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A model for DNA heliase mehanism based on a ashing rathetAshok Garai�,1 Meredith D. Bettertony,2 and Debashish Chowdhuryz31Department of Physis, Indian Institute of Tehnology, Kanpur 208016, India.2Physis Department, University of Colorado, Boulder, CO 80309-0390, U.S.A.3Department of Physis, Indian Institute of Tehnology, Kanpur 208016, India; andMax-Plank Institute for Physis of Complex Systems,N�othnitzer Strasse 38, D-01187 Dresden, Germany.(Dated: July 18, 2007)Heliases are moleular motors that onsume energy supplied by hemial reations to unwinddouble-stranded nulei aids (like DNA and RNA) and to transloate along one of the single-strands.Motivated by the reent laims, based on experimental observations on the heliase NS3 of hepatitisC virus (HCV), that monomeri heliases are governed by a Brownian rathet mehanism, here wedevelope a quantitative model. Our Brownian rathet model, whih is a somewhat new reformulationof the Betterton-J�uliher theory of heliases, is generi two-state model and is appliable to allheliases whih follow the Brownian rathet mehanism. We illustrate the preditive power of themodel by alulating some experimentally testable motor properties of a few monomeri heliases.Spe�ially, we predit the speed of unwinding of the double-stranded DNA and utuations aroundthe average drift of the heliase. Our preditions are in exellent quantitative agreement with theorresponding experimental data.PACS numbers:I. INTRODUCTIONHeliases [1℄ are enzymes that unwind double-strandednulei aids and transloate along one of the two single-strands. These proteins onsume hemial energy (typ-ially, supplied by the hydrolysis of ATP) and performmehanial work. Therefore, these nulei aid translo-ases are moleular motors [2, 3, 4, 5, 6, 7℄. whihshare ommon features with ytoskeletal moleular mo-tors [8, 9, 10℄. Heliases are broadly divided into thehexameri group (whih onsist of an hexameri ar-rangemet of six ATPase domains) and non-hexameri(mostly dimeri and a few monomeri) group. Two alter-native proesses, alled the rolling (or hand-over-hand)and inhworm mehanisms have been suggested for theheliase ativity of non-hexameri heliases [11℄. For hex-ameri heliases, at least three di�erent alternative meh-anisms of enzymati ativities have been suggested; theseinlude, ativities of all the ATP-binding domains in (a)parallel, (b) ordered sequential manner and () random-sequential manner [12℄.However, other mehanisms for heliase transloationhave been suggested. Analyzing the data from a se-ries of experiments, Patel and oworkers [13℄ have sug-gested a ashing-rathet mehanism [14, 15℄, for themonomeri heliase NS3 of the hepatitis C virus (HCV)[16℄. They also proposed a qualitative two-state modelfor the rathet. We note that the experiments of Pa-tel group [13℄ fous on DNA unwinding by monomersof the NS3 heliase domain, but di�erent experimen-�E-mail: garai�iitk.a.inyE-mail: mdb�olorado.eduzE-mail: debh�iitk.a.in

