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Integrate-and-fire (IF) neurons have found widespread applications in computational neuroscience.
Particularly important are stochastic versions of these models where the driving consists of a mean
input (base current µ) and a fluctuating current (white Gaussian noise of intensity D). Different
IF models have been proposed, the firing statistics of which depends nontrivially on the input
parameters µ and D. Comparison of these models among each other or with real neurons should be
performed at parameters that yield similar basic firing statistics as, for instance, the firing rate and
the coefficient of variation (CV) of the interspike interval. However, it is not clear a priori whether
for a given firing rate and CV, there is only one unique choice of input parameters for the respective
model. Here we review the dependence of rate and CV on input parameters for the perfect, leaky,
and quadratic IF neuron models and show analytically that indeed in all three models the firing rate
and the CV of the interspike interval distribution uniquely determine the input parameters. For the
leaky and quadratic IF models, we use properties of the contour lines for fixed rate and CV and also
give simple numerical algorithms leading from given rate and CV to the actual input parameters.

I. INTRODUCTION

A important class of simplified neuronal models comprises integrate-and-fire neurons [1, 2] the dynamics of which
can - in particular in stochastic versions - explain a number of interesting phenomena. New types of IF models are
still introduced nowadays that mimic certain aspects more faithfully than other IF models do, for instance, the two
dimensional resonate-and-fire model [3], IF models with adaptation currents [4], and models with specific nonlinearities
[5] and relative refractory period [6, 7]. Three meanwile classic variants are the random walk model by Gerstein and
Mandelbrot [8] usually referred to as the perfect IF neuron, the leaky IF model studied by Stein [9, 10], Johannesma
[11], and many others (see reviews [1, 2]), and the type I normal form with noise addressed by Gutkin and Ermentrout
[12] and Lindner et al. [13] also known as quadratic IF model.

It is known that the firing statistics of the various IF models as well as their response to periodic stimulation differ
due to the different nonlinearities in these models. Additionally, the same numerical values of mean current µ and
the intensity of the white noise D have different effect on the firing statistics of the respective models. Thus, it is not
simple to compare these models among each other nor is it straightforward to compare them to experimental data
[14].

One simple way of comparison is to fix a certain basic firing statistics as, for instance, the firing rate and then
compare the remaining statistics as, for instance, the power spectrum of the spike train between different IF models.
It is obvious that the firing rate alone is not sufficient to determine the unknown parameters (µ, D) and that also
the degree of irregularity of spiking as characterized by the coefficient of variation (CV) of the interspike interval will
affect the correct choice of µ, D; thus a natural choice to fix the parameters of the IF model is to prescribe rate and
CV of the output spike train. However, given both statistics, it is not clear at all whether the parameters µ and D
of a certain model will be uniquely determined, i.e. whether at most one parameter set (µ and D) exists for which
the considered IF model generates a spike train with the desired firing statistics (rate and CV). This problem is also
related to the problem of finding optimal fitting parameters for an IF model given experimental data and has been
subject of several studies (see [14] and references therein). In one approach, the model parameters are inferred from
subthreshold membrane measurements (for a recent reference see [15]). In another approach, model parameters must
be inferred solely from interspike interval (ISI) statistics [16–19]. Most of these studies consider the leaky IF model.
To the best of our knowledge, the problem of the uniqueness of input parameters has not been addressed in these or
other works.

The aim of our paper is to address the question of uniqueness of input parameters for the perfect (PIF), leaky
(LIF), and quadratic (QIF) IF neuron models. In spite of its apparent simplicity, this question is nontrivial since,
for instance the CV may depend in a nonmonotonic way on the input parameters and so it is not clear whether the
mapping of µ and D on rate and CV is invertible or not.

Here we show that rate and CV uniquely determine the input parameters for the three models. We first review the
properties of rate and CV as functions of µ and D using known expressions for these statistics as functions of the
model parameters and scaling relations. For the PIF, the expressions for the ISI’s moments turn out to be sufficiently
simple as to admit straightforward inversion. For LIF and QIF, such analytical mappings unfortunately do not exist,
due to the complexity of the corresponding expressions for the moments of the ISI. In these cases, we use the properties
of the contour lines for rate and CV. We show that each contour line for the rate intersects at most once each contour
line for the CV. As a byproduct of this study, we present simple numerical algorithms that permite a fast calculation
of the model parameters corresponding to a given rate and CV, provided that the internal parameters (membrane
time constant, threshold and reset voltage values) are already known.
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II. INTEGRATE-AND-FIRE NEURON MODELS

A. Definition of the models and relation to the first passage time problem

The IF models considered here consist of two ingredients: (i) a one dimensional stochastic ordinary differential
equation describing the subthreshold time evolution of a variable v and (ii) a fire-and-reset rule.

