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We study the effect of a one dimensional optical superlattice on the superfluid fraction, number
squeezing, dynamic structure factor and the quasi-momentum distribution of the Mott-insulator.
We show that due to the secondary lattice,there is a decrease in the superfluid fraction and the
number fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy
is also suppressed due to the addition of the secondary lattice. The visibility of the interference
pattern (the quasi-momentum distribution)of the Mott-insulator is found to decrease due to the
presence of the secondary lattice. Our results have important implications in atom interferometry
and quantum computation in optical lattices.

I. INTRODUCTION

When a gas of ultracold atoms is loaded into an optical lattice,its properties are modified strongly[1]. Ultracold
bosons trapped in such periodic potentials have been widely used recently as a model system for the study of some
fundamental concepts of quantum physics like Josephson effects[2], squeezed states,[3] landau-Zener tunneling and
Bloch oscillations [4]and superfluid-Mott insulator transition [5]. Using superposition of optical lattices with different
periods [6], it is now possible to generate more sophisticated periodic potentials characterized by a richer spatial
modulation, the so-called optical superlattices. An important and exciting application of optical superlattice is
quantum computation [7]. The light shifted potential of the superlattice is described as

V (z) = V1 cos2
(
πz

d1

)
+ V2 cos2

(
πz

d2
+ φ

)
(1)

Here d1 and d2 > d1 are respectively, the primary and secondary lattice constants. V1 and V2 are the respective
amplitudes. The secondary lattice acts as a perturbation and hence V2 << V1. The phase φ of the secondary
lattice is set to zero. The physics of one-dimensional optical superlattices has been a subject of recent research,
including fractional filling Mott insulator (MI) domains [8], dark [9]and gap [10] solitons, the Mott-Peierls transition
[11], non-mean field effects ,[12] phase-diagram in two colour superlattices ,[13] Bloch-Zener and dipole oscillations
[14], collective oscillations [15]and Bloch and Bogoluibov spectrum .[16] A key observable in these systems is the
inteference pattern observed after releasing the gas from the lattice and letting it expand for a certain time of flight.
Monitoring the evolution of this interference pattern reveals e g., the superfluid fraction, number squeezed states
[3, 17], quasi-momentum distribution, observation of collapse and revivals of coherence due to atomic coherence [18]
and superfluid to Mott insulator transition [5, 19]. Further coherence properties of Bose-Einstein condensates offer
the potential for improved interferometric phase contrast. The MI state plays a central role for various quantum
information processing schemes [20]. Because of the experimental importance of BEC in optical lattices, it is crucial
to understand the influence of the secondary lattice which is emerging as a new manipulating tool on the coherence
properties of a BEC. In the present paper, we study in what way the superfluid fraction, number fluctuation, the
dynamic structure factor and the quasi-momentum distribution (and hence the visibility of the interference pattern)
of the MI is influenced by the addition of the secondary lattice.

II. THE BOGOLUIBOV APPROXIMATION TO THE BOSE-HUBBARD HAMILTONIAN

We consider a cigar shaped Bose-Einstein condensate trapped in an one-dimensional optical superlattice. In
the classical(mean-field) approximation, the BEC dynamics at T = 0 is governed by the Gross-Pitaevskii energy
functional[16]
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E0 =
∫
dV ψ†(r, z)

(
− ~

2

2m
∇2 + Vho(r, z) + Vop(z) +

U

2
|ψ(r, z)|2

)
ψ(r, z). (2)

Here, Vho(r, z) = m
2

(
ω2

rr
2 + ω2

zz
2
)

is the harmonic trap potential and Vop = ER

(
s1 cos2(πz

d ) + s2 cos2(πz
2d

)
is the

optical superlattice potential with d2 = 2d1 = 2d.s1 and s2 are the dimensionless amplitudes of the primary and
secondary superlattice potentials with s1 > s2. ER = ~2π2

2md2 is the recoil energy (ωR = ER

~ is the corresponding
recoil frequency) of the primary lattice.U = 4πa~2

m is the strength of the two body interaction and a is the two
body scattering length.We take ωr > ωz so that an elongated cigar shaped BEC is formed. The harmonic oscillator
frequency corresponding to small motion about the minima of the optical superlattice is ωs ≈

