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A model for DNA heli
ase me
hanism based on a 
ashing rat
hetAshok Garai�,1 Meredith D. Bettertony,2 and Debashish Chowdhuryz31Department of Physi
s, Indian Institute of Te
hnology, Kanpur 208016, India.2Physi
s Department, University of Colorado, Boulder, CO 80309-0390, U.S.A.3Department of Physi
s, Indian Institute of Te
hnology, Kanpur 208016, India; andMax-Plan
k Institute for Physi
s of Complex Systems,N�othnitzer Strasse 38, D-01187 Dresden, Germany.(Dated: July 18, 2007)Heli
ases are mole
ular motors that 
onsume energy supplied by 
hemi
al rea
tions to unwinddouble-stranded nu
lei
 a
ids (like DNA and RNA) and to translo
ate along one of the single-strands.Motivated by the re
ent 
laims, based on experimental observations on the heli
ase NS3 of hepatitisC virus (HCV), that monomeri
 heli
ases are governed by a Brownian rat
het me
hanism, here wedevelope a quantitative model. Our Brownian rat
het model, whi
h is a somewhat new reformulationof the Betterton-J�uli
her theory of heli
ases, is generi
 two-state model and is appli
able to allheli
ases whi
h follow the Brownian rat
het me
hanism. We illustrate the predi
tive power of themodel by 
al
ulating some experimentally testable motor properties of a few monomeri
 heli
ases.Spe�
i
ally, we predi
t the speed of unwinding of the double-stranded DNA and 
u
tuations aroundthe average drift of the heli
ase. Our predi
tions are in ex
ellent quantitative agreement with the
orresponding experimental data.PACS numbers:I. INTRODUCTIONHeli
ases [1℄ are enzymes that unwind double-strandednu
lei
 a
ids and translo
ate along one of the two single-strands. These proteins 
onsume 
hemi
al energy (typ-i
ally, supplied by the hydrolysis of ATP) and performme
hani
al work. Therefore, these nu
lei
 a
id translo-
ases are mole
ular motors [2, 3, 4, 5, 6, 7℄. whi
hshare 
ommon features with 
ytoskeletal mole
ular mo-tors [8, 9, 10℄. Heli
ases are broadly divided into thehexameri
 group (whi
h 
onsist of an hexameri
 ar-rangemet of six ATPase domains) and non-hexameri
(mostly dimeri
 and a few monomeri
) group. Two alter-native pro
esses, 
alled the rolling (or hand-over-hand)and in
hworm me
hanisms have been suggested for theheli
ase a
tivity of non-hexameri
 heli
ases [11℄. For hex-ameri
 heli
ases, at least three di�erent alternative me
h-anisms of enzymati
 a
tivities have been suggested; thesein
lude, a
tivities of all the ATP-binding domains in (a)parallel, (b) ordered sequential manner and (
) random-sequential manner [12℄.However, other me
hanisms for heli
ase translo
ationhave been suggested. Analyzing the data from a se-ries of experiments, Patel and 
oworkers [13℄ have sug-gested a 
ashing-rat
het me
hanism [14, 15℄, for themonomeri
 heli
ase NS3 of the hepatitis C virus (HCV)[16℄. They also proposed a qualitative two-state modelfor the rat
het. We note that the experiments of Pa-tel group [13℄ fo
us on DNA unwinding by monomersof the NS3 heli
ase domain, but di�erent experimen-�E-mail: garai�iitk.a
.inyE-mail: mdb�
olorado.eduzE-mail: deb
h�iitk.a
.in

