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   We consider a model of a macro-ion surrounded by small ions of an electrolyte solution. The 
finite size of ionic charge distributions of ions, chemi-adsorption and image charge effects are all 
considered. From such a model it is possible to construct a statistical field theory with a single 
fluctuating field and derive physical interpretations for both the mean field and two-point 
correlation function. For point like charges, without chemi-adsorption, at the level of a Gaussian 
(or saddle point) approximation, we recover the standard Poisson-Boltzmann equation. However, 
to include ionic correlation effects, as well as image charge effects of individual ions, we must go 
beyond this. From the field theory considered, it is possible to construct self-consistent 
approximations. We consider the simplest of these, namely the Hartree approximation. The 
Hartree equations take the form of two coupled equations. One is a modified Poisson-Boltzmann 
equation; the other describes both image charge effects on the individual ions, as well as 
correlations. Such equations are difficult to solve numerically, so we develop an (a WKB like) 
approximation for obtaining solutions. This, we apply to a uniformly charged rod in univalent 
electrolyte solution, for both extended spherically symmetric distributions of ionic charge on 
electrolyte ions, as well as for point like ions. The solutions show how finite size charge 
distributions of the ions reduce both the effects of correlations and image charge effects. We test 
the WKB approximation by calculating a leading order correction from the exact Hartree result, 
showing that the WKB like approximation works quite well in describing the full solution to the 
Hartree equations. From these solutions, we also calculate an effective charge compensation 
parameter in an analytical formula for the interaction of two charged cylinders.   
 
1. Introduction 
 
       The mechanisms of interaction between cylindrical macro-ions in electrolyte 
solutions are still not fully understood [1]. The unmodified PB equation for a uniformly 
charged cylinder may be inadequate in describing the interaction for a variety of reasons. 
Correlation effects [1,2,3,4,5,6,7,8,9,10,11], image charge effects [1,5,8,10,12,13], 
solvent effects [12,14,15,16,17,18,19,20], and structure of charged groups at the macro-
ion surface [1,12,20,21,22,23] may all play an important role. Though, the relative degree 
of each of these effects is likely to depend on the particular properties of the type macro-
ion under consideration, most importantly its shape, charge density and surface charge 
distribution of fixed charged groups.    
      Correlation effects may lead to two predicted phenomena, that of charge inversion 
[1,7,24,25] and same charge attraction [1,3,5,7,9,11,26]. In charge inversion, the amount 
positive charge, due to counter-ions exceeds the surface charge density of the macro-ion 
effectively making it of opposite charge to its charged groups. Same charge attraction 
describes a situation in which two macro-ions of the same charge are able to attract each 
other through interactions with their counter-ions. Notably, both these phenomena have 
been predicted in the case of strong correlations between ions at the macro-ion surface 
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[7,6,26], where it supposed that a Wigner crystal forms on the surface of each macro-ion.  
Here, the mechanism of attraction is that a Wigner crystal on one macro-ion interlocks 
with the Wigner crystal on another macro-ion, so that the positive charges associated with 
one macro-ion lie close to the negative regions on the other and visa versa [6,26]. 
Correlation effects are driven by two main factors: surface charge density and valance of 
counter-ions. As both of these increases, the stronger correlations are expected to become. 
In determining correlation effects, both the size and shape of the macro-ion are likely to 
have an important role. For instance, a flat, infinite charged surface has a proper Wigner 
crystal phase; but a charged rod may not or may have, depending on its radius. This is 
owing to the quasi-one dimensional nature of a cylindrical macro-ion surface [1], which 
makes thermal fluctuations at the macro-ion surface, which disrupt such a lattice, much 
larger.     
        In a lot of cases, most notably DNA, it may not be sufficient to think of macro-ions 
as uniformly charged [1,27]. It has been shown that structure of helical macro-ions, and 
of counter-ions bound to their surfaces, may cause attraction between them [1,12,21]. 
This mechanism of attraction is most pronounced when ions are able to bind strongly in 
helical motifs that lie between the helical patterns fixed charged groups, on the surface of 
the macro-ion, creating an alternating pattern of charge [1].  In the case of DNA, there is 
strong evidence to suggest that such localized binding, due to chemi-adsorption, does 
occur. For instance, evidence suggests this to be the case for polyamines [1,28,29] and 
Mn2+  [1,30,31], as counter-ions. As in the case of the Wigner crystal, the mechanism of 
attraction lies in fact that bound positive charges on one molecule lie close to the negative 
charges of the other molecule in a commensurate interlocking fashion; an electrostatic 
zipper [21]. In addition, how the shape of the charge distribution influences the 
interaction should be important in understanding the formation of cholesteric phases 
[32,33] and in the statistical mechanics of columnar macro-molecular assemblies [34,35]. 
Also, there may be reverse interplay between the structure of certain macro-ions and their 
interactions; the latter may indeed, sometimes, influence the former [1,36,37,38]. Sill, the 
parameters that describe the effective charge distributions on helical molecules (KL 
parameters)  [1] have not been calculated from any microscopic theory. 
      Image charge effects and solvent effects should not be ignored. It seems reasonable to 
assume that the core of a macro-ion should have a much smaller dielectric response than 
a surrounding polar solvent [39]. This situation can create repulsive effects due to charges 
effectively seeing image charge reflections of themselves in regions of low dielectric 
constant. Even for the interaction between two uniformly charged rods, this can give rise 
to a new contribution to the interaction potential [12]. This repulsive interaction has half 
the range of standard screened electrostatic interaction. It arises from the charges on one 
molecule experiencing the force due image charges of themselves on the other molecule. 
Beyond the Poisson Boltzmann equation image charge effects in the interaction of 
individual small ions with macro-ion become important [5,10]. Here, the effects could be 
quite subtle. Image charge effects may increase the threshold at which correlation effects 
cause attraction, in terms of surface charge density and ionic valance [5]; but, in certain 
cases, they may cause increased attraction [10]. Other important effects could arise from 
the discreteness of the solvent. This can yield a non-local and non-linear dielectric 
response [15,16,17,18] and cause hydration forces between macro-ions [12,14,40]. Also, 



one should also point out that image charge effects on solvent molecules could have an 
important role in determining cylinder-cylinder interactions, at small separations [41,42].   
        In addition, the finite size of the small ions may have a role in controlling the size of 
both image charge and correlation effects. As has already been pointed out, in [1]; the 
finite size of charge distributions of certain counter ions may significantly reduce 
correlation effects. The saturation of the local density of ions close to surface of macro-
ions [43] should, also, be considered. 
           One way of handling some of these effects, in a systematic way, is to reformulate 
the statistical mechanical model that describes the macro-ion electrolyte system into a 
statistical field theory [3,43,44].  The advantage in such a formulation is that mean field 
of the fluctuating field used in such a theory is the thermally averaged electrostatic field. 
This allows for electrostatic boundary conditions due to the macro-ion solvent interface 
to be handled in a convenient manner. Another possible advantage is that statistical field 
theories have many levels of self-consistent approximation, most notable of which are the 
Hartree approximation and random phase approximations. These self consistent 
approximations may be built up in a systematic manner. Such self-consistent 
approximations have enjoyed notable success in other areas of condensed matter physics, 
and may yet provide new useful line of attack in understanding polyelectrolyte 
interactions. These particular field theories, which arise from such models, enjoy another 
important advantage: one can do a strong coupling expansion [3,5,10]. Such an expansion 
is valid when the ions in solution are highly correlated.    
      Our goal is to follow on from previous work in a series of papers, developing this 
field theoretic formulation. We hope to include the effects of finite size, image charge 
effects, chemi-adsorption, structure of charged groups, and perhaps, later, model the 
solvent in a more sophisticated way. Though, incorporating the last of these ingredients 
into the theory is probably the hardest. In this first paper, we start with a single macro ion 
in considering some of these effects. We show how chemi-adsorption, the finite size 
charge distribution of the small ions and interface effects between the macro-ion and the 
solvent solution may all be included in a field theoretic formulation. We then go on to 
approximate solutions to equations derived from this formalism for the simplest case of a 
uniformly charged rod.   
      In Section 2 we start by discussing the statistical mechanical model we shall use. 
Here, we show how quantities like the average electric field due to the ions and fixed 
charges, as well as the effective interaction (fluctuating potential) between two 
(infinitesimal) test charges in solution may be calculated from the partition function. We 
also discuss how the more traditional Kirkwood hierarchy [8] is obtained from the model.   
        Next we briefly describe how such a model may be transformed into a field theory; 
the details being left to one of the appendices. This is followed a description of the 
resulting theory. We also prove both that the average electrostatic potential is the mean 
field of the fluctuating field of such a theory, also that the correlation function of the 
fluctuating field is proportional to the effective interaction between the two test charges. 
All of this is considered in Section 3. 
       In Section 4, we describe the Gaussian (saddle-point) approximation of such a field 
theory. We show that the mean field satisfies the PB equation. Also we show the form of 
the free energy, which is not much different from that of [44]. Furthermore, we are able 
to recast it in a more conventional form [8] and are so able discuss the physics of each 



