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Helicases are molecular motors that consume energy supplied by chemical reactions to unwind
double-stranded nucleic acids (like DNA and RNA) and to translocate along one of the single-strands.
Motivated by the recent claims, based on experimental observations on the helicase NS3 of hepatitis
C virus (HCV), that monomeric helicases are governed by a Brownian ratchet mechanism, here we
develope a quantitative model. Our Brownian ratchet model, which is a somewhat new reformulation
of the Betterton-Jiilicher theory of helicases, is generic two-state model and is applicable to all
helicases which follow the Brownian ratchet mechanism. We illustrate the predictive power of the
model by calculating some experimentally testable motor properties of a few monomeric helicases.
Speficically, we predict the speed of unwinding of the double-stranded DNA and fluctuations around
the average drift of the helicase. Our predictions are in excellent quantitative agreement with the

corresponding experimental data.

PACS numbers:

I. INTRODUCTION

Helicases [1] are enzymes that unwind double-stranded
nucleic acids and translocate along one of the two single-
strands. These proteins consume chemical energy (typ-
ically, supplied by the hydrolysis of ATP) and perform
mechanical work. Therefore, these nucleic acid translo-
cases are molecular motors ﬂ, E, @, B, , E|] which
share common features with cytoskeletal molecular mo-
tors [E, lq, ] Helicases are broadly divided into the
hexameric group (which consist of an hexameric ar-
rangemet of six ATPase domains) and non-hexameric
(mostly dimeric and a few monomeric) group. Two alter-
native processes, called the rolling (or hand-over-hand)
and inchworm mechanisms have been suggested for the
helicase activity of non-hexameric helicases ﬂﬂ] For hex-
americ helicases, at least three different alternative mech-
anisms of enzymatic activities have been suggested; these
include, activities of all the ATP-binding domains in (a)
parallel, (b) ordered sequential manner and (c) random-
sequential manner [12].

However, other mechanisms for helicase translocation
have been suggested. Analyzing the data from a se-
ries of experiments, Patel and coworkers %have sug-
gested a flashing-ratchet mechanism [@, ], for the
monomeric helicase NS3 of the hepatitis C virus (HCV)
ﬂﬁ] They also proposed a qualitative two-state model
for the ratchet. We note that the experiments of Pa-
tel group [13] focus on DNA unwinding by monomers
of the NS3 helicase domain, but different experimen-
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tal results have been found when studying unwinding of
RNA by full-length NS3 or HCV replication complexes
ﬂﬂ, 18, @] The mechanism of the NS3 helicase may
vary under different experimental conditions.

Motivated by the proposed flashing-ratchet mechanism
for NS3 helicase, we develop and solve a flashing ratchet
model of helicases. The model significantly extends
the original Betterton-Jiilicher (BJ) model [20] to incor-
porate the two-state scenario suggested in ref.[13] and
thereby make a direct contact with the flashing ratchet
mechanism. A two-state model for the helicase was also
considered by Betterton and Jiilicher m] but the nature
of the two states in that formulation and the mechanism
of translocation of the helicase is different from those de-
veloped here.

Our paper is structured as follows. In section [[Il we
describe the discrete version of a flashing ratchet (the
helicase) which acts to push a fluctuating obstacle (the
DNA ss-ds junction). Section [IIlcontains the basic equa-
tions which describe the model, the transformation of the
equations using midpoint and difference variables, and
the general solutions for the velocity and diffusion coef-
ficient of unwinding. We describe the results for a hard-
wall interaction between helicase and junction in section
[Vl including limiting cases of various parameters being
large or small. Using the rate constants extracetd from
earlier empirical data on HCV NS3 helicase, in section
[Vl we also predict our theoretical estimate for the speed
of unwinding by this helicase. Finally, in section [V] we
summarize our conclusions.
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FIG. 1: A schematic representation of the model.