The equation accounting for the subthreshold dynamics of v can be cast, for all the models considered here, as:

τ v̇ = fmodel(v) + µ +
√

2Dτξ(t), (1)

where τ is the membrane time constant, fmodel(v) is a deterministic model-specific function and ξ is Gaussian white
noise with zero average and 〈ξ(t)ξ(t′)〉 = δ(t − t′). Eq. (1) is in general a nonlinear Langevin equation with a white
noise input (synaptic current) with mean µ and noise intensity D. Throughout this paper we measure time in units
of τ , which is realized by setting τ = 1.

The model-specific functions, the possible ranges for the mean input µ, and the reset and threshold values are given
by:

fPIF = 0, µ > 0, vth = 1, vr = 0, (2)

fLIF = −v, µ ∈ (−∞,∞), vth = 1, vr = 0, (3)

and

fQIF = v2, µ ∈ (−∞,∞), vth = ∞, vr = −∞. (4)

The fire-and-reset rule can be expressed as

v(t) = vth =⇒ spike at time t and v → vr, (5)

i.e., whenever v reaches a threshold value vth the neuron fires a spike and there is a reset of its membrane potential
to a value vr.

In the cases of PIF and LIF, the variable v can be always rescaled such that reset and threshold values are at zero
and unity without loss of generality (v is then measured in units of the difference between threshold and reset); for
better applicability of our results, we will keep vr and vth in all resulting formulas and equations. For the QIF, reset
and threshold are at minus and plus infinity. In this case v is not interpreted as the membrane potential. Instead,
Eq. (1) then corresponds to the normal form of a type I neuron [20], i.e., a neuron close to a saddle-node bifurcation.

The IF neuron model, Eqs. (5) and (1), can be alternatively interpreted as describing a Brownian particle of
position v undergoing overdamped motion in a potential Umodel such that

−dUmodel

dv
= fmodel + µ. (6)

U

U
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FIG. 1: Potentials for the different models (cf. Eq. (6)). The PIF is only defined in the tonic firing regime (µ > 0). The QIF
can be in the tonic (I) and noise-induced (II) firing regimes. The LIF occurs in the tonic (I) and noise-induced (II-III) firing
regimes. The noise-induced regimes for this model can display vr at smaller (II) or larger (III) values than the voltage value at
which U attains its minimum.
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In this analogy, the interspike interval of the respective neuron model turns into the first-passage time of the
Brownian particle starting at the reset point towards the threshold point. Depending on the model and, in particular,
on the value of µ, the passage can occur already without noise (tonic firing regime) or must be assisted by fluctuations
(noise-induced firing regime). The tonic regime can be most easily illustrated in case of the PIF where the particle
just slides down an inclined plane from reset to threshold (see Fig. 1a) , whereas noise is needed to reach the threshold
whenever there is a barrier present between reset and threshold (QIF for µ < 0, see Fig. 1c) or right at the threshold
(LIF, µ < 1, see Figs. 1(e) and (f)). Note that the parameter µ has different meaning in the three models. In the PIF
it attains only positive values and sets merely the time scale of the system. In the QIF it is a bifurcation parameter:
at negative µ the potential attains one minimum whereas for positive µ the potential is a nonlinear but monotonic
function. In the LIF, the bifurcation from tonic to noise-induced firing takes place at µ = 1. As we will see, for the
firing statistics of the LIF it is furthermore useful to distinguish the case where µ < 0: here a strong noise is required
to make the neuron fire and the firing statistics shows some specific features (see below).

B. Measures

The spike train is defined as a sum of delta functions at the spiking times, i.e., the time instants when the voltage
reaches the threshold and the fire-and-reset rule is applied (cf. Fig. 2):

y(t) =
∑

j

δ(t − tj). (7)

In Eq. (7), tj stands for the instant when the j-th spike is triggered. Fig. 2 depicts the time evolution of the
subthreshold voltage as described by one of the models we address and the corresponding spike train. The time
intervals Tj = tj − tj−1 between two immediately subsequent spikes are precisely the interspike intervals.
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FIG. 2: Subthreshold voltage dynamics and corresponding spike train as from a simulation of Eqs. (1) and (2) (PIF) with
parameters µ = 0.9 and D = 0.006.

