohl, P. A.; Lasher, G. Phys. Rev. A, 1972, 6, 426–429.

[113] Romano, S. International Journal of Modern Physics B, 1998, 12,

2305–2323.

[114] Luckhurst, G. R.; Romano, S. Liquid Crystals, 1999, 26, 871–884.

[115] Forster, D. Annals of Physics, 1974, 84, 505–534.

[116] Vroege, G. J.; Odijk, T. Macromolecules, 1988, 21, 2848–2858.

[117] Reinitzer, F. Monatshefte für Chemie, 1888, 9, 421–441.

[118] Blumstein, A. Liquid Crystalline Order in Polymers. Elsevier, 2012.

[119] Onsager, L. Annals of the New York Academy of Sciences, 1949, 51,

627–659.

[120] Maier, W.; Saupe, A. Z. Naturforsch., 13a, 564–570 (1959); 14a,

882–900 (1959); 15a, 287–292 (1960), 1959.

[121] Hamm, M.; Goldbeck-Wood, G.; Zvelindovsky, A. V.; Sevink, G. J. A.;

Fraaije, J. G. E. M. The Journal of Chemical Physics, 2002, 116, 3152–

3161.

[122] Pryamitsyn, V.; Ganesan, V. The Journal of Chemical Physics, 2004,

120, 5824–5838.

[123] Kumar, N. A.; Ganesan, V. The Journal of Chemical Physics, 2012,

136, 101101.

[124] Wang, Q. Soft Matter, 2011, 7, 3711–3716.

[125] Luckhurst, G. R.; Zannoni, C. Nature, 1977, 267, 412–414.

[126] Vink, R. L. C.; Schilling, T. Phys. Rev. E, 2005, 71, 051716.

190



Bibliography

[127] Prestipino, S.; Saija, F. The Journal of Chemical Physics, 2007, 126,

194902.

[128] Hughes, Z. E.; Stimson, L. M.; Slim, H.; Lintuvuori, J. S.; Ilnytskyi,

J. M.; Wilson, M. R. Computer Physics Communications, 2008, 178,

724–731.

[129] Wilson, M. R. International Reviews in Physical Chemistry, 2005, 24,

421–455.

[130] Chandrasekhar, S. Rep. Prog. Phys., 1976, 39, 613.

[131] Schopohl, N.; Sluckin, T. J. Phys. Rev. Lett., 1987, 59, 2582–2584.

[132] Sonnet, A.; Kilian, A.; Hess, S. Phys. Rev. E, 1995, 52, 718–722.

[133] Taratuta, V. G.; Hurd, A. J.; Meyer, R. B. Phys. Rev. Lett., 1985, 55,

246–249.

[134] Taratuta, V. G.; Lonberg, F.; Meyer, R. B. Phys. Rev. A, 1988, 37,

1831–1834.

[135] Ao, X.; Wen, X.; Meyer, R. B. Physica A: Statistical Mechanics and its

Applications, 1991, 176, 63–71.

[136] Lee, S.-D.; Meyer, R. B. Liquid Crystals, 1990, 7, 15–29.

[137] Odijk, T. Liquid Crystals, 1986, 1, 553–559.

[138] Grosberg, A. Y.; Zhestkov, A. V. Polymer Science U.S.S.R., 1986, 28,

97–104.

[139] Dijkstra, M.; Frenkel, D. Phys. Rev. E, 1994, 50, 349–357.

[140] Kamien, R. D.; Grest, G. S. Phys. Rev. E, 1997, 55, 1197–1200.

191



Bibliography

[141] Poelking, C.; Daoulas, K.; Troisi, A.; Andrienko, D. in P3HT Revisited

– From Molecular Scale to Solar Cell Devices, Ludwigs, S., Ed., Ad-

vances in Polymer Science, pp 139–180. Springer Berlin Heidelberg,

2014.

[142] Winokur, M. J.; Spiegel, D.; Kim, Y.; Hotta, S.; Heeger, A. J. Synthetic

Metals, 1989, 28, 419–426.

[143] Zhao, Y.; Yuan, G.; Roche, P.; Leclerc, M. Polymer, 1995, 36, 2211–

2214.

[144] DeLongchamp, D. M.; Kline, R. J.; Jung, Y.; Lin, E. K.; Fischer, D. A.;

Gundlach, D. J.; Cotts, S. K.; Moad, A. J.; Richter, L. J.; Toney, M. F.;

Heeney, M.; McCulloch, I. Macromolecules, 2008, 41, 5709–5715.

[145] Hugger, S.; Thomann, R.; Heinzel, T.; Thurn-Albrecht, T. Colloid

Polym Sci, 2004, 282, 932–938.

[146] Chabinyc, M. L. Journal of Vacuum Science & Technology B, 2008, 26,

445–457.

