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Classical bifurcations and entanglement in smooth Hamiltonian system
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We study entanglement in two coupled quartic oscillators. It is shown that the entanglement,
as measured by the von Neumann entropy, increases with the classical chaos parameter for generic
chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a
class of quantum eigenstates, called the channel localized states. For these states, the entanglement
is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork
bifurcation. We place these results in the context of the close connections that may exist between
entanglement measures and conventional measures of localization that have been much studied in
quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the
spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.
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I. INTRODUCTION

The study of entanglement is currently an active area
of research in view of it being a physical resource for
quantum information theory, quantum computing, quan-
tum cryptography and teleportation [1]. At a classical
level, entanglement does not have a corresponding coun-
terpart. However, increasingly it is being realized that
the nature of classical dynamics, whether it is regular or
chaotic, affects entanglement in the quantized version of
the system [2]. In general, larger chaos in the system
leads to larger entanglement production. This has been
established by considering kicked top models [3], bakers
map [4], Dicke model [5], billiard in a magnetic field [6],
kicked Bose-Einstein condensates [7] andN -atom Jaynes-
Cummings model [8]. In contrast to these studies, the
role of classical bifurcations in entanglement of chaotic
systems has not received much attention. Even though
entanglement is a purely quantum attribute, it is never-
theless affected by the qualitative nature of the dynamics
in phase space. The results to this effect are obtained
primarily in the context of quantum phase transitions in
the ground state of infinite systems in which the entan-
glement is maximal at critical parameter values [12]. For
instance, for case of ions driven by laser fields and cou-
pled to a heat bath, i.e, a form of Dicke model was shown
to exhibit maximal entanglement of its ground state at
the parameter value at which classical system bifurcates.
Similar result for the ground state was reported from the
study of coupled tops, a generalization of the two dimen-
sional transverse field quantum Ising model [9] as well
from Jahn-Teller models [10]. The ground state entangle-
ment of mono-mode Dicke model is shown to be related
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to Hopf bifurcation [11]. Qualitatively similar results for
two component Bose-Einstein condensate are also known
[13]. In all these cases, the treatment is confined mostly
to the ground state of the system that exhibits criticality
and involves one single classical bifurcation.

Do these results hold good for chaotic, smooth Hamil-
tonian systems that do not exhibit criticality in the sense
of phase transitions ? As opposed to a single bifurcation,
what happens in bifurcation sequences where stability
loss and stability gain interleave one another ? Both
these questions explore the connection between chaos and
entanglement in a physical setting that is different from
the earlier studies. In the context of this work, we ex-
amine a Hamiltonian system whose classical dynamics is
controlled by a single tunable parameter. The changes
in the parameter leads to changes in the phase space
structure; for instance regularity to chaos transition and
bifurcation sequences of fixed points. Typically, chaotic
systems display a sequence of bifurcations. Consider, for
instance, the coupled oscillator systems, a paradigm of
chaos for smooth Hamiltonian systems and is related to
atoms in strong magnetic fields, the quadratic Zeeman ef-
fect problems [14]. In these cases, one particular sequence
of bifurcation is a series of pitchfork and anti-pitchfork
bifurcations [15]. The pitchfork corresponds to a peri-
odic orbit losing stability and in the Poincarè section this
appears as a elliptic fixed point giving way to a hyper-
bolic fixed point. The anti-pitchfork is when the periodic
orbit gains stability. In this work, we consider coupled
quartic oscillators and show that the entanglement in the
highly excited states of the system is modulated by clas-
sical bifurcations. We could place this in the context of
works that lend support to the notion that for generic
one-particle states there is a strong correlation between
entanglement and measures of localization [16, 17, 18].

http://arxiv.org/abs/0707.0041v1
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II. ENTANGLEMENT IN A BIPARTITE

SYSTEM

A pure quantum state |Ψ〉 composed of many subsys-
tems |φi〉 is said to be entangled if it cannot be written
down as a direct product of states corresponding to each
of the subsystem.