tal results have been found when studying unwinding ofRNA by full-length NS3 or HCV repli
ation 
omplexes[17, 18, 19℄. The me
hanism of the NS3 heli
ase mayvary under di�erent experimental 
onditions.Motivated by the proposed 
ashing-rat
het me
hanismfor NS3 heli
ase, we develop and solve a 
ashing rat
hetmodel of heli
ases. The model signi�
antly extendsthe original Betterton-J�uli
her (BJ) model [20℄ to in
or-porate the two-state s
enario suggested in ref.[13℄ andthereby make a dire
t 
onta
t with the 
ashing rat
hetme
hanism. A two-state model for the heli
ase was also
onsidered by Betterton and J�uli
her [20℄, but the natureof the two states in that formulation and the me
hanismof translo
ation of the heli
ase is di�erent from those de-veloped here.Our paper is stru
tured as follows. In se
tion II wedes
ribe the dis
rete version of a 
ashing rat
het (theheli
ase) whi
h a
ts to push a 
u
tuating obsta
le (theDNA ss-ds jun
tion). Se
tion III 
ontains the basi
 equa-tions whi
h des
ribe the model, the transformation of theequations using midpoint and di�eren
e variables, andthe general solutions for the velo
ity and di�usion 
oef-�
ient of unwinding. We des
ribe the results for a hard-wall intera
tion between heli
ase and jun
tion in se
tionIV, in
luding limiting 
ases of various parameters beinglarge or small. Using the rate 
onstants extra
etd fromearlier empiri
al data on HCV NS3 heli
ase, in se
tionIV we also predi
t our theoreti
al estimate for the speedof unwinding by this heli
ase. Finally, in se
tion V wesummarize our 
on
lusions.
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FIG. 1: A s
hemati
 representation of the model.II. THE MODELWe use a model inspired by the work of Levin et al.[13℄whi
h proposed that the HCV heli
ase swit
hes between2 states: one is tightly bound to the ssDNA, while theother is weakly bound. This s
enario is referred to in thephysi
s literature as a 
ashing rat
het[14℄. The 
ashingrat
het is a spe
ial 
ase of a two-state model[14℄ be
ausethe heli
ase 
an be found in either of the two allowed
hemi
al states, namely, a state S in whi
h it is stronglybound to the ssDNA strand and another stateW in whi
hit is weakly atta
hed to the same strand. When applyingthe 
ashing rat
het s
enario to HCV heli
ase, the tightlybound state is represented by a periodi
 sawtooth poten-tial (with periodi
ity of one ssDNA base pair) and theweakly bound state is represented by a uniform (position-independent) potential.In the traditional 
ontinuous models of Brownianrat
hets, one �rst writes a Fokker-Plan
k equation; be-
ause we use a dis
rete model our approa
h is based onmaster equations. The dis
rete approa
h 
an be usefulwhen 
omparing to experiments. In the Fokker-Plan
kapproa
h, one needs the expli
it fun
tional form of the
u
tuating potential. Although most often a sawtooth-like form is assumed to in
orporate the asymmetri
, pe-riodi
 potential, the a
tual form of the potential experi-en
ed by a real mole
ular motor has not been measuredor 
al
ulated. We bypass this diÆ
ulty by 
apturing theBrownian motor me
hanism e�e
tively through a judi-
ious 
hoi
e of rate 
onstants (or transition probabili-ties), many of whi
h 
an be obtained from experiments[21℄. A similar strategy has been followed re
ently in de-veloping a Brownian rat
het model for the single-headedkinesin KIF1A [22℄, although realisti
 implementation ofthe strategy is more diÆ
ult here be
ause of the intrinsi
heterogeneity of the ssDNA tra
k [23℄.We 
apture the physi
s of the 
ashing rat
het in adis
rete hopping model. We represent the ssDNA by aone-dimensional latti
e ea
h site of whi
h 
orresponds toa single base. We label ea
h site by the interger indexi. As in the BJ model [20℄, we negle
t the sequen
e in-

homogeneity of the ssDNA (in prin
iple, the model 
anbe extended to 
apture this feature). The position of theheli
ase is denoted by the integer n. Every known heli-
ase has a �xed dire
tion of translo
ation, i.e., either 30to 50 or 50 to 30 along the left-right asymmetri
 ssDNA[? ℄. In our model the heli
ase is assumed to translo
atetowards in
reasing n (from left to right). The jun
tionbetween ssDNA-dsDNA is lo
ated at site m (see �g. 1).At any spatial position n, the heli
ase 
an be either instate 1 (strongly bound, labeled S), or 2 (weakly bound,labeled W ).The model is fully des
ribed by the allowed transitionsbetween states and the 
orresponding rea
tion rates. Weuse notation where !f�� is the rate of the transition tostate � at an arbitrary spatial lo
ation n from the state� lo
ated at n + 1 where both � and � 
an be either 1(S) or 2 (W ). The 
orresponding ba
kwards transitionfrom n+ 1 to n has rate !b��. In general, we 
ould haveall transitions sket
hed in �g. 1.Heli
ase \sliding" 
orresponds to transitions along thessDNA without a 
hange in bio
hemi
al state of the pro-tein. In the 1 (S) state, these sliding transitions o