The spike trains considered here are stationary stochastic point processes. The firing rate r of such a process can
be defined in three different ways: as (i) the instantaneous ensemble average of the output; (ii) the number of spikes
N(T ) in a large time interval (0, T ) divided by this time window T ; and (iii) the inverse mean interspike interval, i.e.
we have

r = 〈y〉 = lim
T→∞

N(T )

T
=

1

〈T 〉 , (8)

The coefficient of variation (CV ) of the ISI is defined as:

CV =

√

〈∆T 2〉
〈T 〉 , (9)

where 〈∆T 2〉 = 〈T 2〉 − 〈T 〉2 is the variance of the ISI distribution. The CV can be regarded as the relative standard
deviation of the ISI. For later comparison, a perfectly periodic spike train would have zero CV while a Poissonian
spike train possesses a CV of one.

C. General form of the differential equations governing the contour lines

Analytical formulas for the moments 〈T n〉 of the first passage time in an arbitrary potential were derived by
Pontryagin et al. [21]. Simplifications of these quadrature formulas as well as sum formulas for specific cases have
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been put forward by many authors (for a selection, see, for instance, [1, 13, 22–27]). The first two moments determine
the rate and CV, according to Eqs. (8) and (9).

In this paper we will study the rate and CV of the three models as functions of the input parameters, µ and D.
In particular, we are interested in the curves for which F (D, µ) = const (F denotes either r or CV), i.e., the contour
lines of the surfaces F (D, µ) over the (D, µ) parameter plane. Elementary arguments yield differential equations for
functions µF (D) or DF (µ) that parametrize the contour lines:

dµF

dD
= −∂F/∂D

∂F/∂µ
, (10)

dDF

dµ
= − ∂F/∂µ

∂F/∂D
, (11)

where F ∈ {r, CV }, provided that ∂F/∂µ 6= 0 and ∂F/∂D 6= 0, respectively. We note that these conditions are
not necessarily satisfied in the whole (D, µ) parameter space of the models we address. For instance, for the PIF we
have in fact ∂r/∂D = 0 for all valid pair (D, µ). However, for the three models studied here, at any point (D, µ) of
parameter space at least one of these conditions is satisfied.

If for any pair (r, CV ) the respective contour lines µr(D) and µCV (D) intersect at most once, then rate and CV
determine uniquely the parameters of the respective integrate-and-fire model. In the following sections we will show
that this is indeed the case for the PIF, LIF, and QIF.

III. PERFECT INTEGRATE-AND-FIRE NEURON

The mean and variance of the ISI are given by [23, 25]:

〈T 〉 =
vth − vr

µ
, 〈∆T 2〉 =

2D(vth − vr)

µ3
. (12)

We stress that µ > 0 for the PIF. For this model the expressions for rate and CV are quite simple:

r =
µ

vth − vr
, CV 2 =

2D

µ(vth − vr)
. (13)

Moreover, the contour lines for the rate and the CV can be explicitely calculated (without resorting to the differential
equations Eq. (10) and Eq. (11)):

µr0
(D) = r0(vth − vr), µCV0

(D) =
2D

(vth − vr)CV 2
0

. (14)

We briefly review the behavior of rate and CV as functions of µ and D and then show that rate and CV uniquely fix
the system’s parameters.

A. Rate and CV and their contour lines in the (D, µ) plane for the PIF

The rate and CV are shown in Figs. 3(a) and 3(b) as functions of the parameters µ and D. The rate is a linear
function of µ and, remarkably, does not display any dependence on D. This is a unique property of the PIF model.
The CV depends linearly on

√

D/µ, and can therefore attain values in the whole range 0 < CV < ∞.
Fig. 3(c) shows contour lines for different rates and CVs, which are for both measures just straight lines. Generally,

the variability of the PIF’s spike train increases by decreasing the mean input and increasing the noise intensity, which
is quite intuitive.

B. Uniqueness of the model parameters for a given rate and CV for the PIF

In the fairly simple case of the PIF, Eq. (13) can be readily inverted to yield µ and D as a function of rate and CV:

µ = r(vth − vr), (15)

D =
r(vth − vr)

2CV 2

2
. (16)

Eqs. (15) and (16) define a mapping (r, CV ) 7→ (D, µ), implying that for any pair (r, CV ) there exists one and only
one pair (D, µ).
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FIG. 3: Rate (a) and CV (b) as a function of the parameters µ and D for the perfect integrate-and-fire model. Contour lines
for constant rate (a, c) and CV (b, c) as indicated. For illustration, the curves r = 0.01, 0.1, and 1 in (c) correspond to the
physiologically relevant rates 1,10, and 100 Hz, respectively, under the assumption that the membrane time constant in Eq.
(1) has the typical value τ = 10 ms.