√
s1~π2

md2 . The BEC
is initially loaded into the primary lattice and the secondary lattice is switched on slowly so that the BEC stays in
the vibrational ground state. The frequency of each minima of the primary lattice is not perturbed significantly by
the addition of the secondary lattice. ωs >> ωz so that the optical lattice dominates the harmonic potential along
the z-direction and hence the harmonic potential is neglected. The strong laser intensity will give rise to an array of
several quasi-two dimensional pancake shaped condensates.Because of the quantum tunneling, the overlap between
the wavefunctions between two consecutive layers can be sufficient to ensure full coherence. The three dimensional
wavefunction of the condensate is written as

ψ(r, z) =
∑

j

ψj(r)w(z − zj) (3)

Here, ψj(r) is the wavefunction of the condensate along the radial direction at the site j and w(z− zj) is the localized
wavefunction at the j site along the z-direction. In the limit of tight binding w(z − zj) is written as [16]

w (z − zj) =
(mωs

π~

)1/4

exp
[
−mωs

2~
(z − zj)

2
]

(4)

where zj = jd. Substituting equation (3) into equation (2) and considering only nearest neighbour interactions, we
get the following energy functional

E0 =
∑

j

∫
dx dy

[−~2

2m
ψ†j∇2

rψj + Vho(x, y)|ψj |2
]

+
Ueff

2

∑

j

∫
dx dy ψ†jψ

†
jψjψj

−
∑

j

Jj

∫
dx dy

[
ψ†j±1ψj + ψ†jψj±1

]
(5)

Here Jj is the site dependent strength of the Josephson coupling and is different when going from j − 1 to j and j
to j + 1.

Jj = −
∫
dz w(z)

[
− ~

2

2m
∇2

z + Vop(z)
]
w(z + d) (6)

One can show using equations (4) and (6) that there are distinctly two Josephson coupling parameters J1 and J2

J1 =
ER

2

[
s1π

2

2
−√s1 − s1 − s2

]
exp

(
−
√
s1π

2

4

)
(7)

J2 =
ER

2

[
s1π

2

2
−√s1 − s1 + s2

]
exp

(
−
√
s1π

2

4

)
(8)

The two Josephson coupling parameters are conveniently written as J0 ± ∆0/2, where J0 =
ER

2

[
s1π2

2 −√s1 − s1

]
exp

(
−
√

s1π2

4

)
and ∆0 = s2ERexp

(
−
√

s1π2

4

)
. The strength of the effective on-site interac-

tion energy is Ueff = U
∫
dz |w(z)|4. The Bose-Hubbard Hamiltonian for the I lattice sites corresponding to the
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energy functional of equation (5) is similar to an effective 1D Bose-Hubbard Hamiltonian in which each lattice site is
replaced by a layer with radial confinement.

H = −
I∑

j=1

Jj

[
a†jaj+1 + a†j+1aj

]
+
U
′
eff

2

I∑

j=1

a†ja
†
jajaj (9)

Here U
′
eff = Ueff/V2d, V2d is the two dimensional area of radial confinement and Jj =

(
J0 − ∆0

2 (−1)j
)
. We now

use the Bogoliubov approximation for the Bose-Hubbard model. In this approximation, we write the annihilation
operator in terms of the c-number part and a fluctuation operator as

âj =
(
φ+ δ̂j

)
exp

(
− iµt
~

)
(10)

The resulting Bogoliubov equations for the fluctuation operator δ̂j in the optical superlattice take the following form

i~ ˙̂
δj = (2Ueffn0 − µ) δ̂j − Jj δ̂j+1 − Jj−1δ̂j−1 + Ueffn0δ̂

†
j (11)

n0 is the 2d average density of atoms per site of the lattice. The above equation is solved by constructing quasi-
particles for the lattice, which diagonalize the Hamiltonian i.e

δ̂j =
1√
I

∑
q

[
uq

j b̂
†
qe

i(jq2d−ωqt) − vq
j b̂qe

−i(jq2d−ωqt)
]

(12)