urat rate !f11 (for in
reasing n) and !b11 (for de
reasingn). When the heli
ase is in the 2 (W ) state, the for-ward/ba
kward sliding rates are !f22 and !b22. Physi-
ally, these transitions o

ur be
ause of Brownian mo-tion of the protein, de
oupled from any bio
hemi
al state
hange. The transitions asso
iated with !f22 and !b22
an be interpreted to be 
aused by one-dimensional dif-fusion of the heli
ase in the weakly-bound state; unbi-ased di�usion would 
orrespond to !f22 = !b22. Even inthe strongly-bound state the heli
ase will be signi�
antlya�e
ted by thermal 
u
tuations; the transitions asso
i-ated with !f11 and !b11 
an be interpreted as thermally-a
tivated Kramers-like pro
esses. In general, we wouldexpe
t the sliding rates for the 2 (W ) state to be mu
hlarger than for the tightly bound (1) state.The heli
ase 
an undergo \
hemi
al" transitions whi
h
orrespond to a 
hange in bio
hemi
al state withoutphysi
al translo
ation along the ssDNA. At �xed n, therate of transition to state 1 (S) from 2 (W ) o

urs atrate !12, while the reverse transition o

urs at rate !21.If one of these rea
tions is 
oupled to ATP hydrolysis,then the forward/reverse transitions may be out of equi-librium and break the detailed balan
e relation. For ex-ample, the Levin et al. model of HCV heli
ase suggeststhat ATP hydrolysis is required to remove the heli
asefrom the tightly bound state, implying that the 1 ! 2transtion at rate !21 is out of equilibrium.The �nal type of heli
ase transitions are those wherea 
hange of bio
hemi
al state and physi
al translo
ationo

ur together. If the heli
ase is lo
ated at n and is instate 1 (S), then it 
an make a transition to state 2 (W )while moving forward to site n+1 at rate !f21; the same
hange of state 
oupled to a ba
kwards displa
ement tosite n� 1 o

urs at rate !b21. The 
orresponding reversetransitions o

ur at rates !b12 (transition from state 2 at



3n+1 to state 1 at n) and !f12 (transition from state 2 atn� 1 to state 1 at n).

FIG. 2: S
hemati
 des
ription of the Brownian-rat
het me
h-anism .We 
an asso
iate the dis
rete transition rates with thephysi
al pro
ess and develop intuition for the relativemagnitudes of the rates by 
omparing the dis
rete ratesto the 
ontinuous pi
ture illustrated in �g.2. The phys-i
al pro
esses 
aptured by the parameters !f21 and !21
an be understood as follows by 
omparision with the
ashing rat
het. For the sake of simpli
ity, suppose thatthe potential seen by the motor periodi
ally os
illates be-tween the sawtooth shape and the 
at shape shown in �g.2. When the sawtooth potential is on for some time, theparti
le settles at the bottom of a well; this is the lo
ationof a potential minimum for state 1 at site n. Then, whenthe potential is swit
hed o�, the parti
le is swit
hed tostate 2. The probability distribution of the position ofthe parti
le (initially a delta fun
tion) begins to spreadsymmetri
ally. (The spread is symmetri
 assuming freedi�usion in the absen
e of any for
e). After some time,the Gaussian probability distribution spreads su
h thatit overlaps with the potential minimum of state 1 at siten+ 1, in addition to the overlap it has with the originalwell. When the sawtooth potential is again swit
hed on,there is a non-vanishing probability that the parti
le will

move to the potential minimum at site n+1. In our dis-
rete model, this transition 
orresponds to a transitionfrom state 2 and site n to state 1 at site n + 1, whi
ho