term. In the next section (Section 5) we move on to consider the Hartree approximation to 
our field theory. This takes the form of two coupled equations, not too dissimilar to those 
derived by the authors of [44] in their most sophisticated variational approximation. This 
approximation [44] is, in fact, a Hartree approximation. Of the derived equations, one is a 
modified PB for average electrostatic field, the other an equation for the correlation 
function. In Section 6 we are able to extend our formalism to describe extended ionic 
charges and derive generalized Hartree equations, for this case. This completes the formal 
development. 
        In Section 7 we solve these equations for the uniformly charged rod, without chemi-
adsorption, employing a WKB like approximation to handle the equation for the 
correlation function. This simplifying approximation is described in the previous two 
sections. This is similar to the approach used in [13], however this is employed for 
cylindrical geometry and goes beyond the Gaussian level of approximation. In our 
calculations we consider only spherically symmetric charge distributions and univalent 
ions. We present results for the average potential, charge density, and a function ( )λ r  
that describes the relative strength of image and correlation effects on individual ions. 
Also, we see how all of this fits into the framework of an effective theory of interaction 
of two charged cylinders with image charge effects [12], and calculate the effective 
charge compensation parameterθ . Last of all we estimate the quantitative accuracy of 
this WKB like approximation to the exact Hartree solution, by calculating a first order 
correction.  
   Last of all we have discussion (Section 8) and a conclusion and outlook (Section 9), 
where we summarize our findings and discuss the extensions that we hope to address in 
future work.  
 
2. The statistical mechanical model 
 
2.1 Description of model 
     
 

                                   
     
   Fig.1 Schematic picture of the macro-ion-electrolyte system. In the box is shown how the orientation of 
an ion is described through Euler angles ( , , )α β γ=ω . 

 
     Let us consider a statistical mechanical model of a single large cylindrical macro-ion 
sitting in a 1:1 electrolyte solution. Let us assume that core region of the macro-ion may 



be described by a region of low dielectric constant ( 2cε ≈ ), whereas we will consider the 

solvent as a medium of high dielectric constant ( 80wε ≈ ). The counter-ions (and 

electrolyte ions) are restricted to the solvent, which indeed envelops the macro-ion. We 
suppose that there are only two species of small ion in the solution. We center the macro-
ion at the origin of a cylindrical coordinate system ( , ,z Rϕ ) so that its major axis lies at 

0R = . We start by considering the ionic charge distributions of the small ions to be of 
arbitrary shape. A schematic picture of a system is shown in Fig.1.  Extending upon Ref 
[44], we may write down a partition function to describe a system containing these two 
regions of dielectric constant. This may be expressed as a functional of ionic density 
functions 
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where tλ  is the thermal de-Broglie wavelength. Here N+  and N−  are the numbers of 

small positive and small negative ions, respectively, in the solution.  The vectors j
−r  and 

j
+r  describe the positions of negative and positive ions respectively. The vectors  j

−
ω  and 

j
+

ω  describe the orientation of each ion and have the three Euler angles (, ,α β γ ) as their 

components. The density functions are defined as
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= −∑r r r ω , for positive and negative ions respectively. The form factors, 

f+  and f−  describe extended distributions of charge on each ion, and are normalized so 

that 3 ( , ) 1d r f =∫ r ω . In the limit of point like charges, we take 

( , ) ( , ) ( )f f δ+ −′ ′ ′− = − = −r r ω r r ω r r .  Here, ( ),IΩ r ω  is termed the ionic exclusion 

function. This function is to insure that there is no Boltzmann weight given to the 
unphysical situation of an ion lying within the core region. If we consider the shape of 
our small ions as spherical, for a single cylindrical polyelectrolyte of radius a  centered at 
the origin it simply takes the form: ( ), ( )I R bθΩ = −r ω , where b a≥ .  This inequality 

accounts for a hardcore radius of each ion. The hardcore radius may be taken to be the 
radius of the ion together with its inner hydration shell, which is tightly bound to the ion.  
   The total interaction energy between ions  int / BE k Tɶ  takes the form (as in [44] with 

point charges) 
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where 2 / (4 )B w Bl e k Tπε=  is Bjerrum length and ( )σ r  is the charge density of fixed 

charge groups that lie on the macro-ion. The valance of each ion is denoted by the 
integerq . Since we are only considering a 1:1 electrolyte both the negative and positive 
ions have been taken to have the same valance, though the model can be generalized for 
arbitrary valances. The function ( , ) / 4weqv πε′r r  is the electrostatic potential at the point 

r  due to an ion centered at ′r , with which the other ions in the system interact. Now, the 
dielectric boundary, between the solvent and core regions, distorts the electrostatic 
potential of the ion: it does not take the form of a simple 1/ r  coulomb potential. Instead, 
it must satisfy the following Poisson equation: 
 

( )2( ) ( , ) 4vχ πδ′ ′∇ = −r r r r r ,                                                                      (2.3) 

 
where for a cylindrical macro-ion  
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            The usual electrostatic boundary conditions, the continuity of potential and the 
continuity of the component of the displacement field, D  normal to the dielectric 
interface, apply at the macro-ion surface. Mathematically, these boundary conditions 
arise naturally from proper inversion of the operator 2( )χ ∇r  to find ( , )v ′r r . For the 
moment, we do not actually need to solve this equation for the single ion to make 
progress.  
     Now, because of an interface, we now have a new term in the partition function  
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 This term is the sum of the changes in the self energy of each ion, moving from the bulk 
( → ∞r ) to a position in the vicinity of the polyelectrolyte, jr . It is comprised of two 

contributions. The last two terms (on the RHS of Eq. (2.5)) are the change in electrostatic 
self energy.  As all ions experience increased repulsion as they move towards the region 
of low dielectric, this term is positive. It depends on the position of each ion; therefore it 
must be included in the partition function to adequately describe the system. Each term in 
the sum (of Eq. (2.5)) may be thought of as a change in hydration energy of a single ion. 
The first term in Eq. (2.5) represents the change in energy due to chemi-adsorption close 
to the surface of the macro-ion. Here, ( )cv ′−r r  is the chemi- adsorption potential due to 

one particular chemical group on the macro-ion and ( )γ ′r  is the density of such groups. 
In writing Eq.(2.5), we have supposed that only the positive ions feel such a potential, but 
one can simply modify the theory to take account of chemi-adsorption of negative ions.  
               
2.2 Mean potential and fluctuation potential. 
 
      In such a model we may introduce two test charges 1q  and 2q  lying at the points 1r  

and 2r , respectively. We may define int 1 2{ , }( , )j jE q qr ωɶ , where we replace ( )σ r  with 

1 1 2 2( ) ( ) ( )q qσ δ δ+ − + −r r r r r  in (2.2). These two test charges allow us to calculate two 

physical quantities 
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where 1 2( , )Z q q  denotes the partition function with the two test charges included. In these 

definitions, the positions of the test charges are not integrated over. Instead, these charges 
are taken infinitesimally small so as not to disturb the many-body system.  As we will see 
below, the first of these two expressions is indeed the average potential a test charge 
experiences from the ions and the fixed charges. Whereas, 1 2q q W is the average 

interaction energy between the two test charges.  
       Using Eq. (2.1) and (2.2) in Eq. (2.6), we may derive the following expressions for 

