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Abstract

I provide the background and a brief review of the interdisciplinary use
of entanglement calculations to investigate a type of unconventional order
in many-body systems, known as topological order. The discussion focuses
on a particular class of topologically ordered states: the fractional quantum
Hall states

1 Introduction

Given the richness of ‘emergent’ phenomena in many-particle systems, it is perhaps
no surprise that some quantum many-particle states continue to resist the methods
of analysis that condensed matter theory has developed till now. Important exam-
ples are topologically ordered states [2] and non-Fermi liquid states. New methods
and tools are therefore essential in understanding such states and phenomena.
In an unexpected twist, concepts from a completely different and much younger
field, quantum information theory, are proving to be useful in this regard. In this
brief review we will focus on the use of entanglement measures from quantum
information to study topological order. An entanglement measure known as the
entanglement entropy, when calculated for judiciously chosen bipartitions of the
topologically ordered state, provides a physically significant topological quantum
number associated with the state. Currently, topological order is receiving intense
attention due to quantum computation proposals based on the phenomenon [1]; a
novel probe for such order is an important and timely development.

We will describe entanglement calculations in the most prominent type of
topologically ordered state, namely, fractional quantum Hall states.

2 Topological order and quantum Hall states

Over half a century, condensed matter theory has developed a mature, widely used,
paradigm for understanding many-particle phases and phase transitions between
them — using symmetries to distinguish between phases and correlation functions
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to characterize them. However, some states of matter continue to defy the con-
ventional description. One important example is topologically ordered states [2],
which are notoriously difficult to describe within the standard ‘Landau’ paradigm.

Topologically ordered states are ‘gapped’ in their low-energy excitation spec-
trum, and are further characterized by ground-state degeneracy on higher-genus
surfaces, and in some cases by fractionalized excitations. For example, on a genus-g
surface, the Laughlin state at filling ν = 1/m has mg ground states. The topology-
dependent degeneracy is intimately connected to fractionalization [3].

The two physical contexts for topological order are frustrated magnet systems
and quantum Hall systems. In the magnetic context, topological order remains
a theoretical prospect, as there are no experimental realizations. A number of
topologically ordered magnetic states have been constructed theoretically; e.g.,
(1) Kitaev’s models [4]; (2) quantum dimer models [5] on non-bipartite lattices
[6]; (3) the chiral spin liquid of Laughlin and Kalmeyer [7]; (4) spin liquid states
obtained by Gutzwiller-projecting BCS states [8].

The only confirmed experimental realizations of topological order are the frac-
tional quantum Hall (FQH) states occurring in two-dimensional (2D) electrons
in a magnetic field [9, 2]. Realizations of FQH states have also been proposed
in cold-atom setups [10]. FQH states have long fascinated the condensed-matter
community due to their remarkable transport properties and the exotic nature of
their quasiparticle excitations. Recently there has been enhanced interest in FQH
states with non-abelian statistics [11, 12, 13], due to the possibility of implement-
ing quantum computation schemes topologically protected from decoherence [1].
The unusual features of FQH states have been notoriously difficult to characterize
using traditional condensed-matter concepts such as local order parameters and
n-point correlation functions. In this review we will focus on an alternate charac-
terization of FQH states, via a recent connection found between topological order
and entanglement entropy.

3 Entanglement entropy in condensed matter

The entanglement entropy is one of several possible measures of bi-partite quantum
entanglement between partitions A and B of a quantum state. It is defined as
SA = −tr [ρA ln ρA], in terms of the reduced density matrix ρA = trBρ obtained
by tracing out B degrees of freedom from the system density matrix ρ. If A and
B are two spins (qubits), one finds SA = 0 for product states like |↑↑〉, |↑↓〉, and
in contrast SA 6= 0 for entangled states such as (|↑↓〉 ± |↓↑〉) or (c1 |↑↑〉+ c2 |↓↓〉).

In the original (quantum information) setting, partitioning is often obvious:
A and B can be just two qubits or two qutrits. For a many-particle system, there
are exponentially many ways of partitioning. A challenge is to decide which parti-
tioning will lead to physically interesting information. One prominent example is
the study of the entanglement between a block (A) and the rest (B) of a many-
particle system, measured by the entanglement entropy SA, as a function of the
block size (Fig. 1). For such block partitioning of many-particle ground states, the
general rule (‘area law’) is that the entanglement entropy scales as the size of the
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Figure 1: Partitioning of many-particle systems into blocks A and B, between
which the entanglement (SA) is calculated. Entanglement SA is studied as function
of boundary length L, in the asymptotic limit L → ∞. Left: Block partitioning
in 1D. Asymptotic behavior distinguishes between gapless and gapped states. For
critical states, asymptotics gives central charge of conformal field theory [15].
Right: Block partitioning in 2D, relevant to the topologically ordered states.

boundary between the A and B blocks [14, 15]. Subtle information about the na-
ture of the many-particle state can be contained in the coefficients, logarithmic
corrections, or subleading terms in this basic relationship. For one-dimensional
(1D) systems, the asymptotic behavior of SA (Fig. 1 left) provides a distinction
between gapless and gapped states, a result widely known and well-exploited by
now [15]. More recently, and more pertinent to this review, the block entangle-
ment entropy is also showing promise for exploring unconventional states in two
dimensions (Fig. 1 right), such as topologically ordered states [16, 17].