urs at rate !f12. There is also a signi�
ant probabilitythat the parti
le will fall ba
k into the original well; thisis 
aptured in our model by the parameter !12. As themotor eÆ
ien
y in
reases,, we expe
t !f12 to in
rease rel-ative to !12. For a motor that is unbiased (whi
h wouldo

ur, for example, if the sawtooth potential is symmet-ri
), we would have !f12 = !b12.The dsDNA opens and 
loses due to thermal 
u
tu-ations. When the heli
ase and jun
tion are far apart,the opening rate is � and the 
losing rate �. We assumethat these rates are independent of the NA base sequen
eand that the only 
u
tuations are those for whi
h theNA opens or 
loses at the ss-ds fork only. Sin
e the NAbreathing results from thermal 
u
tuations, the rates �and � satisfy detailed balan
e: �� = e��G, where �G isthe free energy of one base-pair bond.In this work we assume passive unwinding, whi
h isequivalent to a hard-wall intera
tion potential in the BJmodel [20℄. This means that when the heli
ase and jun
-tion are adja
ent (j = 1), the heli
ase 
annot hop forwardand the NA 
annot 
lose (k+1 = �1 = 0). Otherwise, therates are una�e
ted by the heli
ase-jun
tion intera
tion.We shall 
al
ulate the average speed v of unwindingand 
u
tuations about the drift of the heli
ase. While,on physi
al grounds, it is obvious that !f22 or !b22 willnot appear in the expression for v, the 
u
tuations willbe a�e
ted by the Brownian motion in the weakly-boundstate (W ) of the heli
ase.III. MASTER EQUATIONSLet P�(n;m; t) denote the probability that, at time t,the heli
ase is at lo
ated at n and is in the \
hemi
al"state � where � = 1 and � = 2 
orrespond to the statesin whi
h the heli
ase is bound, respe
tively, stronglyand weakly to the NA, while the ss-ds jun
tion is at m.The master equations governing the time evolutions ofP�(n;m; t) are given by
dP1(n;m; t)dt = �(�m�n + �m�n + !f11 + !b11 + !f21 + !b21 + !21)P1(n;m; t)+ !f11P1(n� 1;m; t) + !f12P2(n� 1;m; t) + !b11P1(n+ 1;m; t) + !b12P2(n+ 1;m; t)+ !12P2(n;m; t) + �(m�1)�nP1(n;m� 1; t) + �(m+1)�nP1(n;m+ 1; t): (1)



4and dP2(n;m; t)dt = �(�m�n + �m�n + !f22 + !b22 + !f12 + !b12 + !12)P2(n;m; t)+ !f21P1(n� 1;m; t) + !f22P2(n� 1;m; t) + !b21P1(n+ 1;m; t) + !b22P2(n+ 1;m; t)+ !21P1(n;m; t) + �(m�1)�nP2(n;m� 1; t) + �(m+1)�nP2(n;m+ 1; t) (2)respe
tively.Let us de�ne j = m�n and l = 2l0 = m+n. Ovbiouslyj denotes the separation between the heli
ase and the jun
tion while l0 
orresponds to the mid-point betweenthem. In terms of j and l the equations (1) and (2) 
anbe re
ast asdP1(j; l; t)dt = �(�j + �j + !f11 + !b11 + !f21 + !b21 + !21)P1(j; l; t)+ !f11P1(j + 1; l� 1; t) + !f12P2(j + 1; l� 1; t) + !b11P1(j � 1; l+ 1; t) + !b12P2(j � 1; l+ 1; t)+ !12P2(j; l; t) + �j�1P1(j � 1; l � 1; t) + �j+1P1(j + 1; l+ 1; t): (3)and dP2(j; l; t)dt = �(�j + �j + !f22 + !b22 + !f12 + !b12 + !12)P2(j; l; t)+ !f21P1(j + 1; l� 1; t) + !f22P2(j + 1; l� 1; t) + !b21P1(j � 1; l+ 1; t) + !b22P2(j � 1; l+ 1; t)+ !21P1(j; l; t) + �j�1P2(j � 1; l � 1; t) + �j+1P2(j + 1; l+ 1; t) (4)Next, let us de�ne the probability distributions of thegap sizes P1(j; t) =Xl P1(j; l; t)P2(j; t) =Xl P2(j; l; t) (5)
From equations (3) and (4), the equations for P1(j; t)and P2(j; t) follow; these are given by