0φ  and W . 
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 Here, …  denotes statistical averaging over all the degrees of freedom associated with 

the position and orientation of the ions. In Eq. (2.7) ( )3
1( , ) ( ) ( ) ( )d r v q qρ ρ σ+ −′ ′ ′ ′ ′− +∫ r r r r r  

is simply the solution of Poisson’s equation for each configuration of the ions, which is 
averaged with the appropriate Boltzmann weight. Therefore, the function 0 1( )φ r  is, 

indeed, the mean electrostatic potential of the system.  
        For Eq. (2.8) there are two terms. The first term represents the bare electrostatic 
interaction between the two test charges. The second term is a renormalization of the 
interaction arising from the movement of the ions to screen out the interaction. We call 
this a fluctuating potential. However, this fluctuating potential is quite different from the 
one given in Ref. [8]. This latter is defined for point charges, which we denote by 

( , , )f qφ ′r r . The formula for ( , , )f qφ ′r r   may be found by considering the average density 
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the point charge 1q  is now averaged over and is taken to be finite. The trick is, 

when 1q q→ , it becomes indistinguishable from any small point like positive ion in the 

electrolyte solution.        
            Then, one may show that 
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where the fluctuating potential is given by 
 

[ ][ ]
[ ] [ ]13

1

ˆ ˆ( ) ( ) ( ) ( ) ( )
( ; , ) ( , ) ( ) ( )

ˆ ˆ4 ( ) ( )f
w

q q qe
q d r v q q

ρ ρ δ ρ ρ
φ ρ ρ

πε ρ ρ
+ −

+ −

 ′′ ′′ ′′ ′ ′− + − +
′ ′′ ′′ ′′ ′′= − − 

′ ′+  
∫

r r r r r r
r r r r r r

r r

                                                                                                                                       (2.11) 
 



Both Eqs. (2.7) and (2.11) form the starting basis of a hierarchy of equations known as 
the Kirkwood hierarchy [45].  Evaluation of the concentration is performed by charging 
the charge, 1q  from 0  up q , through integration of Eq. (2.10) with respect to 1q . Higher 

order equations in the hierarchy may be got by performing successive differentiations in 

1q  on the average number density. Using both Eqs. (2.11) and (2.8) ,one may relate both 

fluctuating potentials to one another 
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But, as we shall in the next, the correlation function 1 2( , )W r r  is much more convenient 

for considering correlations in a field theoretical formulation than ( ; , )f qφ ′r r .     

    
2.3 Grand canonical ensemble. 
     
        In what follows, instead of an ensemble of fixed particle number, it will be more 
convenient for us to consider the grand partition function, which takes the form;  
 

( ) ( )
, 0

N N

N N

Z Zλ λ λ+ −

+ −

∞
+ −

=
= ∑ .                                                                     (2.13) 
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         As the macro-ion-electrolyte system is electrically neutral, we must have the 

condition that 3 ( )q N d r q Nσ+ −+ =∫ r . But, in the thermodynamic limit for an 

isolated macro-ion in electrolyte solutionN+ → ∞ . Then, for point ions and both ions 

having the same shape, electro-neutrality can be achieved by simply setting the two 
fugacities equalλ λ λ+ −= = . In the next section we will be able to derive expressions for 

these quantities in the field theoretical formulation.   
 
 
3. The field theoretical formulation for point like ions 
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This reformulation (through Eq. (3.1)) has an immediate advantage when we 
come to consider the grand partition function, as we may use Eq, (3.1)  to readily perform 
the sums in Eq.(2.13) (see Appendix A). As is shown in Appendix A and Ref. [44], it is 
possible to integrate out both( )ρ+ r  and ( )ρ− r  as well as one of the ψ -fields. We 

integrate out ( )ψ + r  and set ( ) ( )ψ φ− =r r  in doing so we arrive at the grand partition 

function being described by the following field theory  
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 We should point out that all lengths and positions r  in Eq. (3.3) have been rescaled to 
measure in Gouy-Chapman lengths, so to match with the results of Ref. [44]. Such a unit 

length is given by
2 B s

e

ql
µ

π σ
= . Also, in Eq. (3.3) , we have a rescaled charge density so 

that ( ) ( ) / seσ µσ µ σ=r rɶ  .  The effective surface charge density sσ  is given by 

 
 

3
inf( ) /s e d r Sσ σ= ∫ r  ,                                                                                                     (3.4) 

 
 and infS  is the effective surface area of interface. One should note that Eq. (3.4) is 

expressed in normal units of length, not Guoy-Chapman lengths, as sσ defines the Guoy-

Chapman length. Also, we have a rescaled inverse Debye screening length Dκ µκ=ɶ  . As 



usual the Debye screening length for a 1:1 electrolyte is given by 2 28D B saltq l nκ π= , where 

saltn  is the number concentration of ion pairs in solution. This is related to the recalled 

fugacity 22 /R B slλ λ π σ=ɶ  and 2( ( , ) / 2 3ln )R B tq l vλ λ λ= ∞ ∞ − , through the following 

relationship for a single macro-ion 
 
 

2κ λ= Λɶɶ ,               where               lim exp ( )iφ
→∞

Λ =
r

r .                                                  (3.5)                                                  

 
 
 
Eq. (3.5)  is derived in Appendix A. 

The last term on the RHS of Eq. (3.3)  represents an imbalance of counter charges 
due to a chemi-adorbtion potential. The degree of this imbalance depends on the 
Boltzmann factor exp( ( ))chV− r , which is given by  
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What plays a crucial role in the theory described by Eqs. (3.2)-(3.6)  is the correlation 
parameter  
 
 

( )2 2 32 /B sl q eπ σΞ = .                                                                                                        (3.7) 

 
This is an important measure of the amount of correlations between ions, near the surface 
of the macro-ion. We will discuss its role more detail in the next section.  
           Included in Eq. (3.2) is 
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This factor insures that vacuum fluctuations ( 0κ →ɶ ) in the field ( )φ r  are not considered, 
the only fluctuations in ( )φ r  arise from movement of the ions. In the field theoretical 

formulation we may evaluate both 0φ  and W for the grand canonical ensemble. We have 

that   
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where now 
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Evaluating both expressions yields the following relationships 
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Therefore, we are able assign physical meaning to both the mean field and the two point 
correlation function of the field theory. 
 
4. Gaussian approximation 
 
          Here we evaluate the mean field in the Gaussian approximation. We may write 

0( ) ( ) ( )iφ φ φ′= −r r r  with 0( ) ( )iφ φ=r r . Then we may expand out in powers of the 

fluctuating field ( )φ ′ r . At the lowest order of approximation (the Gaussian) we obtain 
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and 2
0 1/ 2 lim ( )

r
φ

→∞
′Λ = r .  The mean field must satisfy the 

condition 0 0 0[ ( )] / ( ) 0Eδ φ δφ =r r , because we require that  ( ) 0φ′ =r . This yields  
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This is simply the non-linear P-B equation with an additional term to take account of 
chemi-adsorption. The free energy is given by 
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The sum of the last three terms may be considered as the leading order contribution due 
correlation effects. This free energy (Eq. (4.6)) has been considered for the case of two 
charged plates [10,13]. This result is the same as  the one given in [44]  (for the simpler 
variational principle of a renormalized charge density, see therein) when there is no 
chemi-adsorption, no dielectric boundary (i.e setting  w cε ε= ), allowing ions to penetrate 

into the macro-ion, and  replacing 0cosh ( )φ r   by 1 in both  Eq. (4.3) and Eq. (4.4) 

Following this prescription we indeed recover the expression given by  (31) of  [44] , by 
rewriting Eq. (4.5)  
 

2 2
0 0( ) ( ) ( ) 2 ( ) ( ) ( )Cφ σ σ η σ κ φ∇ = − − = − −r r r r r rɶ ɶ ɶ .                                                           (4.7) 

 
         In the limit of no correlations 0Ξ →  the last two terms may be neglected in (4.6). 
By correctly identifying entropic and electrostatic energy components, it is possible free 
energy, in the limit 0Ξ → ,  can be rewritten in a more conventional form [8] 
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where ( )ρ+ r  and ( )ρ− r  are the number densities of positive and negative ions, 

respectively. 
         The first term in Eq. (4.8)  is the electrostatic part and the second term is the 
contribution from the entropies of positive and negative ions. Here the last term in Eq. 
(4.8) is the contribution from entropy of the solvent for an ideal solution 
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expanded out for small ( )ρ+ r and ( )ρ− r . If we choose not to expand ( )ρ+ r and ( )ρ+ r  in 

