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We describe the results of a numerical investigation of the dynamics of breakup of streams
of immiscible fluids in the confined geometry of a microfluidic T–junction. We identify
three distinct regimes of formation of droplets: squeezing, dripping and jetting, provid-
ing a unifying picture of emulsification processes typical for microfluidic systems. The
squeezing mechanism of breakup is particular to microfluidic systems, since the physi-
cal confinement of the fluids has pronounced effects on the interfacial dynamics. In this
regime the breakup process is driven chiefly by the buildup of pressure upstream of
an emerging droplet and both the dynamics of breakup and the scaling of the sizes of
droplets are influenced only very weakly by the value of the capillary number. The drip-

ping regime, while apparently homologous to the unbounded case, is also significantly
influenced by the constrained geometry; these effects modify the scaling law for the size
of the droplets derived from the balance of interfacial and viscous stresses. Finally, the
jetting regime sets in only at very high flow rates, or with low surface tension i.e., higher
values of the capillary number, similarly as in the unbounded case.

1. Introduction

Multiphase flows in small, often microfluidic, devices are finding many uses, in part
because of the realization that individual drops can act as controlled chemical containers
(e.g. reference one of the ismagilov papers and the recent nature overview we have in the
references) and also because modern measurement methods offer new opportunities for
sensing, detection, rheology, etc. One basic feature of these studies is the need to control
the drop size under different flow conditions and for different geometries of the device.
Understanding the flows is closely related to more classical studies of drop breakup
and emulsification in sheared, unbounded fluid systems (Rallison 1984; Stone 1994).
Nevertheless, as we shall discuss, the confinement that naturally accompanies flow in
small devices has significant qualitative and quantitative effects of the drop dynamics
and breakup (Garstecki et al. 2005d , 2006; Guillot & Colin 2005). Here we report fully
three-dimensional numerical simulations to understand and characterize drop formation
in one common geometric element, a T-junction, used in many recent multiphase flow
investigations.

A microfluidic T–junction geometry was first introduced for the controlled formation
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of water–in–oil dispersions by Thorsen et al. (2001). The authors made the reasonable
suggestion that the dynamics of droplet formation is dominated by the balance of tan-
gential shear stresses and surface tension as expected in unbounded shear flows, via an
analogy to breakup processes in shear and extensional flows (Taylor 1934; Rallison 1984;
Stone 1994). A detailed experimental study of the T–junction configuration (Garstecki
et al. 2006) identified a different (squeezing) mechanism that is directly connected to the
confined geometry in which the drop is formed (see also a related report by Guillot &
Colin (2005)) . It was proposed that when the capillary number is sufficiently small, the
dominant contribution to the dynamics of breakup arises from the buildup of pressure
upstream of the emerging droplet Garstecki et al. (2005d , 2006). This model results in
a scaling law for the size of the droplets that is independent of the value of the capillary
number and includes only the ratio of the rates of flow of the two immiscible fluids.

In this paper we describe the results of three–dimensional numerical simulations that
provide a unifying picture of the dynamics of formation of droplets in microfluidic T–
junction geometries that includes both of the aforementioned types of breakup. We con-
firm the existence of the “rate–of–flow–controlled” or “squeezing” breakup mechanism at
low values of the capillary number Ca, the ratio between the viscous and surface tension
stresses (Ca will be defined more precisely below). We provide the details of the dynam-
ics (e.g. the numerical simulations confirm the fluctuations of pressure upstream of the
immiscible tip postulated by Garstecki et al. (2006)). We identify a critical value of Ca
at which the system transits into a shear–dominated or dripping mechanism of droplet
formation. Also, we indicate the differences in drop formation in confined and unbounded
systems. Finally, similarly to breakup into an unbounded fluid, we observe a transition
from dripping to jetting at high values of the capillary number.

Due to the small size of the microchannels (widths on the order of 10 to 100 µm) and
typical flow rates (1 µL/s), flows in microfluidic systems are dominated by viscous effects.
The laminar flow regime, together with the typically large values of the Peclet number
(measuring the ratio of the convective to diffusive transport), allow for an extensive
control both in space and time over the transport of chemical substances (Kenis et al.