dP1(j; t)dt = �(�j + �j + !f11 + !b11 + !f21 + !b21 + !21)P1(j; t)+ !f11P1(j + 1; t) + !f12P2(j + 1; t) + !b11P1(j � 1; t) + !b12P2(j � 1; t)+ !12P2(j; t) + �j�1P1(j � 1; t) + �j+1P1(j + 1; t): (6)and dP2(j; t)dt = �(�j + �j + !f22 + !b22 + !f12 + !b12 + !12)P2(j; t)+ !f21P1(j + 1; t) + !f22P2(j + 1; t) + !b21P1(j � 1; t) + !b22P2(j � 1; t)+ !21P1(j; t) + �j�1P2(j � 1; t) + �j+1P2(j + 1; t) (7)Adding the equations (6) and (7) we getdP(j; t)dt = �(�j + �j)P(j; t) + �j�1P(j � 1; t) + �j+1P(j + 1; t)+ (!f11 + !f21)P1(j + 1; t) + (!f12 + !f22)P2(j + 1; t) + (!b11 + !b21)P1(j � 1; t) + (!b12 + !b22)P2(j � 1; t)� (!f11 + !b11 + !f21 + !b21)P1(j; t)� (!f22 + !b22 + !f12 + !b12)P2(j; t) (8)



5for the distribution of gap sizes, irrespe
tive of the \
hem-i
al" state of the heli
ase. Interestingly, the right handside of the equation (8) does not involve !21 and !12 asthe transitions 1! 2 and 2! 1 do not 
hange j be
ausethe position of the heli
ase remains un
hanged in boththese transitions.We now de�ne the probability 
urrent between j andj + 1 byI(j) = �jP(j)� �j+1P(j + 1)+ (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j)� (!f11 + !f21)P1(j + 1)� (!f12 + !f22)P2(j + 1)(9)In terms of the probability 
urrent (9) the equation (8)
an be re
ast asdP(j; t)dt + [I(j)� I(j � 1)℄ = 0 (10)

whi
h formally appears as an equation of 
ontinuity forthe probability. In the steady-state P(j) is independentof time and we get the 
ondition I(j) = I(j � 1). More-over, sin
e U(j) ! 1 as j ! �1, this 
onstant proba-bility 
ux must be zero, i.e.,
I(j) = 0 for all j: (11)

Adding the two equations (3) and (4) we getdP (j; l; t)dt = �(�j + �j)P (j; l; t) + �j�1P (j � 1; l� 1; t) + �j+1P (j + 1; l+ 1; t)+ (!f11 + !f21)P1(j + 1; l� 1; t) + (!f12 + !f22)P2(j + 1; l � 1; t)+ (!b11 + !b21)P1(j � 1; l+ 1; t) + (!b12 + !b22)P2(j � 1; l + 1; t)� (!f11 + !b11 + !f21 + !b21)P1(j; l; t)� (!f22 + !b22 + !f12 + !b12)P2(j; l; t) (12)where P (j; l; t) = P1(j; l; t) + P2(j; l; t): (13)where P (j; l; t) is the joint probability distribution of thegaps j and midpoints l, irrespe
tive of the \
hemi
al"state of the heli
ase. We now de�ne the probability dis-tributions of l at time t by�(l; t) =Xj P (j; l; t) (14)Note that, by de�nition, �(l; t) is independent of the
hemi
al state of the heli
ase, i.e., whether the heli
aseis in the state 1 or in the state 2. For times mu
h longerthan the relaxation time of the di�eren
e variable j, we
an assumeP�(j; l) = P�(j) �(l) (� = 1 or2) (15)Starting from the equation (12), it is straightforward toderived�(l; t)dt = �(p+q)�(l; t)+p�(l�1; t)+q�(l+1; t) (16)

wherep =Xj [�jP(j) + (!f11 + !f21)P1(j) + (!f12 + !f22)P2(j)℄(17)andq =Xj [�jP(j) + (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j)℄(18)Thus, as in the original formulation of BJ [20℄, the dy-nami
s of the midpoint variable l is, in general, a 
ombi-nation of drift and di�usion. Note that in the spe
ial 
asep = q the drift vanishes and the dynami
s of l be
omespurely di�usive.Therefofe, the average speed of unwinding should bede�ned as v = 12(p� q) (19)where the prefa
tor 1=2 arises from the fa
t that the mid-point is a
tually l=2 and not l. Using the expressions (17)