|Ψ〉entangled 6= |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉........⊗ |φn〉 (1)

Thus, entanglement implies stronger than classical cor-
relations. If ρ = |ψ〉〈ψ| is the density matrix representa-
tion for a pure state |ψ〉, then the reduced density matrix
(RDM) can be obtained by applying the trace operation
to one of the degrees of freedom. Thus,

ρ1 = Tr2|ψ〉〈ψ| ρ2 = Tr1|ψ〉〈ψ| (2)

are two RDMs, whose one of the degrees of freedom is
traced out. The notation Tri denotes that the trace oper-
ation is applied on the ith degree of freedom. Schmidt de-
composition [1] provides a representation for |ψ〉 in terms
of product of basis states,

|ψ〉 =
N

∑

i=1

√

λi |φi〉(1) |φi〉(2) (3)

where |φi〉(1) and |φi〉(2) are the eigenvectors of the RDMs
ρ1 and ρ2 respectively, and λi are the eigenvalues of either
of the RDMs. The von Neumann or the entanglement
entropy of pure state is given by,

S = −
N

∑

i=1

λi logλi (4)

Thus, when S = 0, the subsystems are not entangled and
when S > 0, they are entangled. The Schmidt decompo-
sition provides a compact and unique representation for
the given eigenstate (unique in the generic case when the
non-zero spectrum of the RDM is nondegenerate).

III. HAMILTONIAN MODEL AND

BIFURCATION SEQUENCE

A. Quartic oscillator

We consider the Hamiltonian system given by,

H = p2
x + p2

y + x4 + y4 + αx2y2 (5)

with α being the tunable chaos parameter. For α =
0, 2, 6, the system is classically integrable and becomes
predominantly chaotic as α → ∞. This has been exten-
sively studied as a model for classical and quantum chaos
in smooth Hamiltonian systems [19] and exhibits qualita-
tively similar dynamics as the host of problems involving
atoms in strong external fields. In the limit α → ∞, it

is also of relavance as model of classical Yang-Mills field
[20]. To study the quantum analogue of this system, we
quantize it in a symmetrized basis set given by,

ψn1,n2
(x, y) = N (n1, n2) [φn1

(x)φn2
(y) + φn2

(x)φn1
(y)]
(6)

where N (n1, n2) is the normalization constant and
φ(x)φ(y) is the eigenstate of unperturbed quartic oscil-
lator with α = 0. The choice of this form of basis set is
dictated by the fact that the quartic oscillator has C4v

point group symmetry, i.e., all the invariant transforma-
tions of a square. Hence we have chosen the symmetry
adapted basis sets as in Eq. 6 from A1 representation of
C4v point group.

Thus, the nth eigenstate is,

Ψn(x, y) =
∑

j(n1,n2)=1

an,j(n1,n2) ψn1,n2
(x, y) (7)

where an,j(n1,n2) = 〈ψ(x, y)|Ψn(x, y)〉 are the expansion
coefficients in the unperturbed basis space. Note that
n1, n2 are even integers and an,j(n1,n2) = an,j(n2,n1) in
A1 representation of C4v point group. The eigenvalue
equation is solved numerically by setting up Hamiltonian
matrices of order 12880 using 160 even one-dimensional
basis states.

B. Bifurcation sequence in quartic oscillator

In a general chaotic system many bifurcation sequences
are possible. However, a two dimensional Hamiltonian
system can exhibit only five types of bifurcations [15].
One such prominent sequence is a series of pitchfork and
anti-pitchfork bifurcation shown schematically in Fig 1.
To reiterate, a pitchfork bifurcation takes place when a
stable orbit loses stability and gives rise to two stable
orbits. Anti-pitchfork bifurcations happen when a sta-
ble orbit is spontaneously born due to the merger of two
unstable orbits. We will focus on a particular periodic
orbit, referred to as the channel orbit in the literature
[21], given by the initial conditions {x, y = 0, px, py = 0},
which displays such a bifurcation sequence. The Poincaré
section in the vicinity of the channel orbit has interesting
scaling properties and the orbit itself has profound influ-
ence on a series of quantum eigenstates, called localized
states, in the form of density enhancements or scars [22].
Such density enhancements due to channel orbits have
also been noted in atoms in strong magnetic fields or the
diamagnetic Kepler problem [23] as well.