[147] McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald,

I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.;

Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat

Mater, 2006, 5, 328–333.

[148] Ho, V.; Boudouris, B. W.; Segalman, R. A. Macromolecules, 2010, 43,

7895–7899.

[149] Grell, M.; Bradley, D. D. C. Adv. Mater., 1999, 11, 895–905.

[150] McCulloch, B.; Ho, V.; Hoarfrost, M.; Stanley, C.; Do, C.; Heller, W. T.;

Segalman, R. A. Macromolecules, 2013, 46, 1899–1907.

192



Bibliography

[151] Heffner, G. W.; Pearson, D. S. Macromolecules, 1991, 24, 6295–6299.

[152] Livadaru, L.; Netz, R. R.; Kreuzer, H. J. Macromolecules, 2003, 36,

3732–3744.

[153] Levine, Y. K.; Gomes, A. E.; Martins, A. F.; Polimeno, A. The Journal

of Chemical Physics, 2005, 122, 144902.

[154] Wilson, M. R. Chem. Soc. Rev., 2007, 36, 1881–1888.

[155] Vettorel, T.; Besold, G.; Kremer, K. Soft Matter, 2010, 6, 2282–2292.

[156] Zhang, G.; Moreira, L. A.; Stuehn, T.; Daoulas, K. C.; Kremer, K. ACS

Macro Lett., 2014, 3, 198–203.

[157] Rusakov, V.; Shliomis, M. Journal de Physique Lettres, 1985, 46, 935–

943.

[158] de Gennes, P. G. The Journal of Chemical Physics, 1971, 55, 572.

[159] Kremer, K.; Grest, G. S.; Carmesin, I. Phys. Rev. Lett., 1988, 61, 566–

569.

[160] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.;

Teller, E. The Journal of Chemical Physics, 1953, 21, 1087–1092.

[161] Svenšek, D.; Veble, G.; Podgornik, R. Phys. Rev. E, 2010, 82, 011708.

[162] Svenšek, D.; Grason, G. M.; Podgornik, R. Phys. Rev. E, 2013, 88,

052603.

[163] Pelletier, O.; Bourgaux, C.; Diat, O.; Davidson, P.; Livage, J. Eur. Phys.

J. E, 2000, 2, 191–198.

[164] Lubensky, T. C. Phys. Rev. A, 1970, 2, 2497–2514.

193



Bibliography

[165] Allen, M. P.; Frenkel, D. Phys. Rev. A, 1988, 37, 1813–1816.

[166] O’Brien, P. A.; Allen, M. P.; Cheung, D. L.; Dennison, M.; Masters, A.

Phys. Rev. E, 2008, 78, 051705.

[167] Williams, D. R.; Halperin, A. Journal de Physique II, 1993, 3, 69–89.

[168] Vives, E.; Lindgård, P.-A. Phys. Rev. B, 1991, 44, 1318–1328.

[169] Higgins, J. S.; Benoît, H. C. Polymers and Neutron Scattering. Claren-

don Press, Oxford, 1994.

[170] McCullough, R. D. Advanced Materials, 1998, 10, 93–116.

[171] McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline,

R. J.; Coelle, M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani,

B.; Hamilton, R.; Richter, L.; Salleo, A.; Shkunov, M.; Sporrowe, D.;

Tierney, S.; Zhong, W. Adv. Mater., 2009, 21, 1091–1109.

[172] Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater., 2010, 23,

456–469.

[173] McCulloch, I.; Ashraf, R. S.; Biniek, L.; Bronstein, H.; Combe, C.;

Donaghey, J. E.; James, D. I.; Nielsen, C. B.; Schroeder, B. C.; Zhang,

W. Acc. Chem. Res., 2012, 45, 714–722.

[174] Geoghegan, M.; Hadziioannou, G. Polymer Electronics. Oxford Master

Series in Physics 22, 2013.

[175] Poelking, C.; Andrienko, D. Macromolecules, 2013, 46, 8941–8956.

[176] Dang, M. T.; Hirsch, L.; Wantz, G. Adv. Mater., 2011, 23, 3597–3602.

[177] Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J.

Macromolecules, 1992, 25, 4364–4372.

194



Bibliography

[178] Prosa, T. J.; Winokur, M. J.; McCullough, R. D. Macromolecules, 1996,

29, 3654–3656.

[179] Yuan, Y.; Zhang, J.; Sun, J.; Hu, J.; Zhang, T.; Duan, Y. Macro-

molecules, 2011, 44, 9341–9350.

[180] Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.;

Smith, P.; Toney, M. F.; Salleo, A. Nature Materials, 2013, 12, 1038–

1044.