6and (18) in (29) we getv = 12Xj [(�j � �j)P(j)+ (!f12 + !f22 � !b12 � !b22)P2(j)+ (!f21 + !f11 � !b11 � !b21)P1(j)℄: (20)Alternatively, the expression for v 
an also be written asv = 12Xj [(�j + !f12 + !f22 � !b12 � !b22 � �j)P2(j)� (�j � !f21 � !f11 � �j + !b11 + !b21)P1(j)℄: (21)Similarly, following the same arguments as in ref.[20℄, weget di�usion 
onstantD = p+ q4= 14Xj [(�j + �j)P(j)+ (!f12 + !f22 + !b12 + !b22)P2(j)+ (!f21 + !f11 + !b11 + !b21)P1(j)℄= 14Xj [(�j + �j + !f12 + !f22 + !b12 + !b22)P2(j)+ (�j + �j + !f21 + !f11 + !b11 + !b21)P1(j)℄: (22)Note that if !f22 and !b22 are interpreted to be the rate
onstants 
orresponding to unbiased di�usion of the heli-


ase in the weakly bound state 2, then !f22 = !b22 and the
orresponding two terms drop out from the expression forv but not from that for D.IV. SOLUTIONIn order to evaluate v and D we need to get the expres-sions for P1(j) and P2(j) in terms of the rate 
onstants.Invoking the prin
iple of detailed balan
e for the purely\
hemi
al" transitions between the states 1 and 2, whilethe heli
ase is lo
ated at an arbitrary site n and the forkis at m (i.e., the gap j = m� n remains un
hanged), weget !21P1(j) = !12P2(j) (23)and, hen
e, P1(j) = �!12!21 �P2(j): (24)Note that this relation assumes that there is a rapid equi-libration of the 
hemi
al transitions between the 1 and2 states at site j. Therefore, this relation is valid in thelimit where the rates !21 and !12 are mu
h larger thanall the other rates.Using this detailed-balan
e relation, the re
ursion re-lation for P1(j) and that for P2(j) are not independentof ea
h other. Using the relation (24) in (??) we �nd there
ursion relation for P2 to be
P2(j + 1) = ( (!b22 + �j + !b12)!21 + (�j + !b21 + !b11)!12(�j+1 + !f12 + !f22)!21 + (�j+1 + !f11 + !f21)!12)P2(j) (25)

Iterating this re
ursion relation and, then, using the nor-malisation 
ondition P j[P1(j) + P2(j)℄ = 1, we getP2(j) = B
j (26)with B = (1� 
)!21
(!12 + !21) (27)
and 
 = (�+ !b11 + !b21)!12 + (�+ !b12 + !b22)!21(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21 (28)Note that we have also used the fa
ts that �1 = 0 and!f12 = 0 at j = 1. Thus, �nally, we get
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v = (!12 + !21)�2(�!f12!21 � �!b21!12) + (�
1 � �
2)!12 + (�
3 � �
4)!21�+ (
5!12 +
6!21)(!f11!12 + !f22!21)2(!12 + !21)n(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21o (29)where, 
1 = 2!f21 + !f11
2 = 2!b11 � !f11
3 = !f22
4 = 2!b12 + 2!b22 � !f22
5 = !f11 + !f21 � !b11 � !b21and;
6 = !f12 + !f22 � !b12 � !b22 (30)