II. THE MODEL

We use a model inspired by the work of Levin et al.[13]
which proposed that the HCV helicase switches between
2 states: one is tightly bound to the ssDNA, while the
other is weakly bound. This scenario is referred to in the
physics literature as a flashing ratchet|14]. The flashing
ratchet is a special case of a two-state model[14] because
the helicase can be found in either of the two allowed
chemical states, namely, a state S in which it is strongly
bound to the ssDNA strand and another state W in which
it is weakly attached to the same strand. When applying
the flashing ratchet scenario to HCV helicase, the tightly
bound state is represented by a periodic sawtooth poten-
tial (with periodicity of one ssDNA base pair) and the
weakly bound state is represented by a uniform (position-
independent) potential.

In the traditional continuous models of Brownian
ratchets, one first writes a Fokker-Planck equation; be-
cause we use a discrete model our approach is based on
master equations. The discrete approach can be useful
when comparing to experiments. In the Fokker-Planck
approach, one needs the explicit functional form of the
fluctuating potential. Although most often a sawtooth-
like form is assumed to incorporate the asymmetric, pe-
riodic potential, the actual form of the potential experi-
enced by a real molecular motor has not been measured
or calculated. We bypass this difficulty by capturing the
Brownian motor mechanism effectively through a judi-
cious choice of rate constants (or transition probabili-
ties), many of which can be obtained from experiments
[21]. A similar strategy has been followed recently in de-
veloping a Brownian ratchet model for the single-headed
kinesin KIF1A [22], although realistic implementation of
the strategy is more difficult here because of the intrinsic
heterogeneity of the ssDNA track [23].

We capture the physics of the flashing ratchet in a
discrete hopping model. We represent the ssDNA by a
one-dimensional lattice each site of which corresponds to
a single base. We label each site by the interger index
i. As in the BJ model [20], we neglect the sequence in-

homogeneity of the ssDNA (in principle, the model can
be extended to capture this feature). The position of the
helicase is denoted by the integer n. Every known heli-
case has a fixed direction of translocation, i.e., either 3’
to 5 or 5’ to 3’ along the left-right asymmetric ssDNA
[? ]. In our model the helicase is assumed to translocate
towards increasing n (from left to right). The junction
between ssDNA-dsDNA is located at site m (see fig. [II).
At any spatial position n, the helicase can be either in
state 1 (strongly bound, labeled S), or 2 (weakly bound,
labeled W).

The model is fully described by the allowed transitions
between states and the corresponding reaction rates. We
use notation where w,{u is the rate of the transition to
state pu at an arbitrary spatial location n from the state
v located at n + 1 where both u and v can be either 1
(S) or 2 (WW). The corresponding backwards transition
from n + 1 to n has rate w® . In general, we could have

all transitions sketched in fig. [

Helicase “sliding” corresponds to transitions along the
ssDNA without a change in biochemical state of the pro-
tein. In the 1 (S) state, these sliding transitions occur
at rate w/, (for increasing n) and w?, (for decreasing

n). When the helicase is in the 2 (W) state, the for-

ward/backward sliding rates are wl, and w},. Physi-

cally, these transitions occur because of Brownian mo-
tion of the protein, decoupled from any biochemical state
change. The transitions associated with waQ and wd,
can be interpreted to be caused by one-dimensional dif-
fusion of the helicase in the weakly-bound state; unbi-
ased diffusion would correspond to w{Q = wb,. Even in
the strongly-bound state the helicase will be significantly
affected by thermal fluctuations; the transitions associ-
ated with w{l and w?, can be interpreted as thermally-
activated Kramers-like processes. In general, we would
expect the sliding rates for the 2 (W) state to be much
larger than for the tightly bound (1) state.

The helicase can undergo “chemical” transitions which
correspond to a change in biochemical state without
physical translocation along the ssDNA. At fixed n, the
rate of transition to state 1 (S) from 2 (W) occurs at
rate wio, while the reverse transition occurs at rate woy.
If one of these reactions is coupled to ATP hydrolysis,
then the forward/reverse transitions may be out of equi-
librium and break the detailed balance relation. For ex-
ample, the Levin et al. model of HCV helicase suggests
that ATP hydrolysis is required to remove the helicase
from the tightly bound state, implying that the 1 — 2
transtion at rate ws; is out of equilibrium.