1999; Stone et al. 2004). This control, in conjunction with the ease of fabrication of the
microfluidic devices (Duffy et al. 1998; McDonald et al. 2000), is one of the main features
driving the interest in microfluidic systems for engineering and research applications. At
the fundamental level, from the point of view of fluid dynamics, the laminar channel
flow of a single Newtonian phase is not particularly interesting, as it can be described
by the linear Stokes equations of motion. This behaviour is to be contrasted with a
wide class of phenomena that have been uncovered with the first experiments on two–
phase flows in microfluidic systems (Thorsen et al. 2001; Ganán-Calvo & Gordillo 2001;
Anna et al. 2003; Dreyfus et al. 2003). The existence of an interface and the influence of
interfacial tension introduce strong non–linearities in the flow, which are responsible for
the appearance of a range of novel effects, some of which are particular to microfluidic
systems when the interfacial dynamics is strongly influenced by the confinement of the
fluids by the walls of the channel (Garstecki et al. 2005d ,b,c, 2006).

The interest in detailed understanding of the emulsification processes in microfluidic
systems is additionally motivated by the wide range of research on applications of mi-
crofluidic multiphase flows (see Table 1). Most of the applications require precise control
over the process of formation of droplets or bubbles (e.g. Basaran (2002)), and character-
ization or, preferably understanding, of the scaling laws that describe the volume of the
bubbles or droplets formed in the devices as a function of the material (e.g. viscosities,
interfacial tension) and flow parameters (e.g. pressures or rates–of–flow applied to the
system).
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Application Reference

Chemical processing
micromixing inside drops Song et al. (2003)
drops and slugs as mixing elements Gunther et al. (2004), Garstecki et al. (2005a)
high–throughput screening Zheng et al. (2003), Zheng & Ismagilov (2005)
kinetic analyses Song & Ismagilov (2003)
organic chemistry Cygan et al. (2005)

Bioanalysis
diagnostic assays Sia et al. (2004)
handling and/or analysis of living cells He et al. (2005)
molecular evolution Cornish (2006)

Material Science
anisotropic particles Dendukuri et al. (2005), Xu et al. (2005), Jeong et al.

(2004), Jeong et al. (2005), Nisisako et al. (2004)
microcapsules Takeuchi et al. (2005)
colloidal shells Subramaniam et al. (2005)

Table 1. Examples of applications of multiphase flow in microfluidic devices. The above
references are representative and are not meant to imply priority or to be exhaustive.

Several methods of formation of both bubbles and droplets have already been described
(see table 2). In our work we chose to explore the dynamics of breakup in a planar T–
junction geometry. A number of experimental studies are available for a range of fluids
and speeds of flow. Both rate–of–flow–controlled breakup, and shear–driven breakup
mechanisms are reported. Our aim is to verify numerically the details of the squeezing
mechanism of breakup (Garstecki et al. 2005d , 2006), and to provide a unified picture of
the dynamics that would include also the shear–driven formation of droplets (Thorsen
et al. 2001).

Before we present out results, we sketch the characteristics of the two main dynamical
regimes. Qualitatively, the rate–of–flow–controlled breakup (Garstecki et al. 2005d , 2006)
can be described as follows (see Figure 1): the tip of the stream of the immiscible fluid
enters the main channel, and because interfacial stresses dominate the shear stresses,
the tip blocks almost the entirety of the cross–section of the main channel (the shear
stresses exerted on the tip by the continuous fluid are not strong enough to deform the
tip significantly away from an area minimizing shape). As a result, the continuous fluid
is confined to thin films between the tip of the other immiscible fluid and the walls of the
device. Flow in these thin films is subject to an increased viscous resistance, which leads
to a build–up of pressure upstream of the tip (Stone 2005). This pressure is larger than
the pressure in the immiscible tip, and the continuous fluid displaces the interface or
squeezes the neck of the inner fluid which leads to breakup and detachment of a droplet.
Notably, within this regime the breakup is not driven by interfacial stresses, at least not
until the very last stage; the speed at which the neck of the immiscible thread collapses is
proportional to the rate of flow of the continuous fluid, and does not depend significantly
on the value of the interfacial tension, or on the values of the viscosities of either of the
two fluids (Garstecki et al. 2005d). Within this regime one can expect that the volume
of the droplet will be a function of the ratio of the rates of flow of the two fluids, and
will not depend strongly on the value of the capillary number (Garstecki et al. 2006). In
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Subject Reference