The stability of the channel orbit in the quartic oscil-
lator in Eq (5) is indicated by the trace of monodromy
matrix J(α) obtained from linear stability analysis. It
can be analytically obtained for the channel orbits [24]
as,

Tr J(α) = 2
√

2 cos
(π

4

√
1 + 4α

)

. (8)

The channel orbit is stable as long as |TrJ(α)| < 2 and
it undergoes bifurcations whenever TrJ(α) = ±2. From
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Chaos parameter

FIG. 1: The schematic of a typical bifurcation sequence
involving a series of pitchfork (circles) and anti-pitchfork
(square) bifurcations as a function of chaos parameter. The
solid lines indicate that the orbit is stable and dashed line
indicate instability.

FIG. 2: The Poincare section for the quartic oscillator in Eq.
5 in shown for (a) α = 90 and (b) α = 90.5. Note that at
α = 90 the periodic orbit undergoes a pitchfork bifurcation.

this condition, it is clear that the bifurcations take place
at αn = n(n + 1), (n = 1, 2, 3....). Thus the channel or-
bit undergoes an infinite sequence of pitchfork and anti-
pitchfork bifurcations at α = αn. Note that for n = 9, we
have α = 90 as one of the pitchfork bifurcation points.
The Poincaré sections displayed in Fig 2 shows that the
stable channel orbit at α = 90 (Fig 2(a)) bifurcates and
gives birth to two new stable orbits (Fig 2(b)) while the
channel orbit itself becomes unstable. Thus, pitchfork
bifurcations take place at αn = 2, 12, 30, 56, 90, ..... and
anti-pitchfork at αn = 6, 20, 42, 72, ..... This can be ob-
served in the plot of TrJ(α) as a function of α shown in
Fig 3.

IV. QUARTIC OSCILLATOR STATES AND

REDUCED DENSITY MATRIX

A. Quartic oscillator spectra

The quantum spectrum of the quartic oscillator is ex-
tensively studied and reported [19, 22, 28]. For the pur-
poses of this study, we note that two classes of eigen-
states can be identified. The first one is what we call a
generic state whose probability density |Ψn(x, y)|2 cov-
ers the entire accessible configuration space. Most of the
eigenstates fall in this class and they are instances of
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FIG. 3: The linear stability of the channel orbit as a function
of α. The orbit is stable for |Tr J(α)| < 2. The pitchfork
bifurcation points are indicated by circles and anti-pitchfork
bifurcations are indicated by squares.

Berry’s hypothesis that the Wigner function of a typical
chaotic state condenses on the energy shell [25]. In Fig
4(a), we show the expansion coefficients for the 1973rd
eigenstate of the quartic oscillator counted sequentially
from the ground state for α = 90. Notice that the state
is delocalized over a large set of basis states. These class
of states are well described by random matrix theory.
The second class of states is the localized states, which
has enhanced probability density in the vicinity of the
underlying classical periodic orbits. Theoretical support
for this class of states based on semiclassical arguments
is obtained from the works of Heller [26], Bogomolny and
Berry [27]. As a typical case, Fig 4(b) shows the expan-
sion coefficients for the 1972nd state which is localized
over very few basis states in contrast to the one in Fig
4(a). In this work, we concentrate on a subset of such
eigenstates whose probability density is concentrated in
the vicinity of the channel periodic orbit. This set of
states are nearly separable and can be approximately la-
belled by a doublet of quantum numbers (N, 0) using the
framework of adiabatic theory [22, 28]. Note that such a
labeling is not possible for the generic states since they
are spread over a large number of basis states.