tal results have been found when studying unwinding ofRNA by full-length NS3 or HCV repliation omplexes[17, 18, 19℄. The mehanism of the NS3 heliase mayvary under di�erent experimental onditions.Motivated by the proposed ashing-rathet mehanismfor NS3 heliase, we develop and solve a ashing rathetmodel of heliases. The model signi�antly extendsthe original Betterton-J�uliher (BJ) model [20℄ to inor-porate the two-state senario suggested in ref.[13℄ andthereby make a diret ontat with the ashing rathetmehanism. A two-state model for the heliase was alsoonsidered by Betterton and J�uliher [20℄, but the natureof the two states in that formulation and the mehanismof transloation of the heliase is di�erent from those de-veloped here.Our paper is strutured as follows. In setion II wedesribe the disrete version of a ashing rathet (theheliase) whih ats to push a utuating obstale (theDNA ss-ds juntion). Setion III ontains the basi equa-tions whih desribe the model, the transformation of theequations using midpoint and di�erene variables, andthe general solutions for the veloity and di�usion oef-�ient of unwinding. We desribe the results for a hard-wall interation between heliase and juntion in setionIV, inluding limiting ases of various parameters beinglarge or small. Using the rate onstants extraetd fromearlier empirial data on HCV NS3 heliase, in setionIV we also predit our theoretial estimate for the speedof unwinding by this heliase. Finally, in setion V wesummarize our onlusions.
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FIG. 1: A shemati representation of the model.II. THE MODELWe use a model inspired by the work of Levin et al.[13℄whih proposed that the HCV heliase swithes between2 states: one is tightly bound to the ssDNA, while theother is weakly bound. This senario is referred to in thephysis literature as a ashing rathet[14℄. The ashingrathet is a speial ase of a two-state model[14℄ beausethe heliase an be found in either of the two allowedhemial states, namely, a state S in whih it is stronglybound to the ssDNA strand and another stateW in whihit is weakly attahed to the same strand. When applyingthe ashing rathet senario to HCV heliase, the tightlybound state is represented by a periodi sawtooth poten-tial (with periodiity of one ssDNA base pair) and theweakly bound state is represented by a uniform (position-independent) potential.In the traditional ontinuous models of Brownianrathets, one �rst writes a Fokker-Plank equation; be-ause we use a disrete model our approah is based onmaster equations. The disrete approah an be usefulwhen omparing to experiments. In the Fokker-Plankapproah, one needs the expliit funtional form of theutuating potential. Although most often a sawtooth-like form is assumed to inorporate the asymmetri, pe-riodi potential, the atual form of the potential experi-ened by a real moleular motor has not been measuredor alulated. We bypass this diÆulty by apturing theBrownian motor mehanism e�etively through a judi-ious hoie of rate onstants (or transition probabili-ties), many of whih an be obtained from experiments[21℄. A similar strategy has been followed reently in de-veloping a Brownian rathet model for the single-headedkinesin KIF1A [22℄, although realisti implementation ofthe strategy is more diÆult here beause of the intrinsiheterogeneity of the ssDNA trak [23℄.We apture the physis of the ashing rathet in adisrete hopping model. We represent the ssDNA by aone-dimensional lattie eah site of whih orresponds toa single base. We label eah site by the interger indexi. As in the BJ model [20℄, we neglet the sequene in-

homogeneity of the ssDNA (in priniple, the model anbe extended to apture this feature). The position of theheliase is denoted by the integer n. Every known heli-ase has a �xed diretion of transloation, i.e., either 30to 50 or 50 to 30 along the left-right asymmetri ssDNA[? ℄. In our model the heliase is assumed to transloatetowards inreasing n (from left to right). The juntionbetween ssDNA-dsDNA is loated at site m (see �g. 1).At any spatial position n, the heliase an be either instate 1 (strongly bound, labeled S), or 2 (weakly bound,labeled W ).The model is fully desribed by the allowed transitionsbetween states and the orresponding reation rates. Weuse notation where !f�� is the rate of the transition tostate � at an arbitrary spatial loation n from the state� loated at n + 1 where both � and � an be either 1(S) or 2 (W ). The orresponding bakwards transitionfrom n+ 1 to n has rate !b��. In general, we ould haveall transitions skethed in �g. 1.Heliase \sliding" orresponds to transitions along thessDNA without a hange in biohemial state of the pro-tein. In the 1 (S) state, these sliding transitions ourat rate !f11 (for inreasing n) and !b11 (for dereasingn). When the heliase is in the 2 (W ) state, the for-ward/bakward sliding rates are !f22 and !b22. Physi-ally, these transitions our beause of Brownian mo-tion of the protein, deoupled from any biohemial statehange. The transitions assoiated with !f22 and !b22an be interpreted to be aused by one-dimensional dif-fusion of the heliase in the weakly-bound state; unbi-ased di�usion would orrespond to !f22 = !b22. Even inthe strongly-bound state the heliase will be signi�antlya�eted by thermal utuations; the transitions assoi-ated with !f11 and !b11 an be interpreted as thermally-ativated Kramers-like proesses. In general, we wouldexpet the sliding rates for the 2 (W ) state to be muhlarger than for the tightly bound (1) state.The heliase an undergo \hemial" transitions whihorrespond to a hange in biohemial state withoutphysial transloation along the ssDNA. At �xed n, therate of transition to state 1 (S) from 2 (W ) ours atrate !12, while the reverse transition ours at rate !21.If one of these reations is oupled to ATP hydrolysis,then the forward/reverse transitions may be out of equi-librium and break the detailed balane relation. For ex-ample, the Levin et al. model of HCV heliase suggeststhat ATP hydrolysis is required to remove the heliasefrom the tightly bound state, implying that the 1 ! 2transtion at rate !21 is out of equilibrium.The �nal type of heliase transitions are those wherea hange of biohemial state and physial transloationour together. If the heliase is loated at n and is instate 1 (S), then it an make a transition to state 2 (W )while moving forward to site n+1 at rate !f21; the samehange of state oupled to a bakwards displaement tosite n� 1 ours at rate !b21. The orresponding reversetransitions our at rates !b12 (transition from state 2 at