IV. LEAKY INTEGRATE-AND-FIRE NEURON

For the LIF, the mean and variance of the ISIs are [1, 22, 27]:

〈T 〉 =
√

π

∫ b

a

dyey2

erfc(y), (17)

〈∆T 2〉 = 2π

∫ b

a

dzez2

∫ ∞

z

dyey2

erfc2(y), (18)

where

a = (µ − vth)/
√

2D and b = (µ − vr)/
√

2D. (19)
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From these expressions and the general relations Eq. (10) and (11), one can derive the differential equations that
govern the contour lines as follows:

dµr

dD
=

b − a

vth − vr

(

beb2 erfc(b) − aea2

erfc(a)

eb2 erfc(b) − ea2 erfc(a)

)

, (20)

dµCV

dD
=

(

b − a

vth − vr

)

[

a (1 − F(a, b))
−1

+ b

(

1 − 1

F(a, b)

)−1
]

, (21)

F(a, b) =

∫ b

a dxex2

erfc(x)eb2
∫∞

b dyey2

erfc2(y) − 2
∫ b

a dzez2 ∫∞

z dyey2

erfc2(y)eb2erfc(b)
∫ b

a
dxex2erfc(x)ea2

∫∞

a
dyey2erfc2(y) − 2

∫ b

a
dzez2

∫∞

z
dyey2erfc2(y)ea2erfc(a)

, (22)

dDCV

dµ
=

[

dµCV

dD

]−1

. (23)

We will first recall some properties of rate and CV most but not all of which have been already discussed elsewhere
[27, 28].

A. Rate and CV and their contour lines in the (D, µ) plane for the LIF

Rate and CV as functions of µ and D are shown in Fig. 4. As seen in Fig. 4(a), the rate is an increasing function
of µ for fixed D and an increasing function of D for fixed µ. In the zero-noise limit, the rate is zero for µ < vth and
increases logarithmically with µ for µ larger than but close to vth.

The behavior of the CV is much richer (see Fig. 4(b)). In particular, the LIF model displays coherence resonance
(CR) [27, 28]: for fixed µ < vth, the CV exhibits a minimum at a finite value of D. Coherence resonance thus
corresponds to the phenomenon by which noise has the counter-intuitive effect of increasing the regularity of the spike
train. For the LIF, a pronounced CR is observed for a mean input µ close to but smaller than the threshold.

The CV for the LIF can exceed unity. Loosely speaking such a regime corresponds to a firing activity more
irregular than in the Poissonian regime (CV = 1). This high variability is associated to short ISIs occurring relatively
frequently, but long ISIs being also likely. When µ < 0, a simple interpretation can be made in terms of the Brownian
particle in a parabolic potential. As shown in Fig. 1(f), in this case both vr and vth are larger than the value of v at
which the potential attains its minimum. The short ISIs then correspond to the cases when the particle heads directly
from vr to vth, while the long ones correspond to the particle first going to the minimum of the potential and then
performing its excursion to vth.

Independently of D, if µ → −∞ the firing becomes Poissonian (CV = 1). In the opposite limit of µ → ∞, the firing
is perfectly regular (CV = 0). At least for large noise intensity, the CV exceeds unity, as discussed above. Therefore,
for fixed noise sufficiently strong we observe a maximum of the CV with respect to µ [32]. This is an interesting
feature of the LIF model which to our knowledge has not been described so far.

As also shown in Fig. 4(b), the contour lines for the CV display non-monotonicities with respect to both parameters.
The contour lines at which the CV is smaller than 1 display non-monotonic behavior with respect to D, whereas the
ones corresponding to CV larger than 1 are non-monotonic functions of µ (see, for instance, the contour line CV = 1.1).
Fig. 4(c) shows contour lines for rate and CV in a range of physiological interest.

We also observe that, as shown in Fig. 4(d), the contour lines of rate and CV become almost parallel in the region
of small D and µ < vth (see especially contour lines r = 0.01 and CV = 0.95). Thus, as the firing regime approaches
the Poissonian limit, the actual determination of the intersections of the contour lines becomes a practically more
difficult task. Also it becomes less clear whether there is only intersection point or not. In view of this particular
(numerical) uncertainty, but also in view of the nonmonotonic behavior of the contour lines µCV as functions of D
(for µ < vth) and µ (for strong noise), it is desirable to gain certainty about whether rate and CV uniquely determine
D and µ in the LIF model.