The quasi-particles obey the usual Bose-commutation relations

[
bq, b

†
q′

]
= δqq′ . (13)

The excitation amplitudes obey the periodic boundary conditions

uq
j+1 = uq

j−1, v
q
j+1 = vq

j−1 (14)

We then find the following equations for the amplitudes and frequencies

~ωqu1 = (n0Ueff + 2J0)u1 − n0Ueffv1 − (2J0 cos 2qd+ i∆0 sin 2qd)u2

~ωqv1 = − (n0Ueff + 2J0) v1 + n0Ueffu1 + (2J0 cos 2qd+ i∆0 sin 2qd) v2
~ωqu2 = (n0Ueff + 2J0)u2 − n0Ueffv2 − (2J0 cos 2qd− i∆0 sin 2qd)u1

~ωqv2 = − (n0Ueff + 2J0) v2 + n0Ueffu2 + (2J0 cos 2qd− i∆0 sin 2qd) v1
(15)

These relations yield the Bogoluibov amplitudes as

|uq
j |2 = |uq

j+1|2 =
1
2

(
ε̃q,− + n0Ueff + ~ωq,−

~ωq,−

)
(16)

|vq
j |2 = |vq

j+1|2 =
1
2

(
ε̃q,− + n0Ueff − ~ωq,−

~ωq,−

)
(17)

uq
j u

∗q
j+1 =

(
2J0 cos 2qd+ i∆0 sin 2qd√
4J2

0 cos 2qd+ ∆2
0 sin 2qd

)
|uq

j |2 (18)
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vq
j v

∗q
j+1 =

(
2J0 cos 2qd+ i∆0 sin 2qd√
4J2

0 cos 2qd+ ∆2
0 sin 2qd

)
|vq

j |2 (19)

vq
ju

q
j+1 = uq

jv
q
j+1 (20)

where ~ωq,− =
√
ε̃q,−(2n0Ueff + ε̃q,−),ε̃q,− = 2J0 −

√
4J2

0 cos2 2qd+ ∆2
0 sin2 2qd is the acoustical branch. There

is another branch called the gapped branch (analogue of the optical branch) whose energy is given by [16] ~ωq,+ =√
ε̃q,+(2n0Ueff + ε̃q,+),ε̃q,+ = 2J0 +

√
4J2

0 cos2 2qd+ ∆2
0 sin2 2qd.

III. SUPERFLUID FRACTION AND NUMBER FLUCTUATIONS

An interacting many body system is said to be superfluid, if a condensate exists. This happens when the one-body
density matrix has exactly one macroscopic eigenvalue, which defines the number of particles in the condensate. The
corresponding eigenvector describes the condensate wavefunction, ψ0(~r) = eiφ(~r)|ψ0(~r)|2. The superfluid velocity is
given as

~vs(~r) =
~
m∗

~∇φ(~r) (21)

Here m∗ is the effective mass of a single atom in the optical superlattice. We now write down the expression for
the superfluid fraction based on the rigidity of the system under a twist of the condensate phase [21]. Suppose we
impose a linear phase twist φ(~r) = θz

L , with a total twist angle θ over a length L of the system (with ground state
energy E0) in the z direction. The resulting ground state energy, Eθ will depend on the phase twist. Thus,

Eθ − E0 =
1
2
m∗Nfsv

2
s (22)

where N is the total number of particles, fs is the superfluid fraction and m∗ = J0~2
2d2(4J2

o−∆2
0)

. Substituting equation
(21) into (22)gives

fs =
4J0(Eθ − E0)

N(4J2
0 −∆2

0)(∆θ)2
(23)

Here ∆θ is the phase variation over 2d. We now need to calculate the energy change (Eθ −E0) using second order
perturbation theory, under the assumption that the phase change, ∆θ is small. This yields

(Eθ − E0) = ∆E(1) + ∆E(2) (24)

Where ∆E(1) is the first order contribution to the energy change

∆E(1) = − (∆θ)2

2

〈
ψ0|T̂ |ψ0

〉
(25)

Here |ψ0〉 is the ground state of the Bose-Hubbard Hamiltonian. The hopping operator T̂ is given by

T̂ = −
I∑

j=1

Jj

(
â†j+1âj + â†j âj+1

)
(26)