3n+1 to state 1 at n) and !f12 (transition from state 2 atn� 1 to state 1 at n).

FIG. 2: Shemati desription of the Brownian-rathet meh-anism .We an assoiate the disrete transition rates with thephysial proess and develop intuition for the relativemagnitudes of the rates by omparing the disrete ratesto the ontinuous piture illustrated in �g.2. The phys-ial proesses aptured by the parameters !f21 and !21an be understood as follows by omparision with theashing rathet. For the sake of simpliity, suppose thatthe potential seen by the motor periodially osillates be-tween the sawtooth shape and the at shape shown in �g.2. When the sawtooth potential is on for some time, thepartile settles at the bottom of a well; this is the loationof a potential minimum for state 1 at site n. Then, whenthe potential is swithed o�, the partile is swithed tostate 2. The probability distribution of the position ofthe partile (initially a delta funtion) begins to spreadsymmetrially. (The spread is symmetri assuming freedi�usion in the absene of any fore). After some time,the Gaussian probability distribution spreads suh thatit overlaps with the potential minimum of state 1 at siten+ 1, in addition to the overlap it has with the originalwell. When the sawtooth potential is again swithed on,there is a non-vanishing probability that the partile will

move to the potential minimum at site n+1. In our dis-rete model, this transition orresponds to a transitionfrom state 2 and site n to state 1 at site n + 1, whihours at rate !f12. There is also a signi�ant probabilitythat the partile will fall bak into the original well; thisis aptured in our model by the parameter !12. As themotor eÆieny inreases,, we expet !f12 to inrease rel-ative to !12. For a motor that is unbiased (whih wouldour, for example, if the sawtooth potential is symmet-ri), we would have !f12 = !b12.The dsDNA opens and loses due to thermal utu-ations. When the heliase and juntion are far apart,the opening rate is � and the losing rate �. We assumethat these rates are independent of the NA base sequeneand that the only utuations are those for whih theNA opens or loses at the ss-ds fork only. Sine the NAbreathing results from thermal utuations, the rates �and � satisfy detailed balane: �� = e��G, where �G isthe free energy of one base-pair bond.In this work we assume passive unwinding, whih isequivalent to a hard-wall interation potential in the BJmodel [20℄. This means that when the heliase and jun-tion are adjaent (j = 1), the heliase annot hop forwardand the NA annot lose (k+1 = �1 = 0). Otherwise, therates are una�eted by the heliase-juntion interation.We shall alulate the average speed v of unwindingand utuations about the drift of the heliase. While,on physial grounds, it is obvious that !f22 or !b22 willnot appear in the expression for v, the utuations willbe a�eted by the Brownian motion in the weakly-boundstate (W ) of the heliase.III. MASTER EQUATIONSLet P�(n;m; t) denote the probability that, at time t,the heliase is at loated at n and is in the \hemial"state � where � = 1 and � = 2 orrespond to the statesin whih the heliase is bound, respetively, stronglyand weakly to the NA, while the ss-ds juntion is at m.The master equations governing the time evolutions ofP�(n;m; t) are given by
dP1(n;m; t)dt = �(�m�n + �m�n + !f11 + !b11 + !f21 + !b21 + !21)P1(n;m; t)+ !f11P1(n� 1;m; t) + !f12P2(n� 1;m; t) + !b11P1(n+ 1;m; t) + !b12P2(n+ 1;m; t)+ !12P2(n;m; t) + �(m�1)�nP1(n;m� 1; t) + �(m+1)�nP1(n;m+ 1; t): (1)