Planar geometries
flow–focusing Anna et al. (2003), Garstecki et al. (2004), Xu &

Nakajima (2004), Cubaud & Ho (2004), Dreyfus et al.
(2003), Ward et al. (2005)

cross–flow Thorsen et al. (2001), Song & Ismagilov (2003), Tice
et al. (2004), Okushima et al. (2004), Blackmore et al.
(2001), Gerdts et al. (2004), Zheng et al. (2003), Den-
dukuri et al. (2005), Garstecki et al. (2006), Guillot &
Colin (2005)

diverging flow T–junction Link et al. (2004), Engl et al. (2005)
Axi–symmetric geometries

Ganán-Calvo & Gordillo (2001), Takeuchi et al.
(2005), Jeong et al. (2004), Jeong et al. (2005), Utada
et al. (2005)

Non planar geometries
Sugiura et al. (2005), Sugiura et al. (2001)

Table 2. Examples of droplet and bubble formation in microfluidic devices. The above
references are representative and are not meant to imply priority or to be exhaustive.

the shear–driven breakup, the volume of the droplet can be estimated from a balance
of the viscous drag that the continuous fluid exerts on the emerging droplet and the
interfacial force that opposes the elongation of the neck, which connects the reservoir
of the discontinuous fluid with the droplet (e.g. Umbanhovar et al. (2000)). This model
leads to a relation in which the diameter of the droplet is inversely proportional to the
capillary number calculated for the flow of the continuous liquid. Because the drag force
exerted on the droplet depends only very weakly on the viscosity of the droplet, within
the shear-driven regime, the viscosity of the discontinuous phase does not influence the
size of droplets appreciably (e.g. see discussion of flow past a drop in Batchelor (2000)).
This effect has been confirmed experimentally by Cramer et al. (2004).

The qualitatively different predictions of each of the two models of breakup make
it possible to distinguish between them by inspecting how the volume of the droplets
depends on the material (viscosities and interfacial tension) and flow (rates of flow)
parameters. An advantage of numerical simulations over the experiments is the control
over the different parameters. In the experiments, for example, it is difficult to change the
interfacial tension between the two fluids over a wide range of values without introducing
dynamic surface tension effects (at low concentrations of surfactant), or changing the
wetting properties of the two fluids. In contrast, in simulations it is straightforward to
change the value of any parameter without affecting any others. Here we present the
results of three–dimensional simulations for a range of the values of Ca that is broad
enough to observe all three mechanisms of break-up in the confined geometry of a T-
junction: squeezing, dripping and jetting.

We use a phase–field model (De Menech 2006) to describe the flow of the two fluids in
the T–junction. The large interfacial tensions associated with the low capillary number
characteristic of microfluidic flow can be handled due to the diffuse nature of the phase
boundary separating the two fluids. The equilibrium properties of the mixture, including
phase behaviour, wetting properties and the concentration profile in the interface region,
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Figure 1. Diagram of a T–junction with cross flow. The channels have square cross section with
side L. vc and vd are the mean flow velocities of the continuous and dispersed phases, while µc

and µd are the corresponding shear viscosities.

are derived from a generalized free–energy functional, which determines also the diffusive
and capillary forces in the transport equations. The transport equations are solved on
a three–dimensional grid, and the method has been tested successfully in the case of
droplet breakup in a T–junction with diverging flow (De Menech 2006).

In the following section we define the geometry and the parameters of the system that
we study and introduce the important dimensionless quantities. In section 3 we describe
the numerical methods employed in our work. In section 4 we detail the results, both
for the low and high capillary number regimes, and we summarize our observations in
section 5.