The final type of helicase transitions are those where
a change of biochemical state and physical translocation
occur together. If the helicase is located at n and is in
state 1 (S), then it can make a transition to state 2 (W)
while moving forward to site n + 1 at rate wgl; the same
change of state coupled to a backwards displacement to
site n — 1 occurs at rate wh,. The corresponding reverse
transitions occur at rates w?, (transition from state 2 at



n+1 to state 1 at n) and w{, (transition from state 2 at
n — 1 to state 1 at n).

@

(ii)

FIG. 2: Schematic description of the Brownian-ratchet mech-
anism

We can associate the discrete transition rates with the
physical process and develop intuition for the relative
magnitudes of the rates by comparing the discrete rates
to the continuous picture illustrated in figl2l The phys-
ical processes captured by the parameters wgl and way
can be understood as follows by comparision with the
flashing ratchet. For the sake of simplicity, suppose that
the potential seen by the motor periodically oscillates be-
tween the sawtooth shape and the flat shape shown in fig.
When the sawtooth potential is on for some time, the
particle settles at the bottom of a well; this is the location
of a potential minimum for state 1 at site n. Then, when
the potential is switched off, the particle is switched to
state 2. The probability distribution of the position of
the particle (initially a delta function) begins to spread
symmetrically. (The spread is symmetric assuming free
diffusion in the absence of any force). After some time,
the Gaussian probability distribution spreads such that
it overlaps with the potential minimum of state 1 at site
n + 1, in addition to the overlap it has with the original
well. When the sawtooth potential is again switched on,
there is a non-vanishing probability that the particle will

dPy(n,m;t)
dt

move to the potential minimum at site n + 1. In our dis-
crete model, this transition corresponds to a transition
from state 2 and site n to state 1 at site n + 1, which
occurs at rate w{2. There is also a significant probability
that the particle will fall back into the original well; this
is captured in our model by the parameter wis. As the
motor efficiency increases,, we expect wj, to increase rel-
ative to wi2. For a motor that is unbiased (which would
occur, for example, if the sawtooth potential is symmet-
ric), we would have w/, = wb,.

The dsDNA opens and closes due to thermal fluctu-
ations. When the helicase and junction are far apart,
the opening rate is @ and the closing rate 5. We assume
that these rates are independent of the NA base sequence
and that the only fluctuations are those for which the
NA opens or closes at the ss-ds fork only. Since the NA
breathing results from thermal fluctuations, the rates o
and (3 satisfy detailed balance: % = e 2C, where AG is
the free energy of one base-pair bond.

In this work we assume passive unwinding, which is
equivalent to a hard-wall interaction potential in the BJ
model [20]. This means that when the helicase and junc-
tion are adjacent (j = 1), the helicase cannot hop forward
and the NA cannot close (ki = #; = 0). Otherwise, the
rates are unaffected by the helicase-junction interaction.

We shall calculate the average speed v of unwinding
and fluctuations about the drift of the helicase. While,
on physical grounds, it is obvious that w§2 or wh, will
not appear in the expression for v, the fluctuations will
be affected by the Brownian motion in the weakly-bound
state (W) of the helicase.

III. MASTER EQUATIONS

Let P,(n,m;t) denote the probability that, at time ¢,
the helicase is at located at n and is in the “chemical”
state p where u = 1 and g = 2 correspond to the states
in which the helicase is bound, respectively, strongly
and weakly to the NA, while the ss-ds junction is at m.
The master equations governing the time evolutions of
P,(n,m;t) are given by

—(@m—n + Bm—n + w{l + wi’l + W2f1 + wgl + wa1) P (n, m; t)

+ wl i Pi(n = 1,m;t) + wlyPa(n — 1, mit) + why Pr(n + 1,mst) + wly Pa(n + 1,m; 1)
+ wipPa(n,m;t) + am_1)—nPr(n,m = 1;t) + Bini1)—nPr(n,m + 152). (1)



and
dP>(n,m;t
% = —(Omn + B+ why + Wy + Wl + Wl + W) Po(n, mi )
+ Wl Pi(n— 1,m;t) + wly Pa(n — 1,m;t) + why Pr(n + 1,m; t) + why Pa(n + 1,m; 1)
+ wa Pr(n,m;t) + agm_1)—nPa(n,m — 1;t) + Bimi1)—pn Pa(n,m + 1;t)
(2)
respectively. junction while [’ corresponds to the mid-point between