The second order contribution is written as
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∆E(2) = − (∆θ)2
∑

ν 6=0

|
〈
ψν |Ĵ |ψ0

〉
|2

Eν − E0
(27)

where the current operator Ĵ is

Ĵ = −
I∑

j=1

Jj

(
â†j+1âj − â†j âj+1

)
(28)

The total superfluid fraction has two contributions.

fs = f (1)
s + f (2)

s (29)

where

f (1)
s = − 2J0

N(4J2
0 −∆2

0)

〈
ψ0|T̂ |ψ0

〉
(30)

f (2)
s =

2J0

N(4J2
0 −∆2

0)

∑

ν 6=0

|
〈
ψν |Ĵ |ψ0

〉
|2

Eν − E0
(31)

Using the expressions for the various Bogoliubov amplitudes and frequencies, we can now evaluate f (1)
s and f (2)

s .

f (1)
s =

2J0

N(4J2
0 −∆2

0)

I∑

j=1

Jj

〈
ψ0|â†j+1âj + â†j âj+1|ψ0

〉
(32)

In the Bogoluibov approximation this takes the form

f (1)
s =

2J0

N(4J2
0 −∆2

0)

I∑

j=1

Jj

〈
ψ0|2φ2

j + δ̂†j+1δ̂j + δ̂†j δ̂j+1|ψ0

〉
(33)

The fluctuation operators appearing in equation (32) are now written in terms of the quasi-particle operators.

f (1)
s =

2J0

N(4J2
o −∆2

0)
[

I∑

j=1

Jj(2φ2
j ) +

1
2

I∑

j=1

∑

q,q′
Jj

〈[
uq∗

j+1bqe
iq(j+1)2d − vq

j+1b
+
q e
−iq(j+1)2d

] [
uq′

j b
†
q′e

−iq′j2d − v∗q
′

j b†q′e
iq′j2d

]〉

+
〈[
uq∗

j b
†
qe
−iqj2d − vq

j b
†
qe

iqj2d
] [
uq′

j+1b
†
q′e

iq′(j+1)2d − v∗q
′

j+1b
†
q′e

−iq′(j+1)2d
]〉

] (34)

Finally, we find in the zero temperature limit

f (1)
s =

4J0

N(4J2
o −∆2

0)





I∑

j=1

Jj(φ2
j ) +

∑
q

J0

(
u∗2u1e

i2qd + u2u
∗
1e
−i2qd

)


 (35)

Here, the summation runs over all quasi-momenta q = πj
Id with j = 1, 2, ...(I − 1). The normalization condition is

obtained by putting f (1)
s = 1 when d→ 0.



6

0 0.1 0.2 0.3 0.4
s2
�������

s1

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

f
s

Figure 1: The superfluid fraction as a function of s2/s1. /, Ueff/J0 = 0.1 with I = 3 and n = 6. As the strength of the
secondary lattice increases with a fixed strength of the primary lattice, there is a quantum depletion of the condensate which
is seen as a decrease in the superfluid fraction.

I∑

j=1

Jj(φ2
j ) + J0

∑
q

J02Re(u1u
∗
2) =

N(4J2
0 −∆2

0)
4J0

(36)

Using the Bogoluibov amplitudes derived in the previous section, one can show that f (2)
s = 0. Consequently, we

find that the total superfluid fraction has contribution from just f (1)
s . A plot (Figure 1) of the superfluid fraction as a

function of s2/s1 reveals a decrease in the superfluid fraction as the strength of the secondary lattice increases. This is
to be expected since in the presence of the secondary lattice,it has been shown that there exists a fractional filling Mott
insulating state in the phase diagram [8].This itself is an indication of a reduced superfluid fraction.As the strength of
the secondary lattice increases, we approach the Mott-insulator transition. Since the phase twist is equivalent to the
imposition of an acceleration on the lattice for a finite time, the condensate now in the superllatice seems to resist this
acceleration or simply put tries to resist the phase twist and thus there is a reduction in the superfluid flow. A direct
consequence of the decrease of the superfluid fraction is a decrease in the number fluctuation, which we show below.
Increasing the lattice depth reduces the tunneling rate between adjacent wells. This can be viewed as a reduction
of the number fluctuations at each lattice site. As the probability of the atoms to hop between wells decreases, the
number variance σngoes down. Quantum mechanically, this implies that the phase variance σφ decribing the spread in
relative phases between the lattice wells, has to increase. This effect can be seen directly by looking at the interference
pattern of a BEC released from an optical trap. We can find an expression for the fluctuations in the relative number
in each well as [21]