B. Reduced density matrix

In this section, we compute the eigenvalues of the RDM
and the entanglement entropy of the quartic oscillator
eigenstates as a function of the chaos parameter α. In
terms of the expansion coefficients in Eq. (7), the ele-
ments of RDM, Rx, can be written down as,

〈n2|ρ(x)|n′

2〉 =

M
∑

n1=1

Kn1,n2
an1,n2

an1,n′

2
, (9)

where the normalization constant Kn1,n2
= 1 if n1 = n2

and = 1/2 if n1 6= n2. In this case, the y-subsystem
has been traced out. Similarly another RDM, Ry,

with elements 〈n2|ρ(y)|n′

2〉 can be obtained by tracing
over x variables. Let A represent the eigenvector ma-
trix of order (M + 2)/2 with elements an1,n2

, where
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FIG. 4: Quartic oscillator eigenstates for α = 90 in the unper-
turbed basis. (a) 1973rd state (delocalized), (b) 1972nd state
(localized). The inset is the magnification of the dominant
peak. The eigenvalues of the RDMs for (c) 1973rd state and
(d) 1972nd state. The inset in (d) is the magnification of the
dominant eigenvalues that display degeracy.

n1, n2 = 0, 2, 4....M labels the rows and columns respec-
tively. Then, in matrix language, the RDM Rx = A

T
A

is matrix of order (M + 2)/2.
In our case, M = 318 and we numerically diagonal-

ize the RDM of order 160. The eigenvalues of RDM for
a typical delocalized state and a localized state is plot-
ted in Fig 4(c,d). In general, the dominant eigenvalues
fall exponentially, though with different rates, for both
the generic and typical localized state indicating that
the Schmidt decomposition provides a compact represen-
tation for the given eigenstate. Earlier such a behavior
was noted for coupled standard maps [2]. The first few
dominant eigenvalues of RDM for localized states display
(near-)degeneracy (see Fig 4(d)). This arises as a conse-
quence of (i) C4v symmetry of the potential due to which
the eigenvector matrix is symmetric, i.e, an1,n2

= an2,n1

and (ii) the localization is exponential in the direction
perpendicular to that in which the quanta of excitation
is larger [28], i.e, aN,n2

∝ exp(−ωn2), where ω > 0 is a
constant independent of N .

The origin of near-degeneracy can be understood by by
considering a simple model of 4×4 symmetric eigenvector
matrix (the state number index n is suppressed such that
an,j(n1,n2) = an1,n2

),

P =







a0,0 a2,0 aN,0 aN+2,0

a2,0 a2,2 aN,2 aN+2,2

aN,0 aN,2 aN,N aN+2,N

aN+2,0 aN+2,2 aN+2,N aN+2,N+2






. (10)

Here we have only used the one-dimensional quartic os-
cillator quantum numbers (0, 2, N,N+2) because the lo-
calized states can be approximately well represented by
all possible doublets arising from these quantum num-
bers. For instance, an adiabatic separation with the
(N, 0) manifold gives a good estimate for the energy of
its localized states [28]. The representation gets better
as we add more 1D quantum numbers to the list above.

The exponential localization implies that an1,n2
≈ 0 for

n1 ∼ n2. Further, an1,n2
≈ 0 if n1, n2 << N . Thus,

elements aN,N ∼ aN+2,N ∼ aN+2,N+2 ∼ a0,0 ≈ 0. Then,
we can identify a block matrix B with non-zero elements
as,

B =

(

aN,0 aN+2,0

aN,2 aN+2,2

)

(11)

Then, the eigenvector matrix P can be approximated as,

P ≈
(

0 B

B
T

0

)

. (12)

Under the conditions assumed above, the RDM separates
into two blocks which are transpose of one another. Thus,
the reduced density matrix will have the form,

R = P
T
P =

(

BB
T

0

0 B
T
B

)

(13)

Since the eigenvalues remain invariant under transpo-
sition of a matrix, i.e, the eigenvalues of BB

T and
B

T
B are identical and hence we obtain the degeneracy.