Let us define j = m—n and | = 2l = m+n. Ovbiously them. In terms of j and [ the equations (I]) and (2)) can
j denotes the separation between the helicase and the be recast as

dplgt,l;t) = —(aj +Bj +wly +why +wl; +wh +wa)Pi(j, ;1)
+ W PG+ 1L 4wl PG+ 1,1 =138+ PG — 1,1+ 138) + Wl Pa( — 1,1+ 151)
+ wieP(j,lit) + a1 Pi(j — 1,0 — 1;8) + 841 Pi(§ + 1,1 + 15¢). (3)
and
Lﬁt’l;t) = (o + Bj +why + Wy +wly +wiy + wi2) Pa(, ;1)
+ W PG+ 1L =10 +wh PG+ 1,0 =10 + WS P — 1,1+ 1) + Wl Pa(j — 1,1+ 1;¢)
+ wnPi(j,5t) + i1 Pa(f — 1,1 = 1;t) + B4 Pa( + 1,1 + 15 ¢) (4)

Next, let us define the probability distributions of the From equations (@) and (@), the equations for P;(j;t)
gap sizes and Ps(j;t) follow; these are given by

Pi(it) =Y Pi(j 1)
l

Pa(jst) =Y Palj, 1) (5)
l

dPi(j;t ;
% = —(aj + B +wii + 0l +wl) + 08 +wn)Pi (i)
Wi PLG + 151) + whPal + 151) + wh Pi(i — 1) + whyPa(j — 131)

wiaP2(g;t) + a1 Pi(j — 1;t) + B Pi(j + 15 ). (6)

+ +

and
dPa(j;t ;
P20 (g + By + oy by wly + oy + w012)Pa(:)
+ wglfﬂ(j +1;t) + w%cQ’PQ(j +1;8) + Wl PG — 158) + Wl Pa(j — 151)
+ wnPi(fit) + aj—1P2(j — 1;t) + Bi+1Pa2(j + 15) (7)
Adding the equations (@) and (7)) we get

dP(j;t . . .

% = —(oj + Bj)P(st) + a1 P(j — L;t) + BjaP(j + 1;1)
+ (‘*’{1 + ng)Pl(j +1;t) + (‘*’{2 + ‘*’52)7)20 + 158) + (Wi + wh)P1(j — 1;1) + (why + why)Pa(s — 1;1)
— (Wl + el +wl + WP ) — (wh +why +wly + why)Pa(hit)

(8)



for the distribution of gap sizes, irrespective of the “chem-
ical” state of the helicase. Interestingly, the right hand
side of the equation () does not involve ws and wis as
the transitions 1 — 2 and 2 — 1 do not change j because
the position of the helicase remains unchanged in both
these transitions.

We now define the probability current between j and
j+1by

1(j) = a;jP(j) = Bi1 PG +1)
+ (W + wh)P1() + (why + why)Pa(4)
— (Wl +wi)PIG+1) = (Wl + why)Pa( + 1)
9)

In terms of the probability current (@) the equation (§)
can be recast as

which formally appears as an equation of continuity for
the probability. In the steady-state P(j) is independent
of time and we get the condition I(j) = I(j — 1). More-
over, since U(j) — oo as j — —oo, this constant proba-
bility flux must be zero, i.e.,

I(j) =0 for all j. (11)

Adding the two equations (@) and @) we get

= —(aj +6;)P(.Lt) + ;1 P(j — 1,1 = 1;t) + B P(j + 1,1+ 1;t)

(Wi + Wi )P+ 11— 1t) + (wly + W) Pa(j + 1,1 = 1;¢)

+ (Wb AW )P — 1,1+ 15t) + (why +why)Po(j — 1,1+ 15¢t)
— (wf, + Wl Fwf + W) PG — (Wl + Wby + wly + W) Pa(G )

PG L 1) 1 - 1] = 0 (10)
dt
|
dP(j,1;1)
dt
+
where

where P(j,1;t) is the joint probability distribution of the
gaps j and midpoints [, irrespective of the “chemical”
state of the helicase. We now define the probability dis-
tributions of I at time ¢ by