4and dP2(n;m; t)dt = �(�m�n + �m�n + !f22 + !b22 + !f12 + !b12 + !12)P2(n;m; t)+ !f21P1(n� 1;m; t) + !f22P2(n� 1;m; t) + !b21P1(n+ 1;m; t) + !b22P2(n+ 1;m; t)+ !21P1(n;m; t) + �(m�1)�nP2(n;m� 1; t) + �(m+1)�nP2(n;m+ 1; t) (2)respetively.Let us de�ne j = m�n and l = 2l0 = m+n. Ovbiouslyj denotes the separation between the heliase and the juntion while l0 orresponds to the mid-point betweenthem. In terms of j and l the equations (1) and (2) anbe reast asdP1(j; l; t)dt = �(�j + �j + !f11 + !b11 + !f21 + !b21 + !21)P1(j; l; t)+ !f11P1(j + 1; l� 1; t) + !f12P2(j + 1; l� 1; t) + !b11P1(j � 1; l+ 1; t) + !b12P2(j � 1; l+ 1; t)+ !12P2(j; l; t) + �j�1P1(j � 1; l � 1; t) + �j+1P1(j + 1; l+ 1; t): (3)and dP2(j; l; t)dt = �(�j + �j + !f22 + !b22 + !f12 + !b12 + !12)P2(j; l; t)+ !f21P1(j + 1; l� 1; t) + !f22P2(j + 1; l� 1; t) + !b21P1(j � 1; l+ 1; t) + !b22P2(j � 1; l+ 1; t)+ !21P1(j; l; t) + �j�1P2(j � 1; l � 1; t) + �j+1P2(j + 1; l+ 1; t) (4)Next, let us de�ne the probability distributions of thegap sizes P1(j; t) =Xl P1(j; l; t)P2(j; t) =Xl P2(j; l; t) (5)
From equations (3) and (4), the equations for P1(j; t)and P2(j; t) follow; these are given by

dP1(j; t)dt = �(�j + �j + !f11 + !b11 + !f21 + !b21 + !21)P1(j; t)+ !f11P1(j + 1; t) + !f12P2(j + 1; t) + !b11P1(j � 1; t) + !b12P2(j � 1; t)+ !12P2(j; t) + �j�1P1(j � 1; t) + �j+1P1(j + 1; t): (6)and dP2(j; t)dt = �(�j + �j + !f22 + !b22 + !f12 + !b12 + !12)P2(j; t)+ !f21P1(j + 1; t) + !f22P2(j + 1; t) + !b21P1(j � 1; t) + !b22P2(j � 1; t)+ !21P1(j; t) + �j�1P2(j � 1; t) + �j+1P2(j + 1; t) (7)Adding the equations (6) and (7) we getdP(j; t)dt = �(�j + �j)P(j; t) + �j�1P(j � 1; t) + �j+1P(j + 1; t)+ (!f11 + !f21)P1(j + 1; t) + (!f12 + !f22)P2(j + 1; t) + (!b11 + !b21)P1(j � 1; t) + (!b12 + !b22)P2(j � 1; t)� (!f11 + !b11 + !f21 + !b21)P1(j; t)� (!f22 + !b22 + !f12 + !b12)P2(j; t) (8)



5for the distribution of gap sizes, irrespetive of the \hem-ial" state of the heliase. Interestingly, the right handside of the equation (8) does not involve !21 and !12 asthe transitions 1! 2 and 2! 1 do not hange j beausethe position of the heliase remains unhanged in boththese transitions.We now de�ne the probability urrent between j andj + 1 byI(j) = �jP(j)� �j+1P(j + 1)+ (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j)� (!f11 + !f21)P1(j + 1)� (!f12 + !f22)P2(j + 1)(9)In terms of the probability urrent (9) the equation (8)an be reast asdP(j; t)dt + [I(j)� I(j � 1)℄ = 0 (10)

whih formally appears as an equation of ontinuity forthe probability. In the steady-state P(j) is independentof time and we get the ondition I(j) = I(j � 1). More-over, sine U(j) ! 1 as j ! �1, this onstant proba-bility ux must be zero, i.e.,
I(j) = 0 for all j: (11)