〈
n̂2

i − 〈n̂i〉2
〉

=
n

I

∑
q

(uq − vq)2 (37)

and

(uq − vq)2 =
εq
~ωq

(38)

I is the total number of sites and n is the mean number of atoms on each site of the lattice.A plot (Figure 2)of
the number fluctuations versus s2/s1 reveals as expected a decrease with increasing strength of the secondary lattice
indicating a loss of phase coherence. The number variance may be measured experimentally by studying the collapse
tc and revival trev times of the relative phase between sites [22]. The relation is given by σn = trev

2πtc
. This reduction

in the number fluctuation is also called as the atom number squeezing. This increased squeezing as a result of the
secondary lattice has an important application in in improved atom interferometry since with increased squeezing the
coherence time also increases [23]. These atom number squeezed states have reduced sensitivity to mean-field decay
mechanisms. The secondary lattice then serves to coherently maintain a balance between coherence as well as the
decoherence effects due to mean-field interaction.
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Figure 2: The number fluctuation as a function of s2/s1./, Ueff/J0 = 0.1 with I = 3 and n = 6. As the strength of the
secondary lattice increases, there is a loss of superfluidity. The interplay of the interaction and tunneling terms renders number
fluctuations energetically unfavorable. The number fluctuations decrease with increasing potential of the secondary lattice.
There is a corresponding increase in the phase fluctuations.

IV. DYNAMIC STRUCTURE FACTOR

The capability of the system to respond to an excitation probe transferring momentum p and energy ~ω is described
by the dynamic structure factor. In the presence of a periodic potential the dynamic structure factor takes the form

S(p, ω) =
∑
α

Zα(p)δ[ω − ωα(p)] (39)

where Zα(p) are the excitation strengths relative to the αth mode.α is the band label. For each value of the
quasi-momentum q, there are infinite set of excitation energies ~ωα(q). It is often convenient to consider values of
q outside the first Brillouin zone and to treat the energy spectrum and Bogoluibov excitation amplitudes uq

j,α and
vq

j,α as periodic with period 2qB . Here qB = ~π
2d is the Bragg momentum denoting the boundary of the first Brillouin

zone. p is assumed to be along the optical lattice (z axis), is not restricted to the first Brillouin zone since it is the
momentum transferred by the external probe. The quantities q, p and qB are related as q = p+ 2lqB , l is an integer.
In the first Brillouin zone l = 0. The excitation energies ~ωα(p) are periodic as a function of p but this is not true for
the excitation strengths Zα. The excitation strengths Zα can be evaluated using the standard prescription [24]

Zα(p) = |
∫ d

−d

[u∗qα (z)− u∗qα (z)] eipz/~φ(z)dz|2 (40)

Since |uq
j,α|2=|uq

j+1,α|2 and |vq
j,α|2=|vq

j+1,α|2, we will drop all j dependence from the Bogoluibov amplitudes. The
excitation frequencies for different α has already been derived in our earlier work .[16] We are interested in the low
energy region where Z1(p) is the dominating term arising from the first band. The dispersion law for the lowest band
is

~ω1(p) =
√
ε̃p(2n0Ueff + ε̃p) (41)

ε̃p = 2J0 −
√

4J2
0 cos2

(
2pπ
qB

)
+ ∆2

0 sin2

(
2pπ
qB

)
(42)

The behaviour of Z1(p) can be studies analytically in the tight binding limit. In this limit one can approximate the
Bogoluibov ampliudes in the lowest mode as.
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Figure 3: The excitation strength Z1(p) for two values of s2
s1

= 0.1 (solid line) and s2
s1

= 0.4 (dashed line).Ueff/J0 = 0.2.