;) =Y P(j,l;1) (14)

Note that, by definition, TI(l;¢) is independent of the
chemical state of the helicase, i.e., whether the helicase
is in the state 1 or in the state 2. For times much longer
than the relaxation time of the difference variable j, we
can assume

Pu(3,1) = Pu() (1) (n=1o0r2) (15)
Starting from the equation ([I2)), it is straightforward to
derive

dl(l;t)
dt

= —(p+@U{l;t)+pl(l—1;t)+qII(I+1;t) (16)

where

p= Z[aﬂ(j) + (W) +wf)P1L() + (Wl + W) Pa(h)]

(17)
and

g =Y _[BP() + (W +wh)Pi(§) + (whz + w3s)Pa(4)]

(18)

Thus, as in the original formulation of BJ [20], the dy-
namics of the midpoint variable [ is, in general, a combi-
nation of drift and diffusion. Note that in the special case
p = q the drift vanishes and the dynamics of | becomes
purely diffusive.

Therefofe, the average speed of unwinding should be
defined as

(p—a) (19)

v =

DN | =

where the prefactor 1/2 arises from the fact that the mid-
point is actually 1/2 and not I. Using the expressions (7))



and ([A8) in 29) we get
v = 53l - B)PG)

+ (w{2 + w%} - w?Q - WQQ)P2(J.)
(ng + Wfl - ‘*’?1 - "-’31)7)1 (4)]-

_|_

(20)
Alternatively, the expression for v can also be written as

1 .
v = 52 lag+wly +wf —wh - wh - B)P20)
J
— (B —wl —wl] —aj +wh +wh)Pi()].
(21)

Similarly, following the same arguments as in ref.[20], we
get diffusion constant

p . Pta

PN

4
Z[(ag‘ + B5)P(4)

W{Q + wécQ + why + why)Pa ()
‘*’2fl + ‘*’{1 +why + wh)PL()]

> e + B; + wiy + wly + why + why)Pa(j)

J
+ (aj + Bj +wh +wl] +why +wh)Pi()].

+ +

RN

(22)

Note that if w], and w}, are interpreted to be the rate
constants corresponding to unbiased diffusion of the heli-

(why + a + why)war + (o + wh) + wh))wrs

case in the weakly bound state 2, then wg2 = w!, and the
corresponding two terms drop out from the expression for
v but not from that for D.

IV. SOLUTION

In order to evaluate v and D we need to get the expres-
sions for P;(j) and P(j) in terms of the rate constants.
Invoking the principle of detailed balance for the purely
“chemical” transitions between the states 1 and 2, while
the helicase is located at an arbitrary site n and the fork
is at m (i.e., the gap j = m — n remains unchanged), we
get

w21 P1(j) = wi2P2(j) (23)
and, hence,
Pili) = 22| Pati), (24)

Note that this relation assumes that there is a rapid equi-
libration of the chemical transitions between the 1 and
2 states at site j. Therefore, this relation is valid in the
limit where the rates wy; and wis are much larger than
all the other rates.

Using this detailed-balance relation, the recursion re-
lation for P;(j) and that for P»(j) are not independent
of each other. Using the relation (24)) in (??) we find the
recursion relation for Ps to be

Po(j +1) :{

Iterating this recursion relation and, then, using the nor-
malisation condition Y j[P1(j) + P2(j)] = 1, we get

Ps(j) = Be? (26)
with

_ (1 — C)w21
B= ot wm) 27

(Bj+1 + w{Q + ng)wm + (Bj+1 + w{1 + w2f1)w12

} P2(4) (25)

and

(ot why +whwiz + (a4 why + wdy)was

€= T ] (28)
(B4 wii +wyp)wiz + (B + wiy + wyy)wa
Note that we have also used the facts that 5, = 0 and
w{Q =0 at j = 1. Thus, finally, we get




(w12 + wa1) 2(040-){20-)21 - 50-’31(4012) + (e — fQ)wiz + (afdg — 594)0-)21} + (Qsw12 + Qﬁwm)(w{lwm + w§2w21)