and

D = (
�1!12 +
�2!21)(
�1!12 +
�2!21) + (
0�1!12 +
0�2!21)(
0�1!12 +
0�2!21)4(!12 + !21)n(� + !f11 + !f21)!12 + (� + !f12 + !f22)!21o (31)where 
�1 = �+ !f11 + !b11 + !b21
�2 = �+ !f22 + !b22 + !b12
�1 = � + !f11 + !f21
�2 = � + !f12 + !f22
0�1 = �+ !b11 + !b21
0�2 = �+ !b12 + !b22
0�1 = � + !f21
0�2 = � + !f12 (32)At �rst sight, it may appear 
ounterintuitive that theaverage speed v of unwinding depends on !b22 or !f22.In prin
iple, in an in�nite system, the unbiased randomwalk should have no e�e
t on the average speed. But, thefa
t that this !f22 or !b22-dependen
e enters the expres-

sion (29) via the 
ondition I(j) = 0, makes it very 
learthat the !b22 or !f22dependen
e of v results not from thedynami
al equations but from the boundary 
onditionsat j = 0. The heli
ase 
an rea
h the fork by Brownianmotion only from left side but not from the right; thisboundary 
ondition at the fork breaks the left-right sym-metry of Brownian motion whi
h, in turn, gives rise tothe !f22 or !b22-dependen
e of v.A. Alternative method of solutionHere we investigate a method of solving the modelwithout the assumption of rapid equilibrium at site j(as expressed in equation (24)).We begin from the zero-
urrent relation, equation (9),whi
h gives a relation between the probabilities at sitej + 1 and those at site j:�j+1P(j + 1) + (!f11 + !f21)P1(j + 1) + (!f12 + !f22)P2(j + 1) = �jP(j) + (!b11 + !b21)P1(j) + (!b12 + !b22)P2(j): (33)



8Note that P(j) = P1(j) + P2(j). Above, this re
ursionwas simpli�ed using the detailed balan
e relation of equa-tion (24), whi
h relates the probabilities in the 1 and 2states at site j. Here we suppose that the detailed bal-an
e relation does not ne
essarily apply, but that thereis a relationship between the 1 and 2 probabilities givenby P2(j) = 
P1(j); (34)
where 
 is an unknown 
onstant. Here we assume thatbe
ause the rates do not vary with position, the 
onstant
 is independent of j. We 
an then use equation (33) andthe steady-state version of equation (6) to solve for there
ursion relation (that relates j + 1 to j) and for 
.Substituting equation (34) into equation (33), we �ndP1(j + 1)P1(j) = (1 + 
)� + (!f11 + !f21) + 
(!f12 + !f22)(1 + 
)�+ (!b11 + !b21) + 
(!b12 + !b22) = 
: (35)Note that this 
onstant 
 as de�ned is a fun
tion of 
. Next 
onsider the steady-state version of equation (6):0 = �(�+ � + !f11 + !b11 + !f21 + !b21 + !21)P1(j) + (� + !f11)P1(j + 1) + !f12P2(j + 1) (36)+ (�+ !b11)P1(j � 1) + !b12P2(j � 1) + !12P2(j): (37)Plugging in equations (34) and (35) we 
an rewrite this asP2(j) ��(�+ � + !f11 + !b11 + !f21 + !b21 + !21) + 
!12 + �+ !b11
 + 
(� + !f11) + 

 !b12 + 

!f12� = 0: (38)Sin
e P2(j) 6= 0, the expression in bra
kets must equalzero. This expression allows us to solve for 
 in terms ofthe rate 
onstants.B. Redu
tion to BJ modelIn order to show the relation between the model wepropose here and the BJ model [20℄, we �rst 
onsider thespe
ial situations where!f22 = !b22 = 0 and!12 = 1 = !21;!f21 = !b12 = 0 and!f11 = !b11 = 0 (39)In su
h situations P1(j) = P2(j) for all j and, 
onse-quently,v = 12Xj [(�j ��j)P(j)℄+ 14Xj [(!f12�!b21)P(j)℄: (40)Therefore, if we now make the 
orresponden
e!f12 = 2k+ and !b21 = 2k� (41)between the parameters of the two models, the expression(40) redu
es tov = 12Xj [(�j � �j + k+ � k�)P(j)℄: (42)