4 The topological entanglement entropy

For topologically ordered states in two dimensions, the following theorem has been
presented recently [16, 17]. If L is the length of the boundary between the two
blocks (e.g., Fig. 1 right), the entanglement entropy in the large-L limit scales as

SA = αL− γ +O(L−1) .

As usual the scaling relationship applies to situations where A is large and the
total system is infinite. The subleading term γ is called the topological entanglement
entropy. This quantity is the logarithm of the so-called total quantum dimension of
the topological field theory describing the topological order of the state. The total
quantum dimension D is given by D =

(∑
i d

2
i

)1/2, where the di’s are the quantum
dimensions of the individual sectors making up the topological field theory. These
individual quantum dimensions are set by fusion rules of the fundamental anyons
in the field theory, as illustrated in Sec. 5 by examples in the FQH context.

After the concept was introduced [16, 17], the topological entanglement en-
tropy has been calculated for several topologically ordered systems, notably quan-
tum dimer models [18], Kitaev models [19, 20], and FQH systems [21, 22, 23].
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Figure 2: Spherical geometry for finite-size FQH calculations; partitioning into
regions A and rest (B).

5 Topological entanglement entropy for fractional
quantum Hall systems

The topological field theory for a ν = 1/m Laughlin state has a fundamental
anyon (of fractional charge 1/m), which generates m abelian sectors. The quantum
dimension is unity in all sectors (di = 1). Thus for the ν = 1/m abelian Laughlin
state, the total quantum dimension is D =

√
m and the topological entanglement

entropy is γ = ln
√
m. For m = 3 this gives γ = 1

2 ln 3 ' 0.55.
The situation is more interesting for states with non-abelian quasiparticles,

because some anyon sectors now contribute di > 1. Some examples have been
detailed in Refs. [16, 24, 22]. In particular, for the m = 2 Moore-Read state, there
are six sectors, two each of quasiparticles denoted by I, σ, ψ. These contribute
dI = 1, dσ =

√
2, dψ = 1, leading to D =

√
8 and γ = ln

√
8 ' 1.04. The non-

abelian nature shows up in the fact that γ is larger than ln
√

6, which would be
expected if there were six merely abelian sectors.

5.1 Explicit calculations

Extracting the topological entanglement entropy γ explicitly from quantum Hall
wavefunctions is a complicated problem. Numerically, this has been done in Refs. [21,
22] for explicitly constructed Laughlin [9] and Moore-Read [11] states, and in
Ref. [23] for the ground states of Coulomb Hamiltonians at appropriate filling.

When working with finite-size FQH wavefunctions, one has to make a choice
of geometry, generally avoiding systems with boundaries. (FQH states have non-
trivial edge effects.) The common choices are spherical and toroidal geometries,
used respectively in Refs. [21, 22] and in Ref. [23]. In each case, the finite-size
numerical data has to be extrapolated to the thermodynamic limit. The spherical
geometry (used in Refs. [21, 22]) involves magnetic orbitals shaped as “lines of lat-
itude” [25, 26]. Fig. 2 shows the choice of partition A used in Refs. [21, 22]. Using
entanglement data for this type of partitioning in finite-size FQH wavefunctions,
γ can be extracted after extrapolation to the macroscopic limit. Extrapolation
remains a tricky issue and improvements are being developed compared to the
methods used in Refs. [21, 22].
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Figure 3: Intercept of block entropy SA(L) at phase transition. The X < Xc region
is a topologically ordered phase.

5.2 Prospective uses

The successful explicit calculation of the topological entanglement entropy γ for
model states and Coulomb ground states [21, 22, 23] opens up the exciting possi-
bility of using γ as a novel tool to study quantum Hall physics. Prospective uses
are outlined below.

First, one can hope to use entanglement calculations to probe quantum phase
transitions between FQH and non-FQH ground states. For the block entanglement
entropy, let us imagine that we have determined the asymptotic relationship

S(L→∞) −→ αL − s0

where L is the boundary of the block. Note that this is not necessarily always
possible; in some 2D phases the leading term might not be purely linear.

In a topologically ordered phase, the negative intercept s0 will by definition
be equal to the topological entropy, γ = lnD. Fig. 3 shows what can happen to
s0 as the 2D system is driven across a quantum phase transition away from the
topologically ordered state, by varying a parameter X across the critical value Xc.
In the parameter range X < Xc where the system is in the topologically ordered
phase, s0 is fixed at a positive plateau (s0 = γ).

Case A shows a transition into another topologically ordered state with a
different quantum dimension; s0 jumps to another constant value γ′. The other
figures show transitions to non-topological phases. Case B shows a transition to
a gapped state which is not topologically ordered – the intercept drops to zero.
Cases C and D show continuous and discontinuous transitions into non-topological
phases, in which the negative intercept is nonzero but not constant. Finally, Case E
shows a transition into a state where the leading term in the asymptotic behavior
of SA(L) is not linear, so that s0 as is undefined.

A second exciting prospect is to use γ calculations to test which conformal
field theories are appropriate for certain states. There are FQH states (e.g., com-
posite fermion states) for which the underlying field theory is not clear. Since γ
is related to the quantum dimensions (di) of the theory, such determination of γ
would place strong bounds on acceptable conformal field theories.

Finally, for quantum Hall fractions at which there are more than one candi-
date theoretical state, γ calculations could be used to distinguish between proposed
candidate states if they have different total quantum dimension.
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