(29)

v =
2(w12 + wa1) {(5 + w{I + w£1)w12 + (B + w{2 + w§2)w21}
where, and
0 = 2w2fl + w{l
0y = 207 — wi;
93 = w22
Qy = 2w§’2 + 20.;32 - w§2
b b
Q5 = ‘*’{1 + ‘*’51 — Wy Wy
and,
b b
Q6 = ‘*’{2 + ‘*’52 — Wiy — Wao
(30)
|
D (Qprwia + Qaowa1 ) (Qg1wia + Qgawar) + (Qlalwm + Qlazwm)(ﬂlmwl? + QIBQ"‘)M)
4(wia + wa1) {(B + w{l + wgl)wm + (8 + w{Q + w%c?)wgl}
(31)
where sion (29) via the condition I(j) = 0, makes it very clear

Qo1 = a+wf; + by +wh
Qar = a + wly + Wy + Wby
Qg1 =4 +W{1 +W§1
Q2 =5 +‘*’{2 +‘*’§2
le =a +W?1 +W31
Qla2 =a +wi’2 +w32
Qlﬂl =B+ w£1
QIBQ =B+ W{Q
(32)

At first sight, it may appear counterintuitive that the
average speed v of unwinding depends on w3, or w§2.
In principle, in an infinite system, the unbiased random
walk should have no effect on the average speed. But, the

fact that this w§2 or wd,-dependence enters the expres-

that the w8, or wédependence of v results not from the
dynamical equations but from the boundary conditions
at j = 0. The helicase can reach the fork by Brownian
motion only from left side but not from the right; this
boundary condition at the fork breaks the left-right sym-
metry of Brownian motion which, in turn, gives rise to
the wg2 or wh,-dependence of v.

A. Alternative method of solution

Here we investigate a method of solving the model
without the assumption of rapid equilibrium at site j
(as expressed in equation ([24)).

We begin from the zero-current relation, equation (@),
which gives a relation between the probabilities at site
j + 1 and those at site j:

Bis1P(j + 1) + (wf) + wd))Pi(j + 1) + (i + wlh)Pa(j + 1) = ayP(j) + (wh) +wh))P1(j) + (why + why) P2 (j). (33)



Note that P(j) = P1(j) + P=2(j). Above, this recursion
was simplified using the detailed balance relation of equa-
tion (24), which relates the probabilities in the 1 and 2
states at site j. Here we suppose that the detailed bal-
ance relation does not necessarily apply, but that there
is a relationship between the 1 and 2 probabilities given
by

Pa(5) = vP1(j), (34)

Pi(j+1)

(1+9)8+ (Wfl + ‘*’51) + ’7(‘*’{2 + ‘*’52)

where 7 is an unknown constant. Here we assume that
because the rates do not vary with position, the constant
~ is independent of j. We can then use equation (33) and
the steady-state version of equation (@) to solve for the
recursion relation (that relates j + 1 to j) and for +.

Substituting equation (34]) into equation ([B3), we find

Pi(j) N

A4 ya+ (Wb +why) +y(wh, + why)

=c (35)

Note that this constant ¢ as defined is a function of 7. Next consider the steady-state version of equation (6l):

0 = —(a+B+wf) +wb +wf +wh +w)Pi() + (B +wl)Pi(j +1) +wlyPa(j + 1) (36)
+ (a4 wi)Pi(G— 1) + whhPa(j — 1) + w12 Pa(y). (37)

Plugging in equations (B4) and ([B5) we can rewrite this as

Pa(j) |—(a+ 8 +w{1 + wh, +w2fl + wh, +war) + ywis +

Since Pa(j) # 0, the expression in brackets must equal
zero. This expression allows us to solve for « in terms of
the rate constants.