whi
h is identi
al to the 
orresponding formula for aver-age speed of unwinding in the BJ model [20℄. Moreover,in this spe
ial 
ase, equation (28) also redu
es to the form
 = �+ k�� + k+ (43)whi
h is identi
al to the 
orresponding expression in theBJ model. Furthermore, in this spe
ial 
ase of our modelB = A=2 (44)where A = � + k+ � �� k��+ k� (45)so that P(j) = A
j (46)whi
h is identi
al to the solution for P(j) in the BJ model[20℄.From now onwards let us 
onsider!b22 = !f22 = !b!f21 = !b12 = 0;!b11 = !f11 = 0 (47)The variation of v, and D with !21 are shown in �g.3.Clearly, in the limit !21 ! 1, v and D saturate to thevalues given by the expressionsv ' 2�!f12 + !b(� � � + !f12)2(!f12 + !b + �) as !21 !1: (48)
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and

D = n(�+ 2!b)(!f12 + !b + �)o + n(!f12 + �)(�+ !b)o4(!f12 + !b + �) as !21 !1: (49)
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FIG. 4: Variation of v and D with !f12. The parameter valuesare same as in �g.3, ex
ept that !21 = 0:4�M�1s�1 and !f12is the independent variable.

These saturations are 
aused by the fa
t that, in thislimit, the unwinding is limited by other smaller rate 
on-stants whi
h appear in the formula (48).Similarly, the variation of v and D with !f12 are shownin �g.(4); the saturation value obtained by extrapolationfrom this �gure at high !f12 are 
onsistent with in theexpressionsv ' 2(!21 + !12)�+ !21!b2(!21 + !12) as !f12 !1 (50)and
D = �(� + 2!b)!21 + (�+ !b21)!12	+ �(�+ !b)!21 + (�+ !b21)!12	4(!21 + !12) as !f12 !1: (51)whi
h we get from equation (29) and (31), respe
tively,in the limit !+f !1.In the spe
ial limit !b ! 0 the expressions for v and

D approa
hv = (�!f12!21 � �!b21!12)(!f12 + �)!21 + �!12 as !b ! 0; (52)
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FIG. 6: Variation of v with !21. The parameter values areidenti
al to those in �g.3 ex
ept that !f12 = 50bps�1 and !21is the independent variable.and D = ��2�+ !b21!122(!21 + !12) as !b ! 0; (53)respe
tively. In the opposite limit !b ! 1, the 
orre-sponding expressions arev = !21(�� � + !f12) + !12(�� � � !b21)2(!12 + !21) as !b !1:(54)and D = �!b2 � !21(!21 + !12) forlarge !b: (55)

respe
tively. These limits 
an be seen on the plots of vand D against !b in �g.6.HCV NS3 heli
ase is a representative member of theSuperfamily-2 of heli
ases; it is responsible for viral repli-
ation and, therefore, a potential drug target. Steppingvelo
ity of NS3 heli
ase, obtained from in-vitro bulk ex-periments [13℄ at saturating [ATP℄, is about 35� 4 bp/s.This is an underestimate 
ompared to the stepping ve-lo
ity of 51 � 3 bp/s observed in re
ent single mole
uleexperiments [19℄. We now use the approximate estimate!f12 = 50bps�1, together with the numeri
al values of theother parameters whi
h we have used so far, to predi
tthe maximum unwinding velo
ity of the heli
ase on thebasis of our model. The predi
ted value of the unwindingvelo
ity� 1:2 bp/s is very 
lose to the 
orresponding rateof unwinding by HCV NS3 heli
ase measured by Patel etal.[13℄.
V. SUMMARY AND CONCLUSIONIn this paper we have developed a general model ofunwinding of nu
lei
 a
ids by heli
ase motors. In thismodel, the sites of a dis
rete latti
e denote the positionsof the individual bases on the ssDNA. At any spatial po-sition on this dis
rete latti
e, a heli
ase 
an exist in oneof the two allowed "
hemi
al" states: it 
an be eitherstrongly or weakly bound to the ssDNA. A spe
ial 
aseof this model 
aptures the Brownian rat
het me
hanismproposed for HCV NS3 heli
ase [13℄. Solving the mas-ter equations for this model in the steady state, we have
al
ulated the speed of unwinding. We have establishedthe 
onsisten
y of the model by estimating the speed ofunwinding using rate 
onstants extra
ted from the em-piri
al data for HCV NS3 heli
ase.A
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