Eq. (4.9) and minimize the resulting free energy with respect to ( )ρ+ r  and ( )ρ− r , subject 

to Poisson’s equation [ ]2 ( ) ( ) ( ) ( )e q qφ ρ ρ σ+ −∇ = − − +r r r r , we arrive at equations for 

finite size ions effects discussed in Ref. [43]. 
We may ask what is the physical meaning of the last two terms in Eq (4.6). First, 

one is able to show that  
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Here the concentration saltc  is defined by 2

saltc κ= ɶ . The physical meaning of this term is 

quite clear if we consider a small change from a bulk concentration saltc  to a 

concentration salt saltc c+ ∆  
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It is easy to interpret this term as the sum of self-energies or change in solvation energy 
of each of the ions when changing the concentration by an infinitesimal amount. This is 
indeed, simply, the self energy of each ion ( , ; )saltW cr r  integrated with the change in the 

local electrolyte density ( )( ; ) ( ; )salt
salt salt

salt

c
c c

c
ρ ρ+ −

∆ +r r . Since both the number densities 

and self-energies change must change with concentration, to calculate the self energy 



contribution from all the ions to the free energy one must consider Eq. (4.10). Whereas, 
the change in the solvation energy of a single ion going from a region with salt 
concentration saltc′  to saltc   would be simply ( , ; ) ( , ; )salt saltW c W c′ −r r r r ,  provided that this 

does not effect the concentration of the two regions. The term proportional to 0Λ  simply 

removes a divergence in Eq. (4.11) due to the point like nature of the ions. 
          Thus, we see that the field theoretical formulation correctly describes the physics at 
this level of approximation. But, the Gaussian approximation is only valid provided that 
κɶ  and Ξ  remain small. A perturbation theory may be developed for corrections to the 
PB in powers of Ξ . But, to consider larger values of Ξ  it is possible to use a self-
consistent approximation. We do so next section. 
 
5. The Hartree approximation 
 
     We now go beyond the Gaussian approximation to include counter-ion correlation 
effects. We do this as in [44], and construct a variational trail energy functional, 
describing the fluctuating part of the field, of the form 
 

3[ ( )] ( ) ( , ) ( )H HH d r Vφ φ φ′ ′ ′ ′ ′= ∫r r r r r .                                                                          (5.1)          

 
We then may expand the partition function about  
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to first order in  [ ( )] [ ( )]ion HH Hφ φ ′−r r . Then have the following expression for the free 

energy  
 

/ ln [ ( )] [ ( )]H H B H ion H H
f F k T Z H Hφ φ′= = − + −r r .                                                      (5.3) 

 
The subscript H  on the averaging bracket denotes averaging with the Boltzmann 
weightexp( [ ( )] / )HH φ ′− Ξr .  On evaluation of the various terms Eq. (5.3)  yields the 

following free energy 
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where 
 
 ( )( ) exp ( ( , ) ( , )) / 2H HV Vλ = Ξ − ∞ ∞r r r .                                                                         (5.5) 



 
The quantity ( )λ r  is essentially a Boltzmann weight associated with the change in the 
ionic self energy going from the Bulk to a position r  near the Macro-ion.  
            We may use Hf  to construct a variational principle as it satisfies the Gibbs -

Bouglibogov inequality. This states that  Hf f≥ , where f is the exact reduced free 

energy. For such a principle, we may treat ( , )HV ′r r  and 0( )φ r  as variational parameters 

to minimize the free energy i.e  
 

/ ( , ) 0H Hf Vδ δ ′ =r r    and   0/ ( ) 0Hfδ δφ =r .                                                                (5.6) 

 
This yields the Hartree equations 
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Such an approximation may be, indeed, be called a Hartree approximation, as these same 
equations may also be derived by diagrammatic expansion, where one sums over 
particular class of diagrams that correspond to such an approximation in field theory [46].  
This diagrammatic derivation is shown in Appendix B (for 0chV = ). Let us from now on 

we will consider 0chV =  [47].   

     If we set ( ) 1λ =r  in Eq. (5.8), then  ( , )HV ′r r  obeys the same equation as  

( , , )f qφ ′r r in the linearized approximation described in [8]. In such an approximation one 

can show ( , , )f qφ ′r r  is linear in q . It is, then, not hard to show, under this prescription, 

both approximations yield the same Boltzmann weight ( )λ r  and so the same modified 
PB equation. However, Eq. (5.8) with ( ) 1λ ≠r  both formulations yield different 
equations. We suggest that the Hartree approximation may be more physically 
appropriate, as it depends self consistently on the local density of ions  (see discussion at 
the end of the section), which may be shown to take the form 2

0( ) ( ) ( ) cosh ( )c κ λ φ= Ωr r r rɶ . 

       In general we cannot obtain an analytical solution to Eq. (5.8) and the coupled 
equations are difficult to solve numerically as they stand. However in Appendix C, we 
are able to construct an approximate solution, which is used in the limit ′ →r r . Instead 
of solving Eq. (5.8) we solve ( 0chV = ) 
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We call this a WKB like approximation. In Appendix. C, we show how one may 
calculate the difference ( , ) ( , ) ( , )H H HV V V′ ′ ′∆ = −r r r r r rɶ  and so capture the exact Hartree 

result in the form of an integral equation, which may be easier to work with when 
obtaining exact solution to Eq. (5.7) and (5.8). We utilize the expression for ( , )HV ′∆ r r  to 

calculate a leading order correction to the solution of Eq. (5.9). Provided that the size of 
the correction remains small, the solution to Eq. (5.9) captures all the important 
qualitative physics (explained below).   
    We obtain a partial solution to (5.9)  (see Appendix C) of the following form 
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and 
 

2 2
0ˆ( , ) ( )cos ( )q qκ κ λ φ= +r r rɶ .                                                                                   (5.13) 

 
In deriving the above expressions we have assumed that w cε ε≫ , more general 

expressions may be found in Appendix C. Eq. (5.11) represents a change in hydration 
energy of an ion moving from a bulk (rescaled) concentration 2κɶ  to a (rescaled) local 
concentration 2ˆ( ,0)κ r .  If ˆ( ,0)κ κ>r ɶ , this term is negative. Then, when an ion moves 
towards the Macro-ion, its overall potential energy is reduced due to neighboring ions 
being correlated with it. These ions adjust themselves in the field of the ion, essentially 
creating a correlation hole [48], see Fig. 2. This effect becomes more pronounced when 
the local density increases as more ions can adjust themselves to that single ion.  
 

                                                       
    



Fig. 2: schematic drawings of correlation effects (left) and image charge effects (right). In the former ions 
adjust to the field of an ion creating a correlation hole which draws the ion closer to macro-ion. In latter an 
ion sees its image charge reflection at the dielectric boundary, from which it is repelled.  
 
          Eq. (5.11) represents the change in self energy due to image charge effects and 
exclusion of ions from the core. As an ion moves towards the macro-ion it experiences 
repulsion due to its image charge. The other ions will try and weaken this effect by 
adjusting themselves. As the local concentration of ions increases the image charge 
repulsion is screened out more as more ions can adjust. Also, in Eq. (5.11) there is an 
exclusion effect. As no ions may penetrate the core, the core region cannot participate in 
screening out the electrostatic self energy of an ion. So, this exclusion effect is also a 
positive contribution. This behaves differently from the image charge effect as it 
increases with local ionic concentration. This is because as the local Debye atmosphere 
around ion becomes more pronounced, such exclusion of ions has a more profound effect 
on the self energy.      
    Through the initial definition of ( )λ r  (Eq. (5.5)) one is able to construct an equation to 
solve ( )λ r . Then one is left with solving this system of equations numerically for both 

( )λ r  and 0( )φ r  . 

 
6. Dealing with finite ionic charge distributions 
 
6.1 General formulation 
 
        In this section we deal with the more realistic situation of extended charge 
distributions. We will suppose for simplicity, in the main text, that both species of ions 
have the same charge distribution( , ) ( , ) ( , )j j j j j jf f f+ + + + + +

+ −− = − = −r r ω r r ω r r ω . Though 

in reality, their sizes and shapes of both electrolyte species can be quite different.  
     Using Eqs. (2.1) and  (2.13),  it is possible to derive a field theory, albeit a non-local 
one, that takes account of these finite charge distributions. 
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and 
 



3( , ) ( , ) ( )d r f φ′ ′ ′Φ = −∫r ω r r ω r ,     3( , ) ( , ) ( )ch chV d rf V+ ′ ′= −∫r ω r r ω rɶ                            (6.3) 

 
Furthermore, we have derived a more generalized field theory that does not assume that 
both species have the same shape. This can be found in Appendix D.  
 