[181] Poelking, C. Charge-Transport Simulations in Polymeric Organic Semi-

conductors. Master’s Thesis, University of Heidelberg, 2013.

[182] Marcus, R. A. The Journal of Chemical Physics, 1956, 24, 966–978.

[183] Stingelin, N. Polym. Int., 2012, 61, 866–873.

[184] Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.;

White, J. M.; Williamson, R. M.; Subbiah, J.; Ouyang, J.; Holmes,

A. B.; Wong, W. W. H.; Jones, D. J. Nat Commun, 2015, 6.

[185] Huang, D. M.; Faller, R.; Do, K.; Moulé, A. J. Journal of Chemical

Theory and Computation, 2010, 6, 526–537.

[186] Do, K.; Huang, D. M.; Faller, R.; Moulé, A. J. Physical Chemistry

Chemical Physics, 2010, 12, 14735.

[187] Schwarz, K. N.; Kee, T. W.; Huang, D. M. Nanoscale, 2013, 5, 2017–

2027.

[188] Jankowski, E.; Marsh, H. S.; Jayaraman, A. Macromolecules, 2013, 46,

5775–5785.

[189] Pershin, A.; Donets, S.; Baeurle, S. A. The Journal of Chemical

Physics, 2012, 136, 194102.

195



Bibliography

[190] Kremer, K.; Müller-Plathe, F. Molecular Simulation, 2002, 28, 729–

750.

[191] Fukunaga, H.; Takimoto, J.; Doi, M. The Journal of Chemical Physics,

2002, 116, 8183.

[192] Fritz, D.; Harmandaris, V. A.; Kremer, K.; van der Vegt, N. F. A. Macro-

molecules, 2009, 42, 7579–7588.

[193] Ryckaert, J.-P.; Bellemans, A. Faraday Discuss. Chem. Soc., 1978, 66,

95–106.

[194] Jorgensen, W. L.; Tirado-Rives, J. Journal of the American Chemical

Society, 1988, 110, 1657–1666.

[195] McDonald, N. A.; Jorgensen, W. L. The Journal of Physical Chemistry

B, 1998, 102, 8049–8059.

[196] DuBay, K. H.; Hall, M. L.; Hughes, T. F.; Wu, C.; Reichman, D. R.;

Friesner, R. A. J. Chem. Theory Comput., 2012, 8, 4556–4569.

[197] Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc., 1990, 112, 5525–

5534.

[198] Feng, X.; Marcon, V.; Pisula, W.; Hansen, M. R.; Kirkpatrick, J.;

Grozema, F.; Andrienko, D.; Kremer, K.; Müllen, K. Nat Mater, 2009,

8, 421–426.

[199] Mukherjee, B.; Delle Site, L.; Kremer, K.; Peter, C. J. Phys. Chem. B,

2012, 116, 8474–8484.

[200] Freiser, M. J. Phys. Rev. Lett., 1970, 24, 1041–1043.

[201] Straley, J. P. Phys. Rev. A, 1974, 10, 1881–1887.

196



Bibliography

[202] Sonnet, A. M.; Virga, E. G.; Durand, G. E. Phys. Rev. E, 2003, 67,

061701.

[203] Helfand, E.; Tagami, Y. The Journal of Chemical Physics, 1972, 56,

3592–3601.

[204] Helfand, E. The Journal of Chemical Physics, 1975, 62, 999–1005.

[205] Fredrickson, G. H.; Ganesan, V.; Drolet, F. Macromolecules, 2001, 35,

16–39.

[206] Düchs, D.; Schmid, F. The Journal of Chemical Physics, 2004, 121,

2798–2805.

[207] Ganesan, V.; Pryamitsyn, V. The Journal of Chemical Physics, 2003,

118, 4345–4348.

[208] Sonnet, A. M.; Virga, E. G. Phys. Rev. E, 2008, 77, 031704.

[209] Kriksin, Y. A.; Khalatur, P. G. Macromol. Theory Simul., 2012, 21,

382–399.

[210] Luckhurst, G.; Zannoni, C.; Nordio, P.; Segre, U. Molecular Physics,

1975, 30, 1345–1358.

[211] Steele, W. A. The Journal of Chemical Physics, 1963, 39, 3197–3208.

[212] Kron, A. Polym. Sci. USSR, 1965, 7, 1361–1367.

[213] Wall, F. T.; Mandel, F. The Journal of Chemical Physics, 1975, 63,

4592–4595.

[214] Vacatello, M.; Avitabile, G.; Corradini, P.; Tuzi, A. The Journal of

Chemical Physics, 1980, 73, 548–552.

197



Bibliography

[215] Dodd, L.; Boone, T.; Theodorou, D. Molecular Physics, 1993, 78, 961–

996.

[216] Holtzer, A. J. Polym. Sci., 1955, 17, 432–434.