B. Reduction to BJ model

In order to show the relation between the model we
propose here and the BJ model [20], we first consider the
special situations where

w§2 =w), =0 and
wiz = 1 = woa1;
wgl =w!, =0 and
w{I =wj =0 (39)
In such situations P;(j) = P2(j) for all j and, conse-
quently,
1 1

v =5 Yl = B)PGI+ 1 Yllwh —wh)PG). (40)

Therefore, if we now make the correspondence
w{2 =2kt and Wb, =2k~ (41)

between the parameters of the two models, the expression
Q) reduces to

o= Sk P a2

a+w'1’1

+c(B+ w{l) + %wi’g + vcw{; =0. (38)

which is identical to the corresponding formula for aver-
age speed of unwinding in the BJ model [20]. Moreover,
in this special case, equation (28]) also reduces to the form
a+k~

=—" 43

‘T Btk (43)

which is identical to the corresponding expression in the
BJ model. Furthermore, in this special case of our model

B=A/2 (44)
where
B+kT —a—k
A= 4
a+ k- (45)
so that
P(j) = Ad (46)

which is identical to the solution for P(j) in the BJ model
120].
From now onwards let us consider
w32 = wécQ = Wh
fo_, b _ 0: b f _ 0
Wy = Wip = Uiy = Wi =
(47)
The variation of v, and D with ws; are shown in fig[3l
Clearly, in the limit ws; — oo, v and D saturate to the
values given by the expressions
b~ 2aw{2 +wp(a— B+ w{2)
T 2wl w4+ B)

as wgy — 00, (48)
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FIG. 3: Variation of v and D with w2:1. The numerical val-
ues of the parameters are: o = 1s™', 8 = 757", wia =
0.4puM " 1s™1, why = 0.4pM " 1s™1 wy =151, w{Q =9s L

{la+20)@ly + 0+ 8)} + {(wly + Ao +w) |
D= as wo1 — OQ. (49)
Hwly +wp + )

e These saturations are caused by the fact that, in this
i - limit, the unwinding is limited by other smaller rate con-
w7 otvsoncomsan o — ] stants which appear in the formula (@S).

Unwinding velocity (v) =------

0.6 -

| Similarly, the variation of v and D with w{, are shown
3 in fig.([); the saturation value obtained by extrapolation
> o2 / ] from this figure at high w{2 are consistent with in the
olf | expressions
0 50 100 VIEEDS-I) 200 250 300 2 w + w a + w w
e ~ (wn 12) 22D s w{2 — 0 (50)

2(w21 + wi2)
FIG. 4: Variation of v and D with w/,. The parameter values

are same as in fig[3] except that ws; = 0.4;¢M71571 and wlf2

is the independent variable. and

{(a+ 2wp)war + (a+ whwiz} + {(a + wp)war + (@ + why)wiz } /

D= as wi, — 0. 51
4(&)214—&]12) 12 ( )

which we get from equation (29) and (31I), respectively, D approach
in the limit w}L — 00.

f — B,b
o . v= (aw)ywar = By wiz) as wp — 0, (52)
In the special limit w, — 0 the expressions for v and (w{2 + B)war + Bwia
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FIG. 5: Variation of v and D with wp. The parameter values
are identical to those in fig[3l except that ws; = 0.4,uM_ls_1
and wy is the independent variable.
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FIG. 6: Variation of v with ws1. The parameter values are
identical to those in figl3l except that Wiy = 5Obpsf1 and wa1
is the independent variable.
and
D <O‘> R 1 (53)
= — - & - Wy
2 2(0.)21 + w12) ’

respectively. In the opposite limit w, — oo, the corre-
sponding expressions are

y— wor (a — [3+W{2) +wia(a— _ng) as wy — od54)
2(w12 + wa1)

and

Wh w21
D=|—|——— forlarge w;. 55
<2>(w21+w12) g b (55)
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respectively. These limits can be seen on the plots of v
and D against wy in figlel

HCV NS3 helicase is a representative member of the
Superfamily-2 of helicases; it is responsible for viral repli-
cation and, therefore, a potential drug target. Stepping
velocity of NS3 helicase, obtained from in-vitro bulk ex-
periments [13] at saturating [ATP], is about 35+ 4 bp/s.
This is an underestimate compared to the stepping ve-
locity of 51 + 3 bp/s observed in recent single molecule

experiments |[19]. We now use the approximate estimate

w{2 = 50bps !, together with the numerical values of the

other parameters which we have used so far, to predict
the maximum unwinding velocity of the helicase on the
basis of our model. The predicted value of the unwinding
velocity ~ 1.2 bp/s is very close to the corresponding rate
of unwinding by HCV NS3 helicase measured by Patel et
al.[13].