The figure shows both the oscillatory behaviour through ε̃(p)
~ω1(p)

and decaying behavour at large p through exp
“
−π2σ2p2

8d2q2
B

”
.On

increasing the strength of the secondary lattice, Z1(p) is found to be quenched. The first maxima is found near the edge of the
first Brilliouin zone.

uα(z) =
∑

j

eij2qd/~f(z − 2jd) (43)

and analogously for vα(z), where f(z) is a function localized near the bottom of the optical potential V at z = 0,
and j labels the potential wells. Within this approximation the function f also characterizes the ground state
order parameter which reads φ(z) =

∑
j f(z − 2jd). We can approximate the function f(z) with the gaussian

f(z) = exp
[−z2/2σ2

]
/

(
π1/4

√
σ
)
. The width σ is found by minimizing the ground state energy

E0 =
2
2d

∫ d

−d

[
~2

2m
|∂φ
∂z
|2 +

{
s1ERcos

2
(πz
d

)
+ s2ERcos

2
(πz

2d

)}
|φ|2 +

U

2
|φ|4

]
dz (44)

and behaves like σ ∼ d
(s1+s2/4)1/4 . After some trivial algebra we find

Z1(p) =
ε̃p

~ω1(p)
exp

(
−π

2σ2p2

8d2q2B

)
(45)

The expression for Z1(p) shows both the oscillatory behaviour through ε̃p

~ω1(p) and decaying behavour at large p

through exp
(
−π2σ2p2

8d2q2
B

)
. Figure 3 shows the excitation strength Z1(p) for two values of s2

s1
= 0.1 (solid line) and

s2
s1

= 0.4 (dashed line).On increasing the strength of the secondary lattice, Z1(p) is quenched. This behaviour can

be understood by looking at the low p limit of S(p) =
∫
S(p, ω)dω = |p|

2
√

m∗n0Ueff

. on increasing s2, m∗ increases

and hence S(p) decreases. The presence of the secondary lattice results in the suppression of Z1(p). The system now
becomes more heavy and is not able to respond to an external excitation probe. The momentum transferred is now
comparatively less. Note that in the absence of interations, the oscillatory behaviour disappears and the strength
reduces to Z1(p) = exp

(
−π2σ2p2

8d2q2
B

)
. This shows that the effect of the secondary lattice on the quenching is present only

in the presence of interactions.The zeroes of Z1(p) at p = 2lqB reflects the phonon behaviour of the excitation spectrum
which also vanishes at the same values. The quantity Z1(p) can be measured in Bragg spectroscopy experiments by
applying an additional moving optical potential in the form of VB(t) = V0 cos (pz

~ )− ωt. The momentum and the
energy transferred by the Bragg pulse must be tuned to the values of p and ~ω corresponding to the first Bogoluibov
band.
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V. QUASIMOMENTUM DISTRIBUTION OF THE MOTT INSULATOR IN AN OPTICAL
SUPERLATTICE: VISIBILITY OF FRINGES

For a Bose-Einstein condensate released from an optical lattice, the density distribution after expansion shows a
sharp interference pattern. In a perfect Mott-insulator, where atomic interactions pin the density to precisely an
integer number of atoms per site, phase coherence is completely lost and no inteference pattern is expected. The
transition between these two limiting cases happens continuously as the lattice depth is increased. In this section,
we will look into the influence of increasing the strength of the secondary lattice on the phase coherence of the
insulating phase. We consider an integer number n of atoms per site and J0 ± ∆0

2 << Ueff . In this situation the
gas is in the Mott-insulator phase. The Mott insulating phase has the property that the fluctuations in the average
number of particles per site goes to zero at zero temperature. These fluctuations can be described as quasihole
and quasiparticle excitations. To calculate the qusimomentum distribution S(k) for a finite tunneling, path integral
techniques can be applied to obtain the single-particle Green function, G(~k, ω). The quasi-momentum distribution is
an useful quantity to describe the interference pattern observed after release of the cold cloud from the optical lattice.
From the absorption image of such an interference pattern, the phase coherence of the atomic sample can be directly
probed.To extract quantitative information from time-of-flight absorption images, one can use the usual definition of
the visibility of interference fringes [25],