6.2 Hartree Equations 
 
     From such a field theory it is possible to derive differo-integral Hartree Equations (see 
Appendix D) (for ( , ) 0chV =r ωɶ ). 
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                (6.5) 
 
where 3

0 0( , ) ( , ) ( )d r f φ′ ′ ′Φ = −∫r ω r r ω r , the potential energy of an ion, with orientation ω , 

in the average field produced by the macro-ion and the other small ions. Here again, there 
is a Boltzmann weight associated by the change in self energy of an ion as it moves 
towards the macro-ion. This is 
 

( )( , ) exp( ( , , ) ( , , ) / 2)ext H HE Eλ = −Ξ − ∞ ∞r ω r r ω ω ,                                                       (6.6) 

 
where  3 3( , , ) ( , ) ( , ) ( , )H HE d r d r f V f′′ ′′′ ′′ ′′ ′′′ ′′ ′= − −∫ ∫r r ω r r ω r r r r ω  is the ionic self energy 

for an ion with orientation ω .  In the Hartree approximation the local concentration of 
ions (with a given orientation ω ), and the ionic charge density are given by 

0( , ) ( , )cosh ( , )c λ= Φr ω r ω r ω  and 3 3
0( ) ( , ) ( , )sinh ( , )d d r fρ ω λ′ ′ ′ ′= − Φ∫ ∫r r r ω r ω r ω , 

respectively. 
      By way of solving and approximating these Hartree equations we shall consider only 
the simplest case of a spherically symmetric charge distribution, i.e. one that does not 
depend on ω  [49].  Then ω  may be simply integrated out and here on we will drop ω  
from our results. Then, these equations considerably simplify.  Now, by choosing an 
appropriate form for ( )f ′ −r r considerable analytic progress can be made in solving them. 
We choose 
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        Indeed, such a distribution does not accurately describe the charge distribution of a 
small ion, but Eq. (6.7) may still describe the physics. The term ( , )HE r r  may be divided 

into two pieces ( , )HgE r r (analogous to ( , )HgV r rɶ ) that describes image charge effects and 

( , )IEδ r r  (analogous to ( , )IVδ r rɶ )  that describes local changes in the electrostatic self 

energy of an ion due to the varying concentration.  Now, any charge smearing causes a  
reduction in ( , )HgE r rɶ , which is captured in Eq. (6.7). Also, for the small values of  ionr  , 

which we consider 0 0( ) ( )φΦ ≈r rɶ ɶ , here the charges may be considered point like and the 

actual form of the charge distribution does not matter. Lastly, the term most sensitive to 
finite size effects is ( , )IEδ r r . Here they do make quite a difference. This term is 

essentially is a localized solvation energy. Then it might be better consider finite size 
effects in this term using some modification of the Born approximation, to take account 
of the fact that other ions and solvent molecules cannot penetrate into the ion. Therefore, 
possibly a better choice of ( )f ′ −r r  might be to consider an effective charge distribution 
of a uniformly charged shell (or a smeared charged shell) with the same radius of that of 
the ion [17]. However, the resulting equations are much harder to work with, and so we 
have not considered this. Indeed Eq. (6.7)  may work reasonably, provided that the 
parameter ionr  is correctly related to ionic size. Indeed, the big advantage of (6.7) is that it 

is possible to derive an approximate partial solution to Eq. (6.4) as shown in Appendix D, 
by making the same WKB like approximation. The result is, however, rather 
cumbersome so we refrain from quoting it the main text. But this again leaves us with a 
very much simplified integral equation on  ( )extλ r  which can be easily solved 

numerically in conjunction with the mean field. 
 
7.  Results for the uniformly charged macro-ion with no chemi-
adsorption. 
 
7.1 Point Charges 
 
       In these calculations, we consider only mono-valent ions and calculate both the 
correlation parameter and Gouy-Chapman lengths for a surface charge density of  

216.8µC/cmσ = , that for DNA. For which we find values of 20Ξ ≈ [50] and 2.2Åµ ≈ . 
For different charge densities, comparable with DNA, it is more convenient to keep these 
values fixed, instead of recalculating them for each charge density. 
      In what follows, we will suppose a uniform charge distribution on the macro ion so 
that ( ) ( ) ( )fR R aσ σ σ δ= = − −rɶ ɶ , here we take 0 1fσ≤ ≤ . The quantity fσ   represents a 

fraction of the DNA charge density. So, we may consider different fσ  and keep Ξ and 

µ  fixed. We take the radius of the core region to be 4.54a =  Gouy-Chapman lengths 

( 10Å≈ ), roughly that of a DNA molecule. We allow the closest approach distance from 
the central axes of the macro-ion, for the small ions, to be  5.91b =  (in µ ). Therefore, 

we assign each ion an effective hard core radius of 1.37µ  ( 3Å≈ ). This roughly 
corresponds to a small ion (for instance sodium) surrounded by a tightly bound first 



hydration shell of water. The key assumption being: the electrostatic field is not strong 
enough to partially remove this hydration shell from a significant fraction of ions close to 
the macro-ion.  
      Before working with the equations numerically, it is convenient to recast them in an 
integral equation form. We may define a quantity called the excess charge density, 

( )ex Rρ so that     
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It is then possible to show that ( )ex Rρ  must satisfy the following integral equation  
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  where     
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The mean electrostatic potential is determined through  
 

( )0( ) ( , ) 2 ( ) ( )exR drG R R R Rφ σ ρ
∞

−∞
′ ′ ′= +∫ .                                                         (7.5) 

 
   
 Using our approximation, our equation on  ( )Rλ  reads as  
 

( ) exp( / 2( ( , ) ( , )))Hg IR V R R V R Rλ δ= −Ξ +ɶ ,                                                       (7.6) 

 
where ( , )IV R Rδ  and ( , )HgV R Rɶ are given by Eqs (5.11) and (5.12), respectively. Now 

ˆ( , )qκ r depends spatially only on R  through ( )Rλ  and 0( )Rφ . As well as solving both 

numerically these two equations (((7.2)) and((7.6))), we solve Eq. (7.2) with ( ) 1Rλ = ; 
this corresponds to the  P-B equation.  



        In numerically solving these equations we use an iterative technique. We start with 
initial guesses (trial functions) for both  ( )Rλ  and ( )ex Rρ , 0( )Rλ  and 0( )Rρ . These are 

then fed into the RHS of both Eq. (7.2) and (7.6), and new values 1( )Rλ  and 1( )Rρ are 

obtained from the LHS of both equations. Due to the strong non-linear nature of these 
equation we then use a particular algorithm to improve the convergence rate [51]. Instead 
of 1( )Rρ  we use 1 1 0( ) 0.5 ( ) 0.5 ( )R R Rρ ρ ρ= + . Both 1( )Rλ  and 1( )Rρ  are then inserted 

back into the RHS of  Eqs. (7.2) and (7.6), so 2( )Rλ  and 2( )Rρ  are calculated. One then 

iterates the process. But, crucially at the n-th step, one uses the values  1( )n Rλ −  and 

1 2 1( ) 0.5 ( ) 0.5 ( )n n nR R Rρ ρ ρ− − −= +  to calculate both ( )n Rλ  and ( )n Rρ . We iterate as 

many times as is required to obtain accurate values of ( )Rλ  and ( )C Rρ . This achieved 

when 1( ) ( )n nR Rλ λ −≃  and 1( ) ( )n nR Rρ ρ −≃ , which we insure to a high accuracy. 

   
7.2 Extended Charges 
 
      Again we consider uniform charge distribution on the macro ion, again of the same 
form. One can introduce radial smearing of the fixed charge groups. But for simplicity, 
and purposes of comparison, we keep the same charge distribution as before.  
          The ionic potential energy 0( )RΦ  is determined through  

 

0 0
( ) ( , ) ( )R R dR R R Rη

∞
′ ′ ′ ′Φ = ∫ �                                                                                      (7.7) 

 
an explicit expression for the Green’s function ( , )R R′�  is cumbersome and is left to 
Appendix D.  The quantity ( )Rη ′  may be determined self-consistently through  
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Now, ( )Rλ ( ( )ext Rλ  in previous section) is self consistently determined through  

 
( ) exp( / 2( ( , ) ( , )))Hg IR E R R E R Rλ δ= −Ξ +ɶ ɶ ,                                                                 (7.10) 

 
where expressions for ( , )HgE R Rɶ   and ( , )IE R Rδ  (in terms of ( )Rλ ) are given in 

Appendix D. 
     In the limit 0ionr → , Eqs.  (7.7) ,(7.8) and (7.10) reproduce Eqs. (7.5), (7.2) and (7.6). 