Though we use a 4× 4 matrix to illustrate the idea, this
near degeneracy would arise for any eigenvector matrix
of even order, if the symmetry and exponential decay
conditions are satisfied.

For the localized state shown in Fig 4(b), N = 264
and the dominant eigenvalue of RDM using the approx-
imate scheme in Eqns (10-13), is λ1 = 0.4434. This is
doubly degenerate and compares favorably with the ex-
act numerical result of 0.4329. As observed in Fig 4(d),
the degeneracy breaks down as we travel down the index.
As pointed out, the dominant eigenvalues of RDM corre-
spond to definite 1D quantum oscillator modes that ex-
hibit exponential decay in the perpendicular mode. This
is not true of all the oscillator modes and hence the de-
generacy is broken.

C. Entanglement entropy

Entanglement entropy for each eigenstate is computed
from the eigenvalues of the RDM using Eq (4). In Fig
5, we show the entanglement entropy of the quartic os-
cillator at α = 30 for one thousand eigenstates starting
from the ground state. The localized states have values
of entanglement entropy much lower than the local aver-
age as seen from the dips in the figure. Most of them are
much closer to zero and substantiate the fact that they
are nearly separable states. In the next section we will
show that the entanglement entropy of localized state is
modulated by the bifurcation in the underlying channel
periodic orbit.

The generic delocalized states, on the other hand, form
the background envelope seen in Fig 5. These chaotic
states are not affected by the bifurcations in the iso-
lated orbits. It is known that such delocalized states can
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FIG. 5: (Color Online) Entanglement entropy for the quartic
oscillator at α = 30 from ground state to 1000th state. The
localized states have lower value of entanglement entropy as
seen from the dips in the curve. The solid red curve is SRMT ,
the RMT average of entanglement entropy.

be modeled using random matrix theory and hence the
distribution of their eigenvectors follows Porter-Thomas
distribution [29]. The entanglement entropy can also be
calculated based on RMT assumptions and it is known
to be [30], SRMT = ln(γM) where γ ≈ 1/

√
e and M is

the dimensionality of the reduced density matrix. In the
case of quartic oscillator, the Hilbert space is infinite in
dimension and we take M to be the effective dimension
Meff of the RDM. One indicator of the effective dimen-
sion of the state is the inverse participation ratio of the
eigenstates. Based on this measure and due to C4v sym-
metry of the quartic oscillator, we have M2

eff = D where
D is the state number. Thus, the effective dimension of
RDM is, Meff =

√
D. Finally, we get for the entangle-

ment entropy,

SRMT = ln(γMeff ) ∼ ln(γ
√
D). (14)

In Fig 5, SRMT is shown as solid red curve and it correctly
reproduces the envelope formed by the delocalized states
while the localized states stand out as deviations from
RMT based result, namely, SRMT .

V. ENTANGLEMENT ENTROPY AND

BIFURCATIONS

In this section, we show the central result of the pa-
per that the entanglement entropy is a minimum at the
points at which the underlying periodic orbit undergoes
a pitchfork bifurcation. As pointed out before, the lo-
calized states of the quartic oscillator are characterized
by the doublet (N, 0) and are influenced by the chan-
nel periodic orbit. We choose a given localized state, say,
with N = 200 and compute the entanglement of the same
state, i.e, (200, 0) state as a function of α. The state that
can be characterized by the doublet (200, 0) will be a lo-
calized state at every value of α. The result is shown in
Fig 6 as the curve plotted with open circles. The values
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α
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FIG. 6: (Color Online) Entanglement entropy as a function
of α. The three curves correspond to different (N, 0) type
localized states; solid circles (240,0), open circles (200,0) and
squares (210,0). The positions of pitchfork bifurcations (tri-
angle up) and anti-pitchfork bifurcations (triangle down) are
marked on both the x-axes.