V =
Smax − Smin

Smax + Smin
(46)

The quasimomentum distribution S(k) contains information about the many-body system which is periodic with
the periodicity of the reciprocal lattice corresponding to the secondary lattice. Thus to predict the interference pattern
in the superlattice, our goal is to calculate S(k) as function of J0 and ∆0. We calculate the quasiparticle and quasihole
dispersions using the functional integral formalism of Van Oosten et. al. [26]. The grand-canonical partition function
in terms of the complex functions a∗j (τ) and aj(τ) is written as

Z = Tre−βH =
∫
Da∗Daexp {−S [a∗, a] /~} (47)

where the action S[a∗, a] is given by

S[a∗, a] =
∫ ~β

0

dτ


∑

j

a∗j

(
~
∂

∂τ
− µ

)
aj −

∑

j,j′
Jjj′a

∗
jaj′ +

Ueff

2

∑

j

a∗ja
∗
jajaj


 (48)

Jj,j′ is the hopping element, β = 1/kBT , kB is the Boltzmann constant and T is the temperature. A Hubbard-
Stratonovich transformation decouples the hopping term.

S [a∗, a, ψ∗, ψ] = S [a∗, a] +
∫ ~β

0

dτ
∑

j,j′

(
ψ∗j − a∗j

)
Jjj′ (ψj − aj) (49)

Here ψ∗ and ψ are the order parameter fields. Integrating over the original fields a∗j and aj , we find

exp
(−Seff [ψ∗, ψ] /~

)
= exp


−1

~

∫ ~β

0

dτ
∑

j,j′
Jjj′ψ

∗
jψj′




∫
Da∗Daexp

(
−S(0)[a∗, a]/~

)

exp


−1

~

∫ ~β

0

dτ


−

∑

j,j′
Jjj′

(
a∗jψj′ + ψ∗j aj′

)




 (50)

Here S(0)[a∗, a] is the action for Jj,j′ = 0. We can now calculate Seff perturbatively by Taylor expanding the
exponent in the integrand of equation (49) and find the quadratic part of the effective action using

〈
a∗ja

∗
j′

〉
S(0) =

〈ajaj′〉S(0) = 0,
〈
a∗jaj′

〉
S(0) =

〈
aja

∗
j′

〉
S(0) =

〈
aja

∗
j

〉
S(0) δjj′ ,
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S(2)[ψ∗, ψ] =
∫ ~β

0

dτ


∑

j,j′
ψ∗j (τ)ψj′(τ)− 1

~

∫ ~ω

0

dτ ′
∑

jj′ii′
Jjj′Jii′ψ

∗
j′(τ) 〈 aj(τ)a∗i (τ

′)〉S(0) ψi′(τ ′)


 (51)

We first evaluate the part linear in Jjj′ for nearest neighbours. We have

∑

j,j′
ψj∗(τ)ψj′(τ) =

(
J0 +

∆0

2

)
ψ∗jψj+1 +

(
J0 − ∆0

2

)
ψ∗jψj−1 (52)

We now introduce ψj = [uk + i(−1)jvk]exp(ij2kd). As the condensate moves from one well to the next, it acquires
an additional phase, which depends on the height of the barrier. As the height alternates and hence the tunneling
parameter, the phase also alternates. This picture is conveniently represented by the j dependent amplitude. This
implies

∑

j,j′
ψj∗(τ)ψj′(τ) = 2J0

[|uk|2 − |vk|2
]
cos(2kd)− i2J0 [ukv

∗
k + u∗kvk] cos(2kd) + i∆0

[|uk|2 − |vk|2
]
sin(2kd)

+∆0 [ukv
∗
k + u∗kvk] sin(2kd) (53)

For the imaginary part to vanish we have for the one-dimensional optical lattice

u∗kvk = ukv
∗
k = ψ∗kψk

∆0 sin(2kd)
2εk

(54)

|uk|2 − |vk|2 = ψ∗kψk
2∆0 cos(2kd)

εk
(55)

εk =
√

4J2
0 cos2(2kd) + ∆2

0 sin2(2kd) (56)

Finally we have,

∑

j,j′
ψ∗j (τ)ψj′(τ) =

∑

k

εkψk(τ)ψ∗k(τ) (57)

Next we calculate the part that is quadratic in Jj,j′ . We can treat this part by looking at double jumps.