These equations are solved in an iterative manner similar to those of the point charges. 



The difference is that instead of using( )ex Rρ , ( )Rη  is used as well as ( )Rλ  in the 

iterative procedure. 
    For the size of our charge distributions, we consider  0.185ionr =  and 0.25ionr =  (sizes 

given in Gouy-Chapman lengths) [52]. Not very large values of  ionr  are chosen for the 

following reason. As the charge distribution of the small ions becomes very smeared out, 
some quite non-trivial behaviour is expected. There is a possibility for such sizes, that 
there will be oscillatory behavior in the solutions of Eqs. (7.8) and (7.10) . This is 
because, at sufficiently large values of ionr ,  two of the three decay lengths present in both 

( , )r r ′�  and ( , )E ′r r  may become complex (see Appendix D). This change in the decay 
lengths has not been taken account of in numerical calculations [53]. 
  
7.3  Results for electrostatic potential 
      
    We obtain solutions both for different values of fσ  and κɶ . In Fig.3 we present results 

for ionic potential energy ( )RΦ  (the potential energy of  an small ion in the mean field 

0( )Rφ ) calculated with 0.185ionr =  and  0.48κ =ɶ  for various values of  fσ . As expected, 

we see that ( )RΦ  increases with increasing fσ  and falls away to zero as R→ ∞ .  

 

                     
Fig.3: Figure showing the ionic potential energy, Φ  as a function of distance away from the central axes of 
the macro-ion, for 0.48κ =ɶ , 0.185ionr = ;  with 100% (solid Line), 75%(dotted line), 50% (short 

dashes) and 25%(long dashes) of DNA charge.   
 
       In Fig.4 we calculate the mean electrostatic potential using the PB equation, as well 
as the Modified PB equations for point charges and finite ionr . One immediate observation 

is that, close to the macro-ion, the field differs slightly between these four types of 
solution. The size relative differences between these four types of solution are mainly 
dependent on fσ  and depend not so much on κɶ  in the range of values explored 

( 0.32 0.48κ≤ ≤ɶ ).  The difference increases slightly with increasing fσ . Only for the 

value 1fσ = ,  do we see a appreciable difference. The magnitude of the potential is 

smallest for point charges calculated using the modified PB equation. Here, the largest 
magnitude is for the PB equation (( ) 1Rλ = ). The curves for both extended charge 



distributions lie within these two, with 0.25ionr =  providing a very slightly larger 

magnitude of the potential than 0.185ionr = . Indeed, the finite size makes the solutions 

more like the PB equation. The main effect of κɶ  is to push up φ  when its value is 
decreased. 

                         

                                                                          
Fig.4: the electrostatic potential for  a.) 0.48κ =ɶ   b.) 0.4κ =ɶ  and c.) 0.32κ =ɶ ; the first two are 
calculated at 75% of the DNA charge density, the last with  100% on the Macro-ion;  using standard PB 
equation (long dashes), modified PB equation for point charge ions (short dashes), modified PB equation 
for  0.185ionr =  (dotted line), and for 0.25ionr = (solid line). Each inset shows a magnification of its 

main graph. 
 
 
7.4 The correlation parameter ( )Rλ  
 
     In Fig. 5 we calculate ( )Rλ  with  0.185ionr =  at the values 0.48κ =ɶ  and  0.32κ =ɶ  for 

various values of fσ . When  fσ  is small, ( )Rλ  simply decreases with decreasing 

separation. Here, the effect of image charge repulsion (the term ( , )HgV R Rɶ  for point 

charges) dominates over correlation effects (( , )IV R Rδ  for point charges). The image 

charge repulsion makes it less energetically favorable for an ion to be close to the surface 
of the macro-ion, as it sees an ‘image’ charge reflection of itself on the macro-ion surface, 
which effectively is a charge of the same sign. This repulsion essentially assigns a 
smaller value of the Boltzmann weight ( )Rλ  near the surface.  



     As one starts to increasefσ ,  in certain places, ( )Rλ  starts to become greater than one 

in certain places and a peak develops. Ions are able to correlate, or adjust themselves, so 
as to screen each other’s electrostatic self-energy. To put it another way, a positive ion 
‘sees’ correlation holes from the displacement of other positive ions in its vicinity. These 
‘holes’ help to increase the attraction it sees from the surface of the macro-ion  (see 
Fig.2). This effectively pushes up the Boltzmann weight; ( )Rλ  becomes larger. As the 
local density of ions increases the correlation effects become stronger, as more ions can 
adjust to the field of one ion. Provided that fσ  is sufficiently large, as one moves closer 

to the molecule the density does increase. This provides positive feedback, as a higher 
density draws more ions which push up the density. However, thermal effects, image 
charge effects and the adjustment of the mean electrostatic potential, due to a larger 
number of ions near the surface, prevent too many of the ions being drawn to the 
immediate vicinity of the macro-ion. At a certain point image charge effects start to win 
out over correlation function effects and ( )Rλ  does indeed start to become smaller with 
decreasing R .  
    One thing to notice that these correlation effects seem to be more pronounced at  

0.32κ =ɶ   than at 0.48κ =ɶ . This may seem to run counter to the previous discussion.  
Certainly, the ionic correlation effects should be greater at  0.48κ =ɶ  for an ion in the bulk. 
Here, the stronger Debye atmosphere reduces an ion’s hydration energy. But one should 
point out,  ( )Rλ  is a measure of the change in the ion’s electrostatic self-energy going 
from the bulk to the vicinity of the macro-ion. Therefore, the only correlation effects that 
are considered are due to the increase in the local charge density near the macro-ion.  
Because the ratio of ionic local density over bulk density is much larger in 0.32κ =ɶ  is 
larger than in  0.48κ =ɶ , these correlation effects are more pronounced. In turn, this yields 
a larger ( )Rλ .   
 
 
 

 
 
Fig.5: λ calculated for a.)  0.48κ =ɶ  and b.) 0.32κ =ɶ  for various values of macro-ion charge density 

with 0.185ionr =  .  The chosen values are  100% (solid Line), 75%(dotted line), 50% (short dashes) 

and 25%(long dashes) of the DNA charge density. 
   
 



    In Fig. 6 we compare ( )Rλ  calculated for different sizes of ionic charge distribution 

for the value 0.75fσ = .  We see a dramatic reduction in ( )Rλ  when we assign the ion a 

finite size charge distribution. Correlation effects are much reduced. This is because at 
close distances, in the vicinity of a small ion, the electrostatic forces on other ions are 
very much reduced. Consequently, they are less able to screen out the self energy of a 
small ion. However, when 0.25fσ = , ( )Rλ  is completely dominated by image charge 

effects and the finite size effects are less profound. Nevertheless, at close distances the 
degree of image charge repulsion a point ion sees from the surface of the macro-ion is 
larger than an ion with an extended charge distribution. Therefore, as seen in the results,  

( )Rλ  is smallest for the point charges, increasing with increasing ionic charge radius. 
Further out, the point like ions benefit more from correlation effects, which leads to point 
ions having the largest value of( )Rλ . Where these curves cross depends on salt 
concentration. At low salt concentrations, presumably, the increased correlation effects, 
due to a greater relative density of ions to that of the surrounding bulk solution, cause this 
separation to occur at smallerR .    
 
 

 

 
 
Fig. 6: comparison of λ  calculated for point charges (dots),  0.185ionr = (dashes)  and 0.25ionr = (solid 

line). The first two graphs are for 75% of the DNA charge density; a.) calculated at  0.48κ =ɶ  and  b.) 
calculated at  0.32κ =ɶ . The second set of graphs are for 25% of the DNA charge density; c.) calculated, 
again, at  0.48κ =ɶ  and  d.) calculated at  0.32κ =ɶ . 
  