Adding the two equations (3) and (4) we getdP (j; l; t)dt = �(�j + �j)P (j; l; t) + �j�1P (j � 1; l� 1; t) + �j+1P (j + 1; l+ 1; t)+ (!f11 + !f21)P1(j + 1; l� 1; t) + (!f12 + !f22)P2(j + 1; l � 1; t)+ (!b11 + !b21)P1(j � 1; l+ 1; t) + (!b12 + !b22)P2(j � 1; l + 1; t)� (!f11 + !b11 + !f21 + !b21)P1(j; l; t)� (!f22 + !b22 + !f12 + !b12)P2(j; l; t) (12)where P (j; l; t) = P1(j; l; t) + P2(j; l; t): (13)where P (j; l; t) is the joint probability distribution of thegaps j and midpoints l, irrespetive of the \hemial"state of the heliase. We now de�ne the probability dis-tributions of l at time t by�(l; t) =Xj P (j; l; t) (14)Note that, by de�nition, �(l; t) is independent of thehemial state of the heliase, i.e., whether the heliaseis in the state 1 or in the state 2. For times muh longerthan the relaxation time of the di�erene variable j, wean assumeP�(j; l) = P�(j) �(l) (� = 1 or2) (15)Starting from the equation (12), it is straightforward toderived�(l; t)dt = �(p+q)�(l; t)+p�(l�1; t)+q�(l+1; t) (16)

wherep =Xj [�jP(j) + (!f11 + !f21)P1(j) + (!f12 + !f22)P2(j)℄(17)andq =Xj [�jP(j) + (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j)℄(18)Thus, as in the original formulation of BJ [20℄, the dy-namis of the midpoint variable l is, in general, a ombi-nation of drift and di�usion. Note that in the speial asep = q the drift vanishes and the dynamis of l beomespurely di�usive.Therefofe, the average speed of unwinding should bede�ned as v = 12(p� q) (19)where the prefator 1=2 arises from the fat that the mid-point is atually l=2 and not l. Using the expressions (17)



6and (18) in (29) we getv = 12Xj [(�j � �j)P(j)+ (!f12 + !f22 � !b12 � !b22)P2(j)+ (!f21 + !f11 � !b11 � !b21)P1(j)℄: (20)Alternatively, the expression for v an also be written asv = 12Xj [(�j + !f12 + !f22 � !b12 � !b22 � �j)P2(j)� (�j � !f21 � !f11 � �j + !b11 + !b21)P1(j)℄: (21)Similarly, following the same arguments as in ref.[20℄, weget di�usion onstantD = p+ q4= 14Xj [(�j + �j)P(j)+ (!f12 + !f22 + !b12 + !b22)P2(j)+ (!f21 + !f11 + !b11 + !b21)P1(j)℄= 14Xj [(�j + �j + !f12 + !f22 + !b12 + !b22)P2(j)+ (�j + �j + !f21 + !f11 + !b11 + !b21)P1(j)℄: (22)Note that if !f22 and !b22 are interpreted to be the rateonstants orresponding to unbiased di�usion of the heli-

ase in the weakly bound state 2, then !f22 = !b22 and theorresponding two terms drop out from the expression forv but not from that for D.IV. SOLUTIONIn order to evaluate v and D we need to get the expres-sions for P1(j) and P2(j) in terms of the rate onstants.Invoking the priniple of detailed balane for the purely\hemial" transitions between the states 1 and 2, whilethe heliase is loated at an arbitrary site n and the forkis at m (i.e., the gap j = m� n remains unhanged), weget !21P1(j) = !12P2(j) (23)and, hene, P1(j) = �!12!21 �P2(j): (24)Note that this relation assumes that there is a rapid equi-libration of the hemial transitions between the 1 and2 states at site j. Therefore, this relation is valid in thelimit where the rates !21 and !12 are muh larger thanall the other rates.Using this detailed-balane relation, the reursion re-lation for P1(j) and that for P2(j) are not independentof eah other. Using the relation (24) in (??) we �nd thereursion relation for P2 to be
P2(j + 1) = ( (!b22 + �j + !b12)!21 + (�j + !b21 + !b11)!12(�j+1 + !f12 + !f22)!21 + (�j+1 + !f11 + !f21)!12)P2(j) (25)