2. Description of the system

For a planar geometry, the characteristic dimensions of the T-shaped junction are the
height h, and the widths of the main and side channels. We will consider the simplest
case, in which the widths of both ducts equal L, and the channels have a square cross–
section h = L (figure 1). The dispersed phase is injected into the main channel from
the side inlet. For simplicity, we set the densities of both phases equal; we expect that
this choice has negligible influence on the results, as we investigate flows at the limit
of vanishing Reynolds number. Besides the width L, which is constant, the problem
is fully described by six parameters characterizing the flow and material properties of
the fluids. These parameters are: the mean superficial speeds of the continuous and
dispersed phases, vc and vd respectively, the viscosities of the two fluids µc and µd, the
surface tension γ, and the density ρ. We will assume perfect wetting for the continuous
phase, and the equilibrium contact angle for the dispersed fluid is set to 180◦. The
rescaled volume V/L3 of the droplets formed in the device is the seventh physical quantity,
and following the Buckingham-Π theorem, it can be described as a function of four



6 M. De Menech, P. Garstecki, F. Jousse and H. A. Stone

dimensionless parameters. We chose the following groups: the capillary number calculated
for the continuous phase, Ca = µcvc/γ, the Reynolds number Re = ρvcL/µc, the viscosity
ratio λ = µd/µc, and the flow rate ratio Q = vd/vc = Qd/Qc, where Qd = vdL

2 and
Qc = vcL

2 are the flow rates at the two inlets. The pressure will be rescaled by the
viscous energy density µcvc/L, while the time unit is vc/L.

For the flow regimes under consideration, the Reynolds number is small (Re < 1), and
does not influence the droplet size, which leaves us with the three governing parameters:
Ca, λ, and Q. Our main focus is the discussion of the transition from the surface–tension
dominated to the shear–dominated regime, which is best characterized by considering
the effects of the capillary number on the droplet size. Within this framework, will also
consider the influence of λ and Q.

3. Numerical method

The two–phase flow in the microfluidic device is described with a phase–field model
(De Menech 2006), which includes the advection–diffusion equation for the molar fraction
of one component and the Navier-Stokes equation with a Korteweg stress tensor, which
is responsible for the development of surface stresses due to the presence of fluid–fluid
and fluid–solid interfaces. The reactive and dissipative terms in the transport equations
are derived from a generalized free–energy functional, which determines the equilibrium
properties of the system, such as phase behavior and static wetting angles. The capillary
stresses at the interfaces are represented as volume forces, and are distributed over the
characteristic thickness ξ of the diffuse phase boundary. This important feature of the
model allows the treatment of multiphase flows with relatively coarse grids, since typically
only a few mesh points are needed to resolve the smooth variation of the order parameter
across the interface. The interface thickness should be compared to a characteristic length
of the system, which could be the radius of a droplet or the size of the domain (here L) in
the case of constrained flow, leading to the definition of the Cahn number C = ξ/L. The
droplet dynamics of two immiscible fluids, described classically in the sharp interface
limit ξ → 0, is exactly recovered as C and the diffusivity go to zero (Jacqmin 1999).
There are two possible ways to interpret the results of the phase–field model. The first
one is to relate ξ to the physical width of the interface for real fluids, which is of the
order of 1 nm. In this approach, our simulations should, within the continuum model,
reflect the actual flow of fluids at the nano–scale, with typical channel width of the order
of 10 nm.

Another interpretation is to consider the diffuse interface model as an approximation
of the flow of immiscible fluids at the microscale, which is justified when the interface
thickness ξ is small compared with the characteristic length of the flow L. Despite the fact
that ξ is not the interface thickness separating real bulk fluids (e.g. since we typically
choose C = 1/20 for numerical convenience, then ξ ∼ 5µm when simulating drops in
100 µm channels), the experimentally observed droplet dynamics in microfluidic devices
can be effectively reproduced (De Menech 2006). The results that we describe in this
report, which are expressed in terms of the non–dimensional groups, also match closely
the experimental observation of flow of bubble formation in microfluidic T–junctions
(Garstecki et al. 2006).