B. Uniqueness of the model parameters for a given rate and CV for the LIF

Our strategy to show that the model parameters are uniquely determined for a given rate and CV comprises two
steps. First, we show that each contour line for the rate is unique. Second, we show that the CV is a monotonic
function along any rate contour line. The second step can be simplified by noting that the CV is the ratio between
the square root of the variance σ2 = 〈∆T 2〉 and the mean 〈T 〉. Since the mean is invariant in any contour line for the
rate, it suffices to show that the σ2 is a monotonic function along any such contour line. In other words, it suffices to
show that the directional derivative of σ2 along the tangent of the contour line for the rate is strictly positive [33].
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FIG. 4: Rate (a) and CV (b) as a function of the parameters µ and D for the leaky integrate-and-fire model. Contour lines for
constant rate (a, c) and CV (b, c) as indicated. The rectangular region in (c) is magnified in (d).

1. Uniqueness of contour lines for the rate

Let us prove that the contour line for a specific value of the rate r(D, µ) = r0 is one single connected curve. The
proof comprises three steps: First, for any point (D, µ) ∈ R

+ ×R we can locally construct a contour line r(D, µ) = r0

parametrized by µr0
(D) such that r(D, µr0

(D)) = r0. This is possible by virtue of the implicit function theorem since,
as shown in Appendix A, ∂r/∂µ > 0 for all (D, µ) ∈ R

+ ×R. Of course, the specific value of the rate, r0, will depend
on the point (D, µ). Second, we can extend µr0

(D) to the whole domain D ∈ R
+ by connecting neighborhoods of this

domain. This could be made impossible if µr0
(D) diverges at finite D. We rule this possibility out by noting that it

is not consistent with the limit values of the rate at µ = ±∞. Indeed, as we show in Appendix A, the limit of the
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rate is zero (for µ → −∞) or ∞ (for µ → ∞), values which are not attained by the rate at positive D and finite µ.
Hence no contour line starting within the domain can approach the boundary ±∞ at finite D and thus there cannot
be a divergence of the contour line at finite D — µr0

(D) will describe a single connected line for the whole domain
D ∈ R

+. Third, we show that any point at which r = r0 must necessarily belong to the graph of µr0
(D). In fact, if

a point (D∗, µ∗) not belonging to the graph of µr0
(D) exists such that r(D∗, µ∗) = r0, then the condition ∂r/∂µ > 0

must necessarily be violated along the line D = D∗. This completes the proof that the contour lines for rate are single
(connected) curves.

2. Proof that σ2 is a monotonic function along the rate contour lines

Along a contour line of the rate, the mean ISI is fixed by definition and thus the CV can only vary due to changes
in the variance σ2. Thus if we show that the variance increases monotonicly as we move along the contour line in the
direction of increasing D, we will have also shown that the CV increases monotonicly if we move along the contour
line in this direction.

The monotonicity of σ2along the rate contour lines is expressed by

∇σ2 · vt > 0, (24)

where vt is a vector which is tangent to these contour lines and ∇ denotes the gradient in (D, µ) space. In order to
show that Eq. (24) holds, let us first determine vt. Along the rate contour lines, the differential equation Eq. (10)
with F = r holds true; its right hand side is needed for an expression of the tangent vector of the rate contour lines
appearing in Eq. (24):

vt = eD +
dµr

dD
eµ (25)

where eD and eµ are the respective unit vectors. The relation to be shown, Eq.(24), thus corresponds to

∂σ2

∂D
+

∂σ2

∂µ

dµr

dD
> 0. (26)

It is much simpler to express the derivatives on the left hand side of Eq.(26) in terms of coordinates a and b rather
than D and µ. Using Eqs. (18) and (19), we obtain

∂σ2

∂D
=

2π(b − a)2

(vth − vr)2

(

−beb2
∫ ∞

b

dyey2

erfc2(y) + aea2

∫ ∞

a

dyey2

erfc2(y)

)

(27)

and

∂σ2

∂µ
=

2π(b − a)

vth − vr

(

eb2
∫ ∞

b

dyey2

erfc2(y) − ea2

∫ ∞

a

dyey2

erfc2(y)

)

. (28)

Inserting Eqs. (20, 27-28) into Eq.(26), and performing straightforward algebra, we write the latter as:

2π(b − a)3ea2
+b2

(vth − vr)2(ea2erfc(a) − eb2erfc(b))

(

erfc(b)

∫ ∞

a

dyey2

erfc2(y) − erfc(a)

∫ ∞

b

dyey2

erfc2(y)

)

> 0. (29)

This is the inequality to be shown. The prefactor on the left hand side is positive since a < b and by virtue of Eq. (A1)
of the Appendix. Therefore it suffices to show that

erfc(b)

∫ ∞

a

dyey2

erfc2(y) − erfc(a)