Iterating this reursion relation and, then, using the nor-malisation ondition P j[P1(j) + P2(j)℄ = 1, we getP2(j) = Bj (26)with B = (1� )!21(!12 + !21) (27)
and  = (�+ !b11 + !b21)!12 + (�+ !b12 + !b22)!21(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21 (28)Note that we have also used the fats that �1 = 0 and!f12 = 0 at j = 1. Thus, �nally, we get
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v = (!12 + !21)�2(�!f12!21 � �!b21!12) + (�
1 � �
2)!12 + (�
3 � �
4)!21�+ (
5!12 +
6!21)(!f11!12 + !f22!21)2(!12 + !21)n(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21o (29)where, 
1 = 2!f21 + !f11
2 = 2!b11 � !f11
3 = !f22
4 = 2!b12 + 2!b22 � !f22
5 = !f11 + !f21 � !b11 � !b21and;
6 = !f12 + !f22 � !b12 � !b22 (30)

and

D = (
�1!12 +
�2!21)(
�1!12 +
�2!21) + (
0�1!12 +
0�2!21)(
0�1!12 +
0�2!21)4(!12 + !21)n(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21o (31)where 
�1 = �+ !f11 + !b11 + !b21
�2 = �+ !f22 + !b22 + !b12
�1 = � + !f11 + !f21
�2 = � + !f12 + !f22
0�1 = �+ !b11 + !b21
0�2 = �+ !b12 + !b22
0�1 = � + !f21
0�2 = � + !f12 (32)At �rst sight, it may appear ounterintuitive that theaverage speed v of unwinding depends on !b22 or !f22.In priniple, in an in�nite system, the unbiased randomwalk should have no e�et on the average speed. But, thefat that this !f22 or !b22-dependene enters the expres-

sion (29) via the ondition I(j) = 0, makes it very learthat the !b22 or !f22dependene of v results not from thedynamial equations but from the boundary onditionsat j = 0. The heliase an reah the fork by Brownianmotion only from left side but not from the right; thisboundary ondition at the fork breaks the left-right sym-metry of Brownian motion whih, in turn, gives rise tothe !f22 or !b22-dependene of v.A. Alternative method of solutionHere we investigate a method of solving the modelwithout the assumption of rapid equilibrium at site j(as expressed in equation (24)).We begin from the zero-urrent relation, equation (9),whih gives a relation between the probabilities at sitej + 1 and those at site j:�j+1P(j + 1) + (!f11 + !f21)P1(j + 1) + (!f12 + !f22)P2(j + 1) = �jP(j) + (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j): (33)