       
7.5 Results for local concentration of ions  and charge density. 
 
      In Fig.7 we show calculations of the local concentration of small ions around the 
macro-ion divided by the bulk concentration, both for the PB equation and modified PB 
equations. Indeed, as we would expect for the PB equation, for lower bulk salt 
concentrations this relative quantity is much larger. Between the values of 0.75fσ =  ( a.) 

and b.) ) and 0.25fσ =  ( c.) and d.) )  we see major qualitative differences. 

          At 0.75fσ = , the general trend for all the concentrations is to increase with 

decreasing R . All the modified PB curves more or less follow the density curve for the 
PB equation. Nevertheless, the density distribution of the modified PB equation for point 
charges shows a peak. Of the four curves, the relative concentration is lowest for the PB 
equation due to no correlation effects. The concentration calculated with the modified PB 
equation has the highest concentration, because it has the strongest correlation effects.  
          But, for 0.25fσ =  the situation is much different. There is a large relative 

discrepancy between the concentration calculated with the PB equation and those with 
the modified PB equation. At small values ofR , the local concentration decreases with 
decreasing R  for the modified PB equation. This discrepancy is entirely due to image 
charge effects, which dominate at these charge densities. 

 
 
Fig.7: shows calculations of the local number concentration, cdivided by the bulk concentration, bulkc  of 

small ions near the macromolecule a function of distance away from the central axes, R . The insets show 



the individual number concentrations of positive, n+  and negative ions, n− , divided by their bulk 

concentrations, as functions of R . These densities are calculated using the PB equation (solid line), 
modified PB equation for point charges (dotted line), modified PB equation for 0.185ionr =  (long dashes) 

and 0.25ionr =  (short dashes). 

 
 
 
      In Fig.8 we show calculations of the charge density of the small ions. The extended 
distributions penetrate into the regiona R b< < . This allowed for the finite charge 
distributions; the only requirement is that the ionic centers lie outsideR b= . Indeed, the 
tail, for small R  in the charge density, is due individual charge distributions of each ion 
at R b> decaying away exponentially. Very little of the charge distribution penetrates 
into the macro-ion core, therefore an assumption (Appendix D) which is used in solving 
the modified PB equation for ions with extended charge distributions is completely 
justified. In the insets we also show the excess charge distribution exρ . This excess charge 

is neglected when equations are fully linearized and ( ) 1Rλ = . We see that at 0.25fσ = ,  

neglecting exρ  may be an adequate approximation, but for 0.75fσ =  this approximation 

does not work well in all cases.  
         
 
 

 
Fig.8: shows the calculated full charge densities (main graph) and excess charge densities (inset)  for  

0.48κ =ɶ ; calculated at  a.) 75% and  b.) 25% of the DNA charge density; using PB equation (solid 

line), modified PB equation for point charges (dotted line), 0.185ionr = (medium dashes) and 

0.25ionr = (long dashes) . 

 
7.6 Effective interaction between two uniformly charged cylinders 
 
    We may write down the following effective pair potential [1], here written in normal 
SI units of length 
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  Here cl  is the distance between two fixed charge groups on the macro ion divided by 

their charge and is related to the surface charge density 1(2 )c sl aπσ −= . The first term in 

Eq. (7.11) represents the direct electrostatic interaction between the Macro-ions, which is 

enhanced by the low dielectric cores by a factor of [ ] 22
1 0( ) ( ) ( )D D Da K a I aκ κ κ −− . The 

second term represents an image charge repulsion term, where both the excess counter-
ions and fixed charges are repelled by their image charges on the surface of the other 
macro-ion. As yet, this expression does not contain any attractive term for correlation 
effects, as well as accounting for adjustment of ions in the charge compensation; these 
certainly will have some effect as the cylinders are brought closer together. Though, for 
univalent ions former term may be small compared to the other terms in the interaction. 
But, this still remains to be shown.   
       On examination of the excess charge densities in Fig.8, we see that, at an inter-axial 
separation of 14Rt (30 Å), the repulsive part of the interaction between two uniformly 
cylindrical ions with charge density 0.75fσ =  in a salt solution with 0.48κ =ɶ  (a Debye 

screening length 4.58Åλ ≃ ) may be adequately described through Eq (7.11). And, for all 
other values of the parameters, this approximation (for the repulsive interaction) should 
work when the excess charge distributions of the two Macro-ions do not overlap, or are 
negligible so that 1θ ≈ .  
       For the single macro-ion we are able to calculate θ . The parameter θ  is related to 

exρ  through the following expression (in rescaled units) 
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       Eq. (7.13) allows us to compute the effective interaction of two uniformly charged 
marco-ions with low dielectric cores at large distances. In Tables 1 and 2 we show 
calculated values for the charge compensation parameter for 0.32κ =ɶ  and  0.48κ =ɶ , 
respectively .    
 
 
 
 
 



pσ   value  PB equation  Point Charges 0.185ionr =  0.25ionr =  

 0.25   θ = 0.044      0.0043    -0.0014   -0.0023 
0.5      0.146       0.194      0.161    0.157 
0.75      0.259       0.379      0.314     0.301 
1      0.362       0.528      0.434    0.417 
 
Table 1: Calculated values of θ  at 0.32κ =ɶ  ( 10.14ÅDκ −≈ ) calculated for the various sizes of ions 

used in the modified PB equations as well as the PB equation. 
 
 

pσ   value  PB equation  Point Charges 0.185ionr =  0.25ionr =  

 0.25     θ = 0.030      -0.066    -0.0014   -0.0023 
0.5      0.108       0.140      0.161    0.157 
0.75      0.207       0.357      0.314     0.241 
1      0.306         N.S      0.434    0.370 
 
Table 2: Calculated values of θ  at 0.48κ =ɶ  ( 10.22ÅDκ −≈ ) calculated for the various sizes of ions 

used in the modified PB equations as well as the PB equation. Here N.S means that no solution was 
obtained. 
 
    In the tables we see trends that correspond to trends seen in the graphs of Fig. 4. We 
see more of an appreciable difference in θ   than in the graphs, simply because of their 
scale; only at large distances do differences in φ  become significant.  For 0.25pσ =  we 

see that the modified PB equations give charge compensations lower than that calculated 
with the PB equation. This is because of the effects of image charge repulsion. Indeed, θ  
can be slightly negative, resulting in a slight enhancement of the fixed surface charge 
density. As is expected, as one increases pσ  the charge compensation increases. 

Decreasing the screening length also increases the compensation. For 0.5pσ =  and the 

larger values of pσ , the modified PB equation for point ions gives the largest value of the 

compensation. This enhancement in the compensation is due to the correlation effects 
[48]. These compensation values decrease as the more spread out the distribution of 
charge on the small ions becomes.  
 
7.7 First order corrections 
 
    We may compute first correction to the WKB like approximation employed in 
numerical calculations of this paper and the exact Hartree approximation. Here, we have 
done so only for point ion distributions. As for extended charge distributions, though 
completely feasible is a little more involved, and so has not been done. The correction is 
given by 
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In Appendix C we recast Eq. (7.14) in a more explicit, but cumbersome way, which can 
readily be used for numerical calculation.  
 

               

                                
               
                            
 
 
Fig.9 Figures showing both the correction ( ) ( , ) / 2HV R V R R∆ = ∆ ɶ  and ( ) ( ( , ) ( , )) / 2H HV R V R R V= − ∞ ∞ɶ ɶ  

for a.) 0.25pσ = , b.) 0.5pσ =  and c.) 0.75pσ = .  The quantity ( )V R   is plotted with solid line (for 

0.48κ =ɶ ) and the long dashed line (for 0.32κ =ɶ ). Whereas the correction is plotted using a short dashed 
line (for 0.48κ =ɶ ) and dotted line (for 0.32κ =ɶ ). 
        
      In Fig. 9 we show the correction ( , )HV∆ r rɶ   in comparison to ( , ) ( , )H HV V− ∞ ∞r rɶ ɶ . As 

one sees the correction, for the values considered it is generally quite small in relation to  
( , ) ( , )H HV V− ∞ ∞r rɶ ɶ . Though, as we increase the surface charge density we expect its 

relative size to increase. Also, we see that WKB like approximation works less well in 
situations where both image charge effects and correlation effects are of similar size, as 
in the case of  0.5pσ = . Here, there are small regions in R  where the correction is of 

similar size or larger due to the fact that ( , ) ( , )H HV V− ∞ ∞r rɶ ɶ  changes sign as the two 

effects compete. Nevertheless, the overall conclusion, here, is that the WKB like 
approximation does not perform badly, and certainly is sufficient give insight into the 
qualitative physics. Of course, better quantitative accuracy can be sought by either 
incorporating the correction ( , )HV∆ r rɶ  into the calculation of the electrostatic potential or 



working with the exact Hartree equations, in an integral equation form, from which the 
WKB like approximation could form a suitable starting point (see Appendix C for point 
charges). 
 