of α at which the pitchfork and anti-pitchfork bifurca-
tion takes is marked in both the horizontal axes of the
figure as triangle-up and triangle-down respectively. For
the purpose of easier visualization, they are connected
by vertical lines. Notice that the entanglement entropy
attains a local minima in the vicinity of every classical
pitchfork bifurcation and it attains a local maxima near
every anti-pitchfork bifurcation. As Fig 6 shows, similar
result is obtained for two different localized states with
(N = 210, 0) and (N = 240, 0). All these localized states
are in the energy regime of highly excited states where
the classical system is predominantly chaotic. The strik-
ing similarity between the classical stability curve for a
particular periodic orbit, namely the channel orbit, in
Fig. (3) and the variation of the entanglement of the lo-
calized state is to be noted. We have also numerically
verified (not shown here) that a similar result is obtained
in the case of another potential where pitchfork and anti-
pitchfork bifurcations of the channel periodic orbit play
an important role, namely, in V (x, y) = x2 + y2 + βx2y2,
where β is the chaos parameter.

At a pitchfork bifurcation, as shown in Fig. 2, the
fixed point corresponding to the channel periodic orbit
loses stability and becomes a hyperbolic point. The cen-
tral elliptic island seen in Fig 2(a), breaks up into two
islands. The localized state that mainly derives its sup-
port from the classical structures surrounding the stable
fixed point suffers some amount of delocalization, but
is largely supported by the stable regions. At an anti-
pitchfork bifurcation, the hyperbolic point becomes an
elliptic fixed point and the orbit has gained stability and
a small elliptic island just comes into existence. Hence,
the eigenstate is still largely delocalized since the small
elliptic island is insufficient to support it. This heuristic
picture which is quite sufficient to explain oscillations in
localization measures is seen to be surprisingly valid even
for the somewhat less intuitive measure of entanglement.
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It has been noted earlier that when the corresponding
classical system undergoes a pitchfork bifurcation, the
entanglement entropy defined by Eq (4) attains a maxi-

mum [9], and it has been conjectured to be a generic prop-
erty. We note that this, apparently contradictory result,
is however in the context of an equilibrium point under-
going a bifurcation and the relevant state is the ground
state, whereas in the case we are studying here the or-
bit that is bifurcating is a periodic orbit and the states
are all highly excited. In this situation there is a much
tighter correlation between more conventional measures
of localization (Shannon entropy, participation ratio etc.)
and entanglement.

As the parameter α is increased, the quartic oscillator
gets to be predominantly chaotic and this should imply
increase in entanglement. However, this is true only for
the generic delocalized states as seen in Fig 5. The local-
ized states are influenced not so much by the increasing
volume of chaotic sea but by the specific periodic orbits
that underlie them. Hence, for these states, it is only
to be expected that the qualitative changes in the phase
space in the vicinity of the corresponding periodic orbits
affect quantum eigenstate and hence its entanglement as
well. This can be expected to be a generic feature of
entanglement in quantum eigenstates of mixed systems.

VI. CONCLUSIONS

In summary, we considered a smooth Hamiltonian,
namely the two-dimensional, coupled quartic oscillator

as a bipartite system. We study the effect of classical
bifurcations on the entanglement of its quantum eigen-
states. The quartic oscillator is a classically chaotic sys-
tem. One particular class of eigenstates of the quartic
oscillator, the localized states are scarred by the chan-
nel periodic orbits. We have shown that the entangle-
ment entropy of these localized states is modulated by
the bifurcations in the underlying channel periodic orbit.
When this orbit undergoes a pitchfork bifurcation, the
entanglement attains a local minimum and iwhen it un-
dergoes an anti-pitchfork bifurcation the entanglement is
a local maximum. Physically, this is related to the pres-
ence or the absence of elliptic islands in the phase space
in the vicinity of the channel orbit. We expect this to
be a general feature of bipartite quantum systems whose
classical analogue display bifurcation features.
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