∫ ∞

b

dyey2

erfc2(y) > 0. (30)

This is equivalent to proving that the function

f(x) =

∫∞

x
dyey2

erfc2(y)

erfc(x)

is a monotonicly decreasing function of x. For this to hold true, the derivative of f(x) should be negative for all x,
i.e.

df

dx
=

2√
πerfc2(x)

∫ ∞

x

dy
(

ey2−x2

erfc2(y) − ex2−y2

erfc2(x)
)

< 0. (31)

The prefactor is positive and the integrand is strictly negative for all y > x. The latter can be seen by multiplying

the integrand by ex2
+y2

from which we obtain (ey2

erfc(y))2−(ex2

erfc(x))2, which is negative as shown in the Appendix
(see Eq.(A1)). The proof of Eq. (24) is therefore completed.
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C. Determination of input parameters from rate and CV for the LIF

The input parameters associated to a given rate r0 and coefficient of variation CV0 can be obtained by means of a
simple numerical algorithm, provided that the internal parameters (τ , vth, and vr) are already known.

The first step is to find a point in the D − µ space at which the rate is equal to r0 (as measured in units of
τ−1). This can be most easily accomplished with the use of the property ∂r/∂µ > 0 (see the Appendix). More
specifically, one starts by calculating the rate at an arbitrary point (D0, µ0) and then defining the next candidate
point as (D0, µ0 + ∆µ), where ∆µ is positive (negative) if the rate at (D0, µ0) is smaller (larger) than r0. This is
done until one crosses the contour line r = r0, at which point ∆µ should be multiplied by some factor in the interval
(−1, 0). This procedure can be done iteratively until one obtains a point (D∗, µ∗) at which the rate is as close to r0

as desired.
The second step is to move along the contour line r = r0 until the point at which CV = CV0 is reached. This

can be done by following a procedure analogous to the first step, since the directional derivative ∇σ2 · vt is strictly
positive (see Eq. (24)). One thus integrates Eq. (20) in the direction of positive (negative) D if CV (D∗, µ∗) is smaller
(larger) than CV0. After integer multiples of n0 times the integration step ∆D, one checks whether the contour line
CV = CV0 has been crossed. If the crossing has occurred, one inverts the direction of integration of Eq. (20) and
multiplies n0 by some factor in the interval (−1, 0). This is done iteratively until one obtains a point (D, µ) at which
the CV is sufficiently close to CV0.

This naive algorithm already permits a fast determination of D and µ associated to a given rate and CV.

V. QUADRATIC INTEGRATE-AND-FIRE NEURON

For the QIF, one has [13]:

〈T 〉 =

(

9

D

)1/3

I(α), I(α) =

∞
∫

−∞

dx e−αx−x3

x
∫

−∞

dy eαy+y3

, (32)

〈∆T 2〉 =

(

9

D

)2/3 ∫ ∞

−∞

dxe−αx−x3

∫ ∞

x

dye−αy−y3

[
∫ x

−∞

dzeαz+z3

]2

, (33)

α =

(

3

D2

)1/3

µ. (34)

For this model, the following scaling relations [13] facilitate the determination of the contour lines in parameter space
for rate and CV:

r(µ, D) =
√

|µ|r( µ

|µ| , |µ|
−3/2D), (35)

CV (µ, D) = CV (
µ

|µ| , |µ|
−3/2D). (36)

The scaling relation Eq. (36), together with the monotonicity of the CV for µ = ±1 (see [13]), implies that (for
µ = ±1) a certain value of the CV (say, CV0) determines uniquely the noise intensity D which we call D̄. With this
observation, the contour lines for the CV for arbitrary µ can be explicitely written:

µcv(D) =
µ

|µ|

(

D

D̄

)2/3

. (37)

For the rate, D̄ can be regarded as a parameter of the curve µr(D): from the above definition of D̄ and from the
scaling relation for the rate Eq. (35) we can infer that

µ(D̄) =
µ

|µ|

(

r0

r( µ
|µ| , D̄)

)2

, D(D̄) = D̄

(

r0

r( µ
|µ| , D̄)

)3

(38)

describe all the points on the curve µr(D) which we get by varying D̄.
We will now recall some properties of rate and CV which have been already discussed in Ref. [13].
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A. Rate and CV and their contour lines in the (D, µ) plane for the QIF

Rate and CV as a function of µ and D are shown in Fig. 5. The behavior of the rate is similar to the case of the
LIF. Here again it is a monotonicly increasing function of µ for fixed D and monotonicly increasing function of D for
fixed µ. A noticeable difference arises in the zero-noise limit and close to the bifurcation at µ = 0: the rate for the
QIF is also strictly zero if µ ≤ 0 but, differently from what is observed for the LIF, it increases proportionally to the
square root of µ for small positive µ.