4. Results

As the dispersed phase enters from the side inlet into the main channel, it is distorted
by the stresses exerted by the flow of the outer fluid, which acts to squeeze and stretch
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Figure 2. Drop formation as a function of capillary number. Top panels: two regimes of droplet
formation are clearly distinguishable, at low (panel a, Ca = 0.002) and high (panels b and c,
Ca = 0.035) Ca respectively. The onset of a jet at high Ca is illustrated in panel d (Ca = 0.05).
Bottom figures: log–log plot of droplet volume versus capillary number. Panel e: Q = 1/4, and
λ = 1, 1/8. Panel f: λ = 1/8, Q = 1/8, 1/4 and 1/2. At high Ca the droplet volume decreases
more steeply, and is strongly influenced by the viscosity ratio λ.

the inner fluid in the downstream direction (see Figure 1). Surface tension tends to resist
this external force pulling the thread upstream and the dynamics of droplet formation
in the channel will depend on the relative strengths of viscous and surface stresses.
After an initial time transient, whose duration in time grows linearly with the capillary
number and during which drops form aperiodically, we observe the regular formation of
monodisperse droplets.

In Figure 2 we show a squence of images illustrating drop formation and report the
measured droplet volume as a function of Ca in two different scenarios: allowing the
viscosity ratio to change, while keeping Q fixed, or, conversely, varying Q while fixing
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λ. We can clearly identify two different regions in both diagrams, at low and high Ca
respectively. For a range of low Ca the droplet size does not change significantly, while
beyond the critical value Cac ≈ 0.015, which is not a strong function of viscosity ratio,
the droplet size decreases rapidly with the capillary number. Also, changing the viscosity
contrast has little or no effect at low Ca, while it modifies quite sensibly the droplet
volume at high Ca. The visualization of the droplet formation process (Figures 2a–c)
shows that the two regimes of drop formation have qualitatively different characteristics.
At low Ca the incoming thread tends to occupy the full width of the main channel, with
the breakup occurring right at the junction (Figure 2a). At high Ca the dispersed fluid
occupies only part of the main channel, and smaller droplets are formed downstream of
the T-junction (Figures 2b–d), with dynamics that resembles more and more that of the
classical pendant–drop problem in a coflow geometry (Umbanhovar et al. 2000; Cramer
et al. 2004). We will in fact show that this dripping regime has significant differences
from the unbound coflow case, since even for high Ca the droplets occupy a significant
portion of the main channel, which in turn affects the flow field of the outer continuous–
phase fluid. In addition, we report in the panel of Figure 2d some snapshots of the
development of the thread for a high capillary number: the droplet detachment point
gradually moves downstream, until a stable jet is formed, whose length is limited by the
size of the simulation domain.

4.1. Low Ca: the squeezing regime

Numerical simulations allow access to all of the dynamical variables of the system. For
example, we can monitor the evolution of the droplet formation by looking at the time
dependence of the pressure in the continuous fluid immediately upstream of the tip of
the discontinuous phase. This evolution of pressure at the junction lies at the heart of the
interfacial dynamics in the squeezing regime (Garstecki et al. 2005d , 2006). Qualitatively,
at low values of Ca, the tip of the discontinuous fluid effectively blocks almost the entirety
of the cross–section of the main duct, and obstructs the flow of the continuous fluid.
Regardless of the type of forcing, either fixed rate of flow or fixed pressure at the inlet of
the continuous fluid, the obstruction of the main channel leads to an increase of pressure
upstream of the tip of the discontinuous fluid. We observe the details of the evolution of
pressure in our numerical simulations.

As the discontinuous–phase fluid enters the junction the pressure rises gradually until
the channel is blocked (steps a–b in Figure 3); this time interval is defined as the blocking
time, τblock. At this stage the continuous flow begins to squeeze the neck of the thread
(steps b–c), until breakup occurs, and the pressure drops abruptly (steps c–d). The time
interval from steps (b) to (d) is defined as squeezing time, τsqueeze. The viscosity contrast
determines the details of the pressure profile in the squeezing phase, while its duration
remains unaffected.