V. SUMMARY AND CONCLUSION

In this paper we have developed a general model of
unwinding of nucleic acids by helicase motors. In this
model, the sites of a discrete lattice denote the positions
of the individual bases on the ssDNA. At any spatial po-
sition on this discrete lattice, a helicase can exist in one
of the two allowed ”chemical” states: it can be either
strongly or weakly bound to the ssDNA. A special case
of this model captures the Brownian ratchet mechanism
proposed for HCV NS3 helicase [13]. Solving the mas-
ter equations for this model in the steady state, we have
calculated the speed of unwinding. We have established
the consistency of the model by estimating the speed of
unwinding using rate constants extracted from the em-
pirical data for HCV NS3 helicase.

Acknowledgements: We thank Frank Jiilicher for
several discussions as well as for important suggestions.
Work of one of the authors (DC) has been supported, in
part, by the Council of Scientific and Industrial Research
(India) and the Visitors Program of the Max-Planck In-
stitute for Physics of Complex Systems, Dresden (Ger-
many).

[1] B. Alberts et al. Molecular Biology of the Cell, (3rd edi-
tion).

[2] M. Schliwa, (ed.) Molecular Motors, (Wiley-VCH, 2003).

[3] J. E. Molloy and C. Veigel (eds.), Special issue of IEE
Proceedings- Nanobiotechnology, 150, No.3 (December,

2003).
[4] Special issue of J. Phys. Cond. Matt. 17, no.47 (2005).
[6] S. Iyer, B. Romanowicz and M. Laudon, A DARPA
commissioned overview on “Biomolecular Motors” (with
highlights from the special session at nanotech 2004,



Boston, USA).

[6] D. D. Hackney and F. Tanamoi, The Enzymes, vol. XXIII
Energy Coupling and Molecular Motors (Elsevier, 2004).

[7] C. Mavroidis, A. Dubey and M.L. Yarmush, Annu. Rev.
Biomed. Eng, (Annual Reviews, 2004).

[8] J. Howard, Mechanics of Motor Proteins and the Cy-
toskeleton (Sinauer Associates, massachusetts, 2001).

[9] T. M. Lohman, K. Thorn and R. D. Vale, Cell 93, 9
(1998).

[10] M. K. Levin and S. Patel, in: [2].

[11] T. M. Lohman and K.P. Bjornson, Annu. Rev. Biochem.
65, 169 (1996).

[12] S. Patel and K.M. Picha, Annu. Rev. Biochem. 69, 651
(2000).

[13] M.K. Levin, M. Gurjar and S.S. Patel, J. Biol. Chem.
278, 23311 (2003); Nature Str. and Mol. Biol. 12, 429
(2005).

[14] F. Jiilicher, A. Ajdari and J. Prost, Rev. Mod. Phys. 69,
1269 (1997).

11

[15] P. Reimann, Phys. Rep. 361, 57 (2002).

[16] N. Yao, T. Hesson, M. Cable, Z. Hong, A.D. Kwong, H.V.
Le and P.C. Weber, Nature Str. Biol. 4, 463 (1997).

[17] V. Serebrov and A.M. Pyle, Nature 430, 476 (2004).

[18] R.K. F. Beran, M.F. Bruno, H.A. Bowers, E. Jankowsky
and A.M. Pyle, J. Mol. Biol. 358, 974 (2006).

[19] S. Dumont, W. Cheng, V. Serebrov, R.K. Beran, I
Tinoco Jr., A.M. Pyle and C. Bustamante, Nature, 439,
105 (2006).

[20] M.D. Betterton and F. Jilicher, Phys. Rev. Lett. 91,
258103 (2003); Phys. Rev. E 71, 011904 (2005); J. Phys.
Cond.Matt. 17, S3851 (2005).

[21] F. Preugschat, D.R. Averett, B.E. Clarke and D.J.T.
Porter, J. Biol. Chem. 271, 24449 (1996).

[22] K. Nishinari, Y. Okada, A. Schadschneider and D.
Chowdhury, Phys. Rev. Lett. 95, 118101 (2005).

[23] Y. Kafri and D.R. Nelson, J. Phys. Cond. Matt. 17,
S3871 (2005).