∑

j′ii′
Jjj′Jii′ψ

∗
j′(τ) 〈aj(τ)a∗i (τ

′)〉S(0) ψi′(τ ′) =
〈
aj(τ)a∗j (τ

′)
〉

S(0)

∑

j′i′
Jjj′Jji′ψ

∗
j′(τ)ψi′(τ ′)

=
〈
aj(τ)a∗j (τ

′)
〉

S(0)





∑

j′j′
Jjj′Jjj′ψ

∗
j′(τ)ψj′(τ ′) + Jjj′Jjj′±2ψ

∗
j′(τ)ψj′±2(τ ′)



 (58)

The first term in the summation is a jump forward, followed by a jump backward. The second is two jumps in the
same direction. The above quadratic term then reduces to

∑

j′ii′
Jjj′Jii′ψ

∗
j′(τ) 〈aj(τ)a∗i (τ

′)〉S(0) ψi′(τ ′) =
〈
aj(τ)a∗j (τ

′)
〉

S(0)

∑

k

ε2kψ
∗
k(τ)ψk(τ ′) (59)

The Green’s function is then easily calculated by following the steps indicated in ref.[26]



11

0 0.1 0.2 0.3 0.4 0.5
s2
�������

s1

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

V

Figure 4: The visibility of the interference pattern produced by an ultracold cloud released from an optical superlattice as
a function ofs2/s1.Ueff/J0 = 0.05.As the strength of the secondary lattices increases, the visibility worsens since the system
gradually goes deeper into the Mott insulator regime and a corresponding gradual loss of long range coherence. A finite visibiliy
even for a Mott-insulator is due to short range coherence since the system consists of a small admixture of particle-hole pairs
on top of a perfect Mott-insulator. A loss of visibility in the superlattice naturally means that there is loss of particle-hole
pairs.

G(~k, ω)
~

=
Zk

~ω + µ− E
(+)
k

+
1− Zk

~ω + µ− E
(−)
k

(60)

The quasiparticle energies E±k are derived as

E±k = −εk
2

+ Ueff

(
n− 1

2

)
± 1

2

√
ε2k − 4εkUeff

(
n+

1
2

)
+ U2

eff (61)

The particle weight Zk is

Zk =

(
E

(+)
k + Ueff

)
√
ε2k − 4εkUeff

(
n+ 1

2

)
+ U2

eff

(62)

The quasimomentum distribution can be directly calculated from the Green function G(~k, ω) using the relation

S(~k) = −i lim
δt→0

∫
dω

2π
G(~k, ω)exp (−iωδt) (63)

This yields

S(~k) = n


 − εk

2 + Ueff

(
n+ 1

2

)
√
ε2k − 4εkUeff

(
n+ 1

2

)
+ U2

eff

− 1
2


 (64)

S(~k) is simply the quasi-momentum distribution which tells us about the many-body system. The visibility of
the interference pattern of a cloud of BEC released from an optical superlattice as a function of the strength of
the secondary lattice is shown in figure 4. As the strength of the secondary lattices increases, the visibility worsens
since the system gradually goes deeper into the Mott insulator regime and a corresponding gradual loss of long range
coherence. A finite visibiliy even for a Mott-insulator is due to short range coherence since the system consists of
a small admixture of particle-hole pairs on top of a perfect Mott-insulator. A loss of visibility in the superlattice
naturally means that there is loss of particle-hole pairs.
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VI. CONCLUSIONS

We have studied the effect of a one dimensional optical superlattice on the superfluid fraction, number squeezing,
dynamic structure factor and the quasi-momentum distribution of the Mott-insulator. We have shown that the
secondary lattice suppresses the superfluidity due to quantum depletion of the condensate and hence generates atom-
number squeezed state which offers a possibilty to create states with reduced sensitivity to mean field decay mechanism
useful for improved atom-interferometry. A coherent control over the phase coherence in the superfluid as well as the
Mott-insulating state can be achieved which has important applications in quantum computing.
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