 
8.  Discussion 
 
         In the numerical solution of the simplified equations, so far, only univalent ions 
have only been considered. It is possible to consider divalent ions, where the effects are 
likely to become much more pronounced. But, care here should be taken with the WKB 
like approximation. It may only work well, here, for relatively small surface charge 
densities, compared to DNA. Also, as the valance of ions is increased, we expect the 
Hartree equations, themselves, to work less well. Certainly, for trivalent point like ions, 
we expect the Hartree approximation to breakdown, close to the surface of the macro-ion. 
Near the surface, a strong coupling regime [3] will hold, as Ξ  is so high. Yet, the 
situation may be a little more subtle for real ions with valences larger than, or equal to, 
three. These really cannot be considered to be point like [1,54]. And as we have seen, for 
extended distributions the correlation and image charge effects can reduce quite markedly.                
      For the interaction of two cylinders we have calculated the charge compensation 
parameter θ .  Indeed, image charge effects push down this parameter and correlation 
effects push it up. In the case of a molecule like DNA the inter-axial separation above 
which this approximation is valid (for 1pσ = ) may be too conservative for two reasons. 

The first is that DNA is not a smooth cylinder; it has grooves in which ions may sit 
accommodating their hydration shells. The second is that chemi-adsorption is important 
for many species of ion, even mono-valent alkali metals (for example Na+) feel the 
presence of fractional charges on the base pairs within the grooves [1]. Chemi-adsorption 
will bring more ions closer to the macro-ion surface, and this in turn should reduce the 
separation above which this effective (repulsive) interaction is valid. But, of course the 
full effective interaction has yet to include an attractive term due to correlation effects.        
         Indeed, the role of chemi-adsorption is still missing in the numerical calculations. 
This can be included in the simple case of a very short ranged potential. Here, we may 
assume an excess bound fraction of counter-ions at r b= , ( )b bρ . This supposes that the 

chemi-adsorption happens through the hydration shell and that there is no chemi-
adsorption directly with the ions. The former has to be strong enough to partially remove 
the hydration shells of a considerable fraction of the ions [55]. Then excess charge 
density, due to this bound fraction, takes the form ( )( ) exp( / ) 1 exp( )b c Bb V k Tρ φ= − − −  

(for point charges). However, solving for ( )b bρ  is more complicated than simply 

adsorbing this term into pσ   and then varying pσ  , in the calculations, to arrive at the 

correct  φ  for a particular value of cV . This is because these bound charges are not fixed. 

In principle, they should adjust to ions outside this layer, again creating correlation 
effects. Therefore, the excess charge density must be correctly included in both the 
equation for the correlation function as well as the modified PB equation (see Eq.(5.8)). 
These effects could be quite important in driving up the charge compensation factor θ .  
Consequently, we hope to include chemi-adsorption in a modified WKB like 



approximation and its interplay with correlation and image effects in future work. For 
divalent ions, with chemi-adsorption close to the macro-ion surface, such modified WKB 
like approximation, which takes account of a surface layer, might work well for DNA 
surface charge densities, provided that chemi-adsorption is sufficiently large.   
      A second missing ingredient is a full treatment of the finite size effects of the small 
ions. Already, we have looked at the finite size of the charge distribution of ions, which 
seems very important for the correlation effects. Also, we have considered a minimum 
closest approach for an ion. However, steric/short range potentials should be included 
consistently in the statistical mechanical model. In the simplest approximation, each ion 
may be treated as a hard sphere, but not just at the surface of the macro-ion, in the 
solution as well. The hard core radius of each ion in solution may be taken to be that of 
the ion and a tightly bound first hydration shell of water. We are currently developing 
techniques to account for this in the field theoretical approach. The goal being to develop 
a type of equation similar to that considered in [43], modified to take account of weak 
correlation effects. However, we want develop this from a more rigorous statistical 
mechanical approach, for the macro-ion-electrolyte system, than a lattice gas. This 
equation should include both correlation and image charge effects (through coupling to 
an equation describing the correlation function).  
       In addition, to go beyond the Hartree equations such steric effects are essential. One 
can show that the correction to the Hartree approximation, for point charges without 
steric effects, is highly divergent. This is manifestation of the Bjerrum instability towards 
the formation of Bjerrum pairs. Therefore, to calculate a meaningful correction, steric 
effects are essential; the hard core size of the ion acts as a cutoff. Indeed, there should be 
a very important interplay between effective size of ions and the validity of the Hartree 
approximation on its own. If the hard core radius of an ion is too small, then the Hartree 
approximation will not work and a large proportion of ions will form electrically neutral 
bound Bjerrum pairs. These considerations should also be important in looking a strong 
coupling expansion [3,10] in the presence of salt.     
      Of course, our description solvent may be too simple; a constant bulk dielectric. So 
another direction of development would be to consider modeling the solvent in a more 
sophisticated way. This might be achieved through two possible routes. The first is to 
treat the solvent explicitly as individual dipoles. It is certainly possible to include the 
solvent explicitly in the field theory a single fluctuating field [19]. The problem with this 
approach, in water (or other strong polar solvents) is that the dipoles interact strongly 
(highly correlated) so one would have to go very much beyond the mean field approach. 
Finite size steric effects of the water molecules would also need to be considered. Though, 
solving the simpler problem of ions in a dilute weak polar solvent may still be insightful 
[19].  A second approach, more phenomenological, would be to couple the counter-ion to 
a Landau-Ginzburg model, describing a local polarizability field [17,18]. Such a model 
has enjoyed some success in describing the microscopic electrostatic effects of water [17].  
Whatever the approach used, this course of study is likely to be very involved, and should 
be left till later in the development of the theory.  
        
    
 
 



9. Conclusion and Outlook. 
 
In this work we have developed a field theoretic formalism to handle four effects that go 
beyond the simple PB approach. Namely, these are image charge effects of the small ions, 
weak correlation effects, finite ionic charge distributions and chemi-adsorption. From this 
field theory we have derived self-consistent (Hartree) equations; a modified PB equation 
and an equation for the correlation function of a fluctuating field, which describes the 
additional correlation effects and image charge effects. To obtain approximate solutions 
to these equations we have developed a WKB like approximation. 
       Furthermore, we have approximated the solution to such equation for a uniform 
distribution of fixed charges, without chemi-adsorption, using the WKB like 
approximation for the correlation function. We have done this for point charges and 
spherically symmetric charge distributions of small univalent ions. Here, we have shown 
that WKB like approximation works well compared to Hartree result. Also, we have seen 
interplay between image charge effects, correlations and finite size effects. The image 
charge effects have the tendency to reduce the local concentration of ions near the surface 
of the macro-ion, pushing ions away. Whereas, correlation effects have the opposite 
effect; pushing up the concentration by drawing small ions to the surface. Increasing the 
size of ionic charge distributions significantly diminishes both these two effects.    
        We find that for the distribution of ions there are two regimes depending on the 
surface charge density. When the surface charge is low, the local concentration of ions is 
dominated by image charge repulsion and so diminishes as we move close to the surface 
of the macro-ion. As we increase the macro-ion charge density we move into a regime 
where correlation effects win out over image charge effects and the local concentration of 
ions increases slightly more than what the PB equation predicts due to correlation effects 
as one moves towards the surface of the macro-ion. We also calculate the charge 
compensation parameter θ  for an analytical expression for the effective interaction 
between two cylinders.  
         In following publications we hope to investigate chemi-adsorption and the effect of 
including steric interactions between ions. Also, it will be interesting to apply what is 
learnt to distributions of helical charge. Here, from our microscopic theory, we would 
want calculate the helical moments (KL parameters) presented in [1]. Finally, we will 
want to consider the Hartree approximation of a system of two macro-ions to examine the 
validity of the effective KL theory for helical molecules [1] and where appropriate 
modify the KL theory to take account of correlation effects and counter-ion readjustment.  
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