Also, we considered the behaviour of the pressure profile upstream of the junction for
fixed Q and λ, while varying the capillary number, Ca � 1 (Figure 4). We observe that
τsqueeze is independent of Ca, while the blocking time grows as Ca is decreased. The
results in Figures 3 and 4 therefore confirm the intuitive fact that τsqueeze depends only
on the velocity of the outer fluid, which is responsible for the buildup of the pressure that
is required to compress the neck, whose displacement will progress at a rate proportional
to the flux of the dispersed phase.

When Qd � Qc we expect τsqueeze � τblock and the total time for droplet formation
τ = τblock + τsqueeze depends only on τsqueeze, which suggests the relation τ ∝ 1/Qc. The
volume of the droplet will therefore be Vd = τQd ∝ Q. On the other hand, if Qd � Qc,
τ ≈ τblock depends on the distance the breakup point has to travel from the side inlet to
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Figure 3. Pressure upstream of the T–junction (top) and area of the gap between the dispersed
phase and the channel walls downstream (bottom) as a function of time; Ca = 0.01. The
frames on the right visualize different stages of the droplet formation process. The pressure was
measured at the position marked by the white dot, while the gap area is taken over a plane
marked by the dashed line. We identify the two main steps of droplet formation: the interval
(a)–(b) mark the blocking phase, while from (b) to (d) the thread is squeezed until breakup
occurs. Four curves are shown for each plot, with λ = 1, 1/2, 1/4 and 1/8. The pressure profile
in the squeezing phase varies, somewhat weakly, with the viscosity ratio: as λ decreases the
pressure profile becomes smoother in the interval from the end of the blocking stage (b) to the
breakup point (d).

enter the junction and on the flow rate Qd. Thus, we expect τ = τblock ∝ 1/Qd, which
implies Vd = τQd ∝ constant that is independent of the flow ratio Q. The two regimes
can be combined in the simple dimensionless relation V ∝ 1 + αQ, where V = Vd/L3

is the scaled drop volume and α is a constant which may depend on the widths of
the two channels. This mechanism was first proposed by Garstecki et al. (Garstecki
et al. 2006), where the functional form V (Q) was observed experimentally. Cubaud et al.

(2005) observed a similar behaviour for bubble formation in a symmetric cross junction.
We verified this result with our numerical simulations. Figure 5 shows the variation of
the volume with Q for three values of λ; the data collapse over the same straight line
V = 1 + 2Q.

4.2. Transition from low to high Ca

As we increase the capillary number, while keeping the flow rates unchanged, we move
away from the squeezing regime described in the previous section; in particular we observe
that the drop volume (Figure 2) drops sharply with Ca, and there is a strong dependence
on the viscosity ratio. One observes that the incoming fluid blocks only partially the main
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Figure 4. Time variation of the upstream pressure profile, scaled by the capillary number
(Ca = 0.002, 0.004, 0.006, 0.008 and 0.01 following the arrow from left to right). The time to
achieve blocking decreases as the surface tension is decreased, while the squeezing time remains
unchanged. λ = 1 and Q = 1/4.

channel (Figures 2b–c), and that the breakup point moves downstream of the T–junction.
This last effect is much more marked for λ = 1. The overall trends are consistent with
that observed for unbounded coflow, where the breakup point moves away from the inlet
for higher viscosities of the dispersed phase (Zhang & Stone 1997; Cramer et al. 2004).
On the other hand, in the unbounded case the droplet size is approximately independent
of the viscosity ratio, which is in clear contrast with the results of our simulations. The
explanation for such marked difference is related to the constrained geometry: here, due
to the presence of the droplet, the changes in the flow of the outer fluid cannot be
neglected.

