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Abstract

The effect of plasma environment on the ground state energies of exotic systems
ppµ, ddµ and ttµ has been analyzed within a generalized three-body formalism
using multi-term correlated basis sets. The Debye screening model of the plasma
has been adopted for such a study. The binding energies of p with pµ, d with dµ and t
with tµ have been estimated for a range of values of the Debye screening parameters.
The systems tend towards instability for increased screening. The effect of particle
correlation has been investigated in detail and is found to play important role for
the stability in these systems.
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1 Introduction

Study of the effect of external environment like that of a plasma on the energy
levels and other structural properties of atomic, ionic and exotic systems has
become a subject of extensive investigations in recent years [1–12]. A broad
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discussion on the subject matter was given by Griem [13], Fujimoto [14], Ichi-
maru [15] and Rajagopal [16]. Depending on the density and temperature of
the external plasma, one can adopt various models of plasma-atom interac-
tion whose effect is to alter the potential energy compared to that of the free
atom. For low density and high temperature one usually considers the Debye
screening model [17] while for high density and low temperature the ion sphere
model [18] is usually adopted.

In this work we are interested in studying the ground state energy of the
Coulombic three-body muonic molecular ions ppµ, ddµ and ttµ under an ex-
ternal plasma environment. These systems are particularly important in the
muon catalyzed fusion processes [19–21]. Muonic molecular ions with protonic
substitutions are less adiabatic than the corresponding hydrogen molecular
ions due to the mass difference between muon and proton. Such systems are of
general interest theoretically [22, 23]. During the passage of particles through
matter most of these exotic hadronic systems are formed, albeit, their low
mean lives [20, 24, 25]. One can consider the background to mimic a plasma.
Hence one can apply a plasma model for estimating the properties of the exotic
systems in such an environment, particularly for a fusion plasma. Although
a number of highly accurate theoretical estimates are available for the bound
state properties of such free exotic three-body systems [26–29], calculations
predicting the behavior in presence of plasma are still scanty [30–33].

In the current communication we use the methodology adopted earlier [32]
for the estimation of the energy of the exotic systems ppµ, ddµ and ttµ in
their spherically symmetric ground states in presence of plasma. Coupling
to the plasma is included by the Debye screening model [17] in which the
potential of the interaction between the charged particles is represented by
screened Coulomb potential. We use the Ritz variational method in which the
trial wave function is a linear combination of product basis functions. The
particle correlation is taken care of by introducing explicitly the interparticle
coordinate into the basis functions. The behavior of the energy of the system is
analyzed with respect to the Debye screening constant. We aim at predicting
an overall but unambiguous behavior of the ground state energies by using
reasonably good basis sets such that the computation time is reasonable.

2 Method

The system consisting of a muon and two heavier particles is displayed in
Fig. 1. The particles are placed along the three corners of a triangle with
the muon at the origin. Their masses are m3 = mµ = 206.7682657me and
m1 = m2 = {mp, md or mt} depending on the system under study with
mp = 1836.1526675me, md = 3670.4829550me and mt = 5496.92158me. We
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consider nonrelativistic Hamiltonian of such a system embedded in a Debye
plasma. Thus the Coulomb interaction between particles is screened by plasma
and reads

V = −e−λr1

r1

− e−λr2

r2

+
e−λr12

r12

. (1)

The Debye screening constant is represented by [17]

λ =

[
4π(1 + Z)n

κT

] 1
2

, (2)

where n is the density number, T is the temperature of the plasma and Z is the
nuclear charge (which is unity in the present case). The screening parameter
can be adjusted by using suitable values of plasma density and temperature.

For the spherically symmetric ground state of a three-body system, momentum
conservation leads to a Hamiltonian expressible in terms of relative coordinates
r1, r2 and r12 and the expectation value of the Hamiltonian with respect to a
real and normalized wavefunction Ψ can be represented as
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r1r2r12dr1dr2dr12 (3)

To minimize the expectation value, the wavefunction Ψ is expanded in terms
of the interparticle coordinates which takes care of the electron correlation
effect explicitly

Ψ(r1, r2, r12) =
∑

klj

Ckljχkl(1, 2)ηj(1, 2) , (4)
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where

χkl(1, 2) ∼ (e−ρkr1−ρlr2 + e−ρlr1−ρkr2)

constructed of Slater type orbitals are to take care of the radial correlation
whereas

ηj(1, 2) ∼ r
nj

12e
−βjr12

describe the angular proton-proton (d-d or t-t) correlations dependent on the
distance between them, r12. In actual computations we used eight different
exponent parameters ρ which resulted in 36 different χkl functions. For the
angular expansion we used nine different η’s leading to altogether 36×9 = 324
linear variation coefficients for the fully correlated calculations. The linear
expansion, Eq. (3), leads to the matrix generalized eigenvalue problem

H
¯̄
C
¯

= ES
¯̄
C
¯

, (5)

where H
¯̄

and S
¯̄

are the Hamiltonian and overlap matrices built in terms of
basis functions χklηj. In general, the nonlinear parameters ρ and β can be
suitably adjusted so as to minimize the ground state eigenvalue from Eq. (4).
We have optimized them for the plasma-free case.

3 Results

We have considered here the plasma confined exotic systems ppµ, ddµ and
ttµ bound by Coulomb interactions. The ground state energies computed as
described above are given in Tables 1, 2 and 3, respectively for ppµ, ddµ and
ttµ. The energies of the plasma free systems (λ = 0) can be compared with
very accurate results due to Frolov [27]. Reasonable agreement is observed:
seven, six and five figures respectively for ppµ, ddµ and ttµ.