In clear contrast with the LIF and PIF, the CV for the QIF is bounded in the interval 0 < CV < 1. Moreover,
here the CV is a strictly monotonic function of both D and µ. For fixed D, it decreases with increasing µ and, for
fixed positive (negative) µ, it increases (decreases) with increasing D. Therefore, coherence resonance does not occur
for this model.

Fig. 5c shows some contour lines for rate and CV in the physiologically relevant region of the parameter space. We
stress out that for the QIF the contour lines of the CV are monotonic functions of both D and µ.

B. Uniqueness of the model parameters for a given rate and CV for the QIF

We will consider as given that the CV (1, D̄) (CV (−1, D̄)) is a monotonically increasing (decreasing) function of D̄;
this was demonstrated in [13] by limit cases and by numerical evaluation of the integrals. From these properties we
can conclude: for negative (positive) µ, decreasing (increasing) the CV from 1 (0) to 3−1/2, the parameter D̄ changes
monotonically from 0 to infinity implying that each CV between 0 and 1 has one unique contour line parametrized
by the sign of µ and the value of D̄ (see Eq.(37)). The value µ = 0 is a special case where the CV attains exactly the
value at the boundary between both regimes µ < 0, µ > 0, namely, CV=3−1/2 [29].

If we can show that the rate or equivalently the mean ISI changes monotonically along the contour lines of the CV,
then there is at most one intersection for a given pair of CV and rate and thus the mapping of rate and CV to µ and
D is unique. Note that although our argument is similar to the one used for the LIF, we will consider the change in
the mean ISI along the curve of constant CV and not the change in CV (or variance) along a curve of constant rate
as we did for the LIF.

The directional derivative of the mean ISI along the CV contour line reads

∇〈T 〉 · vt =
∂〈T 〉
∂D

+
∂〈T 〉
∂µ

dµCV

dD
(39)

From Eq. (37), we obtain:

dµcv

dD
=

µ

|µ|
2

3
D−1/3D̄−2/3, (40)

Using this expression and Eqs. (32) and (34), one can rewrite the directional derivative as follows:

∇〈T 〉 · vt = − 1

3D
〈T 〉 − 2

D2

∂I(α)

∂α

[

µ − µ

|µ|

(

D

D̄

)2/3
]

(41)

The expression in the brackets vanishes by definition since it equals µ−µCV . Hence we find that the last term is truly
zero and thus the directional derivative of the mean ISI along the contour lines of the CV is negative throughout the
(µ, D) plane

∇〈T 〉 · vt = − 1

3D
〈T 〉 < 0 (42)

We have thus shown that (i) for each CV between 0 and 1 there exists exactly one contour line and (ii) the mean ISI
decreases always as we go along these contour lines in direction of increasing noise intensity. Hence, each mean ISI is
at most represented once on a contour line of the CV and thus for each pair of rate and CV values there is at most
one pair (µ, D).

C. Determination of input parameters from rate and CV for the QIF

The parameters D and µ can be obtained numerically from a given rate r0 and CV = CV0 for the QIF provided
that the membrane time constant is known. This is an advantage with respect to the LIF, for which the threshold
and reset potentials are also needed.

The first and more cumbersome step is the numerical determination of the four curves r(±1, D), CV (±1, D). These
curves can be determined directly from Eqs. 32 and 33.

The second step is the determination of the contour lines r = r0 and CV = CV0, where r0 is measured in units of τ−1.
The first can be directly obtained from the parametric equations Eq. (38), where D̄ is the free parameter. The second
can be straightforwardly determined from Eq. (37), where D̄ is now the noise intensity such that CV ( µ

|µ| , D̄) = CV0.
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FIG. 5: Rate (a) and CV (b) as a function of the parameters µ and D for the quadratic integrate-and-fire model. Contour lines
for constant rate (a, c) and CV (b, c) as indicated. The rectangular region in (c) is magnified in (d). The more sparse grid in
the region close to µ = 0 in (a, b) is due to the way we generated the points and does not reflect any property of the surfaces
r(D, µ) and CV (D, µ).