We next contrast directly the pressure fluctuations, which accompany droplet forma-
tion, for the sequeezing regime (Ca . 0.01) and dripping regime (Ca & 0.02); detailed
results are given in Figures 6 and 7. We observe that for λ = 1 the pressure fluctuations
upstream of the T–junction decrease drastically as we move from the squeezing to the
dripping regime. The perturbation of the outer flow due to the presence of the droplet
in the channel is drastically reduced, and the main driving force for the necking of the
thread is the shear force. On the other hand, pressure fluctuations maintain a much larger
amplitude for λ = 1/8: droplet formation is still governed by the squeezing mechanism,
while there might be some effect due to shear. Similar to the volume versus Ca plot of
Figure 2, we demonstrate the different qualitative nature of the squeezing and dripping
regimes by considering the variation of the pressure fluctuations ∆p (Figure 7). While for
low Ca the amplitude remains constant, in the dripping regime there is a clear decrease,
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Figure 5. Variation of the dimensionless droplet volume with flow rate ratio for low capillary
number, Ca = 0.005.

which is well pronounced for λ = 1, and more gradual for λ = 1/8. We believe that
this behaviour – of a more gradual transition to dripping at lower values of λ – suggests
that the description of the dynamics of breakup with the use of the capillary number
calculated only for the continuous phase is not sufficient. For λ significantly different
than unity, one should take into account an effective capillary number calculated on the
basis of capillary numbers for both phases.

4.3. High Ca: the dripping regime

In order to clarify the role of shear stresses in the dripping regime, we consider two
model scaling relations proposed by Umbanhovar et al. (2000) for breakup in a coflowing
unbounded fluid, and by Thorsen et al. (2001) for breakup in a T–junction. In both cases
one assumes that breakup occurs when the interfacial force is nearly balanced by the
shear force, such that r ∼ σ/(µ ε̇) where r is the final droplet radius and ε̇ is the shear
rate exerted on the droplet, based upon the mean speed of flow of the continuous phase.
Thorsen et al. (2001) took into account the fact that the emerging droplet decreases the
cross–section of the channel available for the flow of the continuous fluid. In order to
maintain the volumetric rate of flow, the continuous phase flows faster through the gap
between the droplet and the wall of the channel, compared to the case of an unobstructed
channel, and exerts a larger shear stress on the droplet. This effect, in turn, results in
smaller size of the droplets that are formed in confined geometry – smaller than for the



12 M. De Menech, P. Garstecki, F. Jousse and H. A. Stone

Figure 6. Pressure as a function of time upstream of the T–junction for different values of
the capillary number. The oscillations correspond to the droplet formation frequency; as Ca
is increased, the frequency increases while the amplitude of the pressure fluctuations drops, as
shown in the curves from top to bottom. The pressure on the vertical axis is rescaled by the
capillary number, such that the amplitude of the fluctuations can be reported on the same scale
for both the squeezing regime (Ca < 0.015) and the dripping regime (Ca > 0.015). λ = 1 and
Q = 1/4.

same superficial speed of flow of the continuous fluid in an unbounded case. In particular
Thorsen et al. (2001) calculated the shear stress on the basis of the measured size of the
gap between the dispersed fluid and the side walls of the main channel. We performed
a similar analysis: we measured the gap area in our simulations, and estimated ε̇ as the
ratio between the average flow speed in the gap, vg , and linear width of the gap, Lg,
estimated by the square root of the cross section of the gap. We will use the rescaled
shear rate ε̇d = ε̇L/vd. Based on the dimensionless groups, we write

R =
r

L
∼

1

Ca ε̇d

. (4.1)

In Figure 8 we plot the radius of the droplet calculated on the basis of equation (4.1) and
compare it to the radius measured in our simulations. The prediction overshoots by an
order of magnitude the actual radius. In fact, in (Thorsen et al. 2001) the calculated radii
of the droplets were also systematically larger than the observed values. This discrepancy
is in fact consistent with the general observation that droplet breakup is much easier in
microfluidic devices than for unbounded flows. Even considering the actual shear flow in
the breakup region, the critical capillary number can easily be ten times smaller than
for free flow conditions (Link et al. 2004). From our simulations of the dripping regime
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Figure 7. Variation of the pressure fluctuation ∆p upstream the T–junction with the capillary
number for two values of the viscosity ratio, λ = 1 and λ = 1/8. The pressure is rescaled by the
surface tension by multiplying by the capillary number Ca. Similar to Figure 2, this diagram
clearly illustrates the transition from the squeezing regime to the dripping regime, where there
is a strong dependence on the viscosity ratio.

we find R ∼ 1/(Ca ε̇d)
0.4, i.e. the radius of the droplet increases far more slowly than

one would expect form the scaling law (4.1). All the observations above point to the
fact that there are additional forces exerted on the droplet that pull it downstream and
speed up the breakup. Observing that even in the dripping regime the droplets typically
occupy a substantial portion of the cross–section of the microchannel, we can associate
this additional force with an elevated pressure drop along the length of the emerging
droplet (Stone 2005), which is the same effect that played the dominant role in the
squeezing regime.