8Note that P(j) = P1(j) + P2(j). Above, this reursionwas simpli�ed using the detailed balane relation of equa-tion (24), whih relates the probabilities in the 1 and 2states at site j. Here we suppose that the detailed bal-ane relation does not neessarily apply, but that thereis a relationship between the 1 and 2 probabilities givenby P2(j) = P1(j); (34)
where  is an unknown onstant. Here we assume thatbeause the rates do not vary with position, the onstant is independent of j. We an then use equation (33) andthe steady-state version of equation (6) to solve for thereursion relation (that relates j + 1 to j) and for .Substituting equation (34) into equation (33), we �ndP1(j + 1)P1(j) = (1 + )� + (!f11 + !f21) + (!f12 + !f22)(1 + )�+ (!b11 + !b21) + (!b12 + !b22) = : (35)Note that this onstant  as de�ned is a funtion of . Next onsider the steady-state version of equation (6):0 = �(�+ � + !f11 + !b11 + !f21 + !b21 + !21)P1(j) + (� + !f11)P1(j + 1) + !f12P2(j + 1) (36)+ (�+ !b11)P1(j � 1) + !b12P2(j � 1) + !12P2(j): (37)Plugging in equations (34) and (35) we an rewrite this asP2(j) ��(�+ � + !f11 + !b11 + !f21 + !b21 + !21) + !12 + �+ !b11 + (� + !f11) +  !b12 + !f12� = 0: (38)Sine P2(j) 6= 0, the expression in brakets must equalzero. This expression allows us to solve for  in terms ofthe rate onstants.B. Redution to BJ modelIn order to show the relation between the model wepropose here and the BJ model [20℄, we �rst onsider thespeial situations where!f22 = !b22 = 0 and!12 = 1 = !21;!f21 = !b12 = 0 and!f11 = !b11 = 0 (39)In suh situations P1(j) = P2(j) for all j and, onse-quently,v = 12Xj [(�j ��j)P(j)℄+ 14Xj [(!f12�!b21)P(j)℄: (40)Therefore, if we now make the orrespondene!f12 = 2k+ and !b21 = 2k� (41)between the parameters of the two models, the expression(40) redues tov = 12Xj [(�j � �j + k+ � k�)P(j)℄: (42)

whih is idential to the orresponding formula for aver-age speed of unwinding in the BJ model [20℄. Moreover,in this speial ase, equation (28) also redues to the form = �+ k�� + k+ (43)whih is idential to the orresponding expression in theBJ model. Furthermore, in this speial ase of our modelB = A=2 (44)where A = � + k+ � �� k��+ k� (45)so that P(j) = Aj (46)whih is idential to the solution for P(j) in the BJ model[20℄.From now onwards let us onsider!b22 = !f22 = !b!f21 = !b12 = 0;!b11 = !f11 = 0 (47)The variation of v, and D with !21 are shown in �g.3.Clearly, in the limit !21 ! 1, v and D saturate to thevalues given by the expressionsv ' 2�!f12 + !b(� � � + !f12)2(!f12 + !b + �) as !21 !1: (48)
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and

D = n(�+ 2!b)(!f12 + !b + �)o + n(!f12 + �)(�+ !b)o4(!f12 + !b + �) as !21 !1: (49)
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FIG. 4: Variation of v and D with !f12. The parameter valuesare same as in �g.3, exept that !21 = 0:4�M�1s�1 and !f12is the independent variable.

These saturations are aused by the fat that, in thislimit, the unwinding is limited by other smaller rate on-stants whih appear in the formula (48).Similarly, the variation of v and D with !f12 are shownin �g.(4); the saturation value obtained by extrapolationfrom this �gure at high !f12 are onsistent with in theexpressionsv ' 2(!21 + !12)�+ !21!b2(!21 + !12) as !f12 !1 (50)and
D = �(� + 2!b)!21 + (�+ !b21)!12	+ �(�+ !b)!21 + (�+ !b21)!12	4(!21 + !12) as !f12 !1: (51)whih we get from equation (29) and (31), respetively,in the limit !+f !1.In the speial limit !b ! 0 the expressions for v and

D approahv = (�!f12!21 � �!b21!12)(!f12 + �)!21 + �!12 as !b ! 0; (52)
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respetively. These limits an be seen on the plots of vand D against !b in �g.6.HCV NS3 heliase is a representative member of theSuperfamily-2 of heliases; it is responsible for viral repli-ation and, therefore, a potential drug target. Steppingveloity of NS3 heliase, obtained from in-vitro bulk ex-periments [13℄ at saturating [ATP℄, is about 35� 4 bp/s.This is an underestimate ompared to the stepping ve-loity of 51 � 3 bp/s observed in reent single moleuleexperiments [19℄. We now use the approximate estimate!f12 = 50bps�1, together with the numerial values of theother parameters whih we have used so far, to preditthe maximum unwinding veloity of the heliase on thebasis of our model. The predited value of the unwindingveloity� 1:2 bp/s is very lose to the orresponding rateof unwinding by HCV NS3 heliase measured by Patel etal.[13℄.
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