VI. CONCLUSIONS

To summarize, we have reviewed the behavior of rate and CV as functions of the input parameters for three
different IF models. As the central result of our paper, we have shown that these statistics uniquely determine the
input parameters for the models studied. This sets a framework for systematic comparison of these models: they
can be fairly compared when their parameters are tuned so as to yield the same rate and CV. Reports on these
comparisons will be published elsewhere. A possibly useful byproduct of our study comprises simple formulas (PIF)
or algorithms (LIF and QIF) for a fast determination of the parameters D and µ associated to a given rate and CV,
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which may be of instrumental value for experimentalists and modelers.
It is tempting to consider the general IF model with white noise input: do rate and CV determine the input

parameters for an arbitrary nonlinear function fmodel(v) or equivalently for an arbitrary nonlinear potential U(v)?
Unfortunately, so far no general procedure to show the uniqueness of input parameters is known. What we showed
in this paper relied on model-specific properties of the ISI moments for the PIF, LIF, and QIF. Approaches to the
uniqueness problem based on the general formulas for the moments of the first-passage-time could lead to conditions
on the potential U(v) and the reset and threshold values of the IF model; however, we have not made any progress
in this direction yet. We note that it may still be worth the effort to prove the uniqueness of parameter values for a
given rate and CV for other specific neuron models of the IF type. One such a case is the exponential IF model [5],
which has been successfully used to describe pyramidal neurons activity [15].

Another and more complicated open problem is to check whether the uniqueness of parameters also holds for more
complex models, such as those taking adaptation, reversal potentials, subthreshold oscillations, or relative refractory
effects into account. Finally, the questions treated here may be worth to be addressed as well in cases where the neurons
are subjected to colored noise, either caused by a finite synaptic time constant [30] or by temporal correlations in the
pre-synaptic input [31].

APPENDIX A: SOME PROPERTIES OF THE RATE IN THE LIF MODEL

We start by proving that the function g(x) = exp(x2)erfc(x) is monotonicly decreasing for all x ∈ R. Writing
explicitely erfc(x) = 2/

√
π
∫∞

x dt exp(−t2) and performing the changes of variables s′ = t − x and s” = t − y, we
obtain

g(x) − g(y) =
2√
π

(
∫ ∞

0

ds′e−s′2−2xs′ −
∫ ∞

0

ds”e−s”2−2ys”

)

=
2√
π

∫ ∞

0

dse−s2

(e−2xs − e−2ys) > 0 if x < y, (A1)

since s ≥ 0. Therefore g(x) is indeed a monotonicly decreasing function.
Second, we observe that

lim
x→∞

erfc(x)ex2

= 0. (A2)

In fact, writing again the explicite formula for erfc and applying L’Hospital’s rule, we obtain

lim
x→∞

erfc(x)ex2

= lim
x→∞

2√
π

∫∞

x dt exp(−t2)

e−x2 = lim
x→∞

2√
π

−e−x2

−2xe−x2 = 0. (A3)

Now let us prove that for the LIF one has

∂r/∂µ > 0. (A4)

Eqs. (17) and (19) imply that

∂〈T 〉/∂µ =
1√
2D

(∂〈T 〉/∂a + ∂〈T 〉/∂b) . (A5)

Now,

∂〈T 〉/∂a + ∂〈T 〉/∂b =
√

π(eb2 erfc(b) − ea2

erfc(a)). (A6)

We thus obtain:

∂〈T 〉
∂µ

=

√

π

2D
(eb2 erfc(b) − ea2

erfc(a)) < 0, (A7)

since a < b and by virtue of Eq. (A1). Eq. (A4) is therefore proved.
Next let us prove that

lim
µ→∞

r = lim
µ→∞

1

〈T 〉 = ∞ and lim
µ→−∞

r = lim
µ→−∞

1

〈T 〉 = 0. (A8)

for which it suffices to show that the mean interval approaches zero or infinity as µ goes to plus or minus infinity,
respectively. The integrand in the integral expression for the mean interval Eq. (17) is a monotonicly decreasing
function as shown above in Eq. (A1); with this property we can estimate

√
π(b − a)erfc(b)eb2 ≤ 〈T 〉 ≤

√
π(b − a)erfc(a)ea2

(A9)
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which is equivalent to

erfc(b)eb2 ≤
√

2D

π

〈T 〉
vth − vr

≤ erfc(a)ea2

(A10)

For µ → ∞ both a, b → ∞ and the functions on the left and right hand sides go to zero as shown in Eq. (A3). Thus,
we obtain in this limit what proves the first of our limit cases in Eq. (A8):

lim
µ→∞

〈T 〉 = 0. (A11)

In the opposite limit of µ → −∞, both a, b → −∞; the complementary error function attains a finite value in this
limit (limx→−∞ erfc(x) = 2) and the exponential functions then yield a divergence of both sides yielding

lim
µ→−∞

〈T 〉 = ∞. (A12)

which proves the second of the asserted limit cases in Eq. (A8).
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