[217] Cesar, B.; Rawiso, M.; Mathis, A.; François, B. Synthetic Metals, 1997,

84, 241–242.

[218] Hsu, H.-P.; Paul, W.; Binder, K. Macromolecules, 2010, 43, 3094–3102.

[219] Lecommandoux, S.; Chécot, F.; Borsali, R.; Schappacher, M.; Deffieux,

A.; Brûlet, A.; Cotton, J. P. Macromolecules, 2002, 35, 8878–8881.

[220] Lang, A.; N Likos, C.; Watzlawek, M.; Löwen, H. J. Phys.: Condens.

Matter, 2000, 12, 5087.

[221] Low, R. J. Eur. J. Phys., 2002, 23, 111.

[222] Allen, M. P. Liquid Crystals, 1990, 8, 499–511.

[223] Eppenga, R.; Frenkel, D. Molecular Physics, 1984, 52, 1303–1334.

[224] Longa, L.; Stelzer, J.; Dunmur, D. The Journal of Chemical Physics,

1998, 109, 1555–1566.

[225] Bouhassoune, M.; Mensfoort, S. v.; Bobbert, P.; Coehoorn, R. Organic

Electronics, 2009, 10, 437–445.

[226] Coehoorn, R.; Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J. Phys.

Rev. B, 2005, 72, 155206.

[227] Baessler, H. phys. stat. sol. (b), 1993, 175, 15–56.

[228] Rühle, V.; Lukyanov, A.; May, F.; Schrader, M.; Vehoff, T.; Kirkpatrick,

J.; Baumeier, B.; Andrienko, D. J. Chem. Theory Comput., 2011, 7,

3335–3345.

198



Bibliography

[229] Poelking, C.; Tietze, M.; Elschner, C.; Olthof, S.; Hertel, D.; Baumeier,

B.; Würthner, F.; Meerholz, K.; Leo, K.; Andrienko, D. Nat Mater,

2014, advance online publication.

[230] Poelking, C.; Ivanov, V.; Kremer, K.; Risko, C.; Brédas, J.-L.; An-

drienko, D.; Eunkyung, C. J. Phys. Chem. C, 2013, 117, 1633–1640.

[231] Rühle, V.; Kirkpatrick, J.; Andrienko, D. The Journal of Chemical

Physics, 2010, 132, 134103–134103–9.

[232] Kohler, B. E.; Woehl, J. C. The Journal of Chemical Physics, 1995,

103, 6253–6256.

[233] Schrader, M.; Körner, C.; Elschner, C.; Andrienko, D. J. Mater. Chem.,

2012, 22, 22258–22264.

[234] Schrader, M.; Fitzner, R.; Hein, M.; Elschner, C.; Baumeier, B.; Leo,

K.; Riede, M.; Bäuerle, P.; Andrienko, D. J. Am. Chem. Soc., 2012,

134, 6052–6056.

[235] Ballantyne, A. M.; Chen, L.; Dane, J.; Hammant, T.; Braun, F. M.;

Heeney, M.; Duffy, W.; McCulloch, I.; Bradley, D. D. C.; Nelson, J.

Advanced Functional Materials, 2008, 18, 2373–2380.

[236] Bracewell, R. N. The Fourier transform and its applications. McGraw-

Hill series in electrical and computer engineering. McGraw Hill,

Boston, 3rd ed edition, 2000.

[237] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.;

Haak, J. R. J. Chem. Phys., 1984, 81, 3684.

[238] Alexiadis, O.; Mavrantzas, V. G. Macromolecules, 2013, 46, 2450–

2467.

199



Bibliography

[239] Poelking, C. PhD. PhD Thesis, University of Heidelberg, in prepara-

tion, 2015.

[240] Teixeira, P. I. C.; Osipov, M. A.; Luckhurst, G. R. Phys. Rev. E, 2006,

73, 061708.

[241] To, T. B. T.; Sluckin, T. J.; Luckhurst, G. R. The Journal of Chemical

Physics, 2013, 139, 134902.

[242] Lee, C. K.; Hua, C. C.; Chen, S. A. The Journal of Chemical Physics,

2010, 133, 064902.

[243] Lee, C. K.; Hua, C. C.; Chen, S. A. The Journal of Chemical Physics,

2012, 136, 084901.

[244] Weisstein, E. W. Sphere-Sphere Intersection. From MathWorld–

A Wolfram Web Resource. http://mathworld.wolfram.com/Sphere-

SphereIntersection.html.

[245] Rosso, R. Liquid Crystals, 2007, 34, 737–748.

[246] Mavrantzas, V. G.; Boone, T. D.; Zervopoulou, E.; Theodorou, D. N.

Macromolecules, 1999, 32, 5072–5096.

200