Summarizing, although the process of formation of droplets in the dripping regime is
reminiscent of dripping in coflow in an unbounded fluid, it is fundamentally different
because the pressure effects are never negligible, unless the radius of the droplet is much
smaller than the width of the channel. Combination of shear stresses and the pressure
makes quantitative analysis of the scaling of the size of the droplets formed in this regime
particularly difficult (note that the range of the values of capillary number over which we
observe dripping is quite small). As the capillary number is further increased the breakup
point moves progressively downstream from cycle to cycle, and a jet is formed. There
clearly is a transition from the stable dripping regime to a jetting regime. We were not,
however, able to explore this regime in detail, as it requires very large simulation boxes.

5. Discussion

Our numerical study of the dynamics of breakup in a T–junction has revealed three
distinct regimes of formation of droplets: squeezing, dripping and jetting. The first regime
– squeezing – is particular to microfluidic geometries because it depends crucially on
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Figure 8. Variation of the droplet radius with the ratio between surface tension stresses and
shear stresses, equal to 1/(Ca ε̇d), where Ca is the capillary number and ε̇d is the dimensionless
shear rate of the continuous phase. The data refer to the dripping regime (Ca > 0.015). Q = 1/4,
λ = 1.

strong physical confinement of the interfacial dynamics. The evolution of pressure that
we observe in our simulations upstream of the emerging droplet confirms the model of
break-up proposed in Garstecki et al. (2006) and Guillot & Colin (2005). In this regime
the dominating contribution in the dynamics of break-up arises from the buildup of
pressure, which results from the blocking of the cross-section of the main channel by the
tip of the discontinuous phase. We observe this regime at low values of capillary numbers
with the transition to a regime in which the shear stresses exerted on the emerging droplet
begin to play a significant role at Ca ∼ 0.015 for λ = 1, and at slightly higher values for
λ = 1/8. The size (volume) of the droplets and bubbles formed in the squeezing regime
can be described by a simple scaling relation of the form: V = 1 + αQ, where α is a
constant of order unity, who’s exact value depends on the geometry of the T-junction,
and is independent of λ Garstecki et al. (2006). There are two important characteristics
of the squeezing regime: i) the lack of dependence of the size of the droplets (bubbles) on
material parameters (e.g. viscosities of the fluids, or interfacial tension) make this mode
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of break-up particularly simple for use in applications, allowing for varying the fluids
without altering the dynamics of formation of the discrete elements of fluid, and ii) the
fact that break-up in this regime is not driven by shear stresses exerted on the emerging
droplets (bubbles) allows for emulsification in conditions in which the capillary number
can be very small – that is even in very small devices and at very small rates of flow.

We observe that the dripping, or shear–driven, breakup regime, is strongly modified
in the microfluidic setting of a T-junction geometry with respect to the analogous mode
of break-up in unbounded fluids, due to the effects of confinement. Even when the shear
stresses exerted on the emerging droplet are able to deform it substantially, it still occu-
pies a significant portion of the cross-section of the channel. Thus, the effects of buildup
of pressure upstream of the emerging droplet are still present, and they modify the con-
dition for break-up (facilitating it). Due to a small range of the values of the capillary
number over which we observe dripping – before it is replaced by jetting – is is not rea-
sonable to propose any scaling relation for the size of the droplets formed in this regime.
In the jetting regime the stream of the discontinuous fluid extends downstream of the
T-junction and the two immiscible fluids flow laminarly side-by-side over lengths of the
channel which are several times larger than its width.
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