To decide whether the system is bound or not one needs to compare the
three-particle energy to the ground state level of a corresponding two-particle
system (pµ, dµ, and tµ respectively for ppµ, ddµ and ttµ). We computed the
ground state energies of the two-body systems variationally in a basis of eight
Slater type orbitals (which is adequate to the basis described above, used for
three-body computations). They also are given in Tables 1–3. The results for
both two- and three-particle systems containing protons are plotted in Fig. 2.
For two other cases (d and t) the picture is very similar. As one can see the
ground state energies of both two- and three-particle systems increase as the
screening parameter λ is increased, meaning that stability of the systems is
weakened by the plasma influence. So that eventually, for large screening,
the systems become unbound. By scaling the result of Gomez, Chacham and
Mohallem [34] to the actual masses of our systems, we find that the critical
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values of λ, λc, at which the two-body systems become unbound are about
221, 233 and 237, respectively for pµ, dµ and tµ.

By taking the difference between the two-body and the corresponding three-
body energies at each value of λ we find the proton affinity of pµ, deuteron
affinity of dµ and triton affinity of tµ. These hadronic affinities are plotted in
Fig. 3, and given in Tables 1–3. They decrease with λ increasing, indicating
that the binding of the second proton (deuteron or triton) also weakens with
the plasma density increasing. However, this tendency is much weaker than
for the first proton (deuteron or triton). The extreme manifestation of such a
behavior is that for large values of the screening parameter the proton affinity
of the pµ system is bigger than the binding energy of pµ itself. The same
happens for dµ and tµ.

Apparently the effect described above is the Thomas collapse [35]: the binding
energy per particle is larger for a three-body system than for its two-body
counterpart. Such an effect can result in binding of the three-body system
even if the two-body subsystems are not bound, i.e. for λ ≥ λc. Checking
whether such a possibility can be physically realized for ppµ, ddµ and ttµ
systems would be of great interest and importance. However this is not the
aim of present investigation. The quality of our trial function is good for λ < λc

but not good enough to represent properly the λ ≥ λc region.

We would like to understand where such a strong three-body binding comes
from in terms of our computation. For this purpose we computed the dipole
polarizabilities of the two-particle systems, using the standard linear response
theory with a perturbed function chosen as linear combination of eight STO’s
[12]. The quality of results is again checked against the standard second order
perturbation theory results for the plasma-free hydrogen-like systems (see Ta-
bles 1–3). As the Debye screening increases the polarizability increases very
rapidly, reaching extremely large values at large λ. This indicates that the
strong binding of three-particle systems is via polarization effects. This is
confirmed by three-particle computations: when computed by including only
radial correlations (36-linear-parameter computation; all functions η(r12) in
Eq. 3 set equal to 1) the total three-body energy is very poor (see Tables 1–3
and Fig. 3). For large screening the radial correlation is not enough to bind
the system. It is the angular correlation which describes the polarization ef-
fects properly so that the system turns out to be bound. The effect of the
angular correlation on the ground state energy is presented in Fig. 4. For all
the systems under consideration the absolute value of the angular correlation
contribution decreases when the screening is increased, Fig. 4a. However, this
is just a manifestation of the fact that all the Coulomb interaction effects are
weakened by the screening. In fact the role of angular correlation relatively
increases with λ, which can be seen from Fig. 4b.
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4 Conclusion and synopsis

In summary, we have considered the effect of plasma as envisaged by the Debye
model on the energy of exotic hadronic systems ppµ, ddµ and ttµ. We have
explicitly demonstrated the importance of the inclusion of particle correlations
in evaluating connected properties. For strong screening the hadronic affinity
is larger than the binding energy of the related two-particle system. We have
found that the effect is due to an extremely strong polarization of two-particle
systems, increasing when the screening is increased. Fact that the binding
of three-particle system is stronger the binding of two-particle subsystems is
known as the Thomas collapse [35]. In the case of short-range attractive two-
body interactions it can lead to the binding of a three-body system even if the
two-body subsystems are not bound [35]. We believe this can be the case for
the systems considered in this paper and this shall be a subject of our further
investigation.
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Fig. 1. Coordinates for a three-body system.
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Table 1

Structural properties of ppµ in Debye plasma.

Debye Plasma -E(p±µ∓) Dipole -E (p+p+µ−) (a.u.) Affinity

parametera densitya polarizability Radially Fully

λ (a.u.) n/c.c. (a.u.) α ∗ 106 (a.u.) correlated correlated (a.u.)

0.0 92.9204 0.701 95.6048 102.2235 9.3031

92.9204b 0.701b

10.0 9.87(+26) 83.3105 0.710 85.9294 92.5682 9.2577

20.0 3.95(+27) 74.4332 0.737 76.8751 83.5641 9.1309

30.0 8.88(+27) 66.2287 0.780 68.4834 75.1649 8.9362

40.0 1.58(+28) 58.6487 0.841 60.6724 67.3333 8.6846

50.0 2.47(+28) 51.6528 0.924 53.4389 60.0386 8.3858

60.0 3.55(+28) 45.2067 1.034 46.7601 53.2540 8.0473

70.0 4.84(+28) 39.2808 1.180 40.6136 46.9562 7.6754

80.0 6.32(+28) 33.8491 1.376 34.9780 41.1240 7.2749

90.0 7.99(+28) 28.8886 1.642 29.8327 35.7385 6.8499

100.0 9.87(+28) 24.3787 2.012 25.1580 30.7825 6.4038

110.0 1.19(+29) 20.3009 2.541 20.9352 26.2403 5.9394

120.0 1.42(+29) 16.6384 3.326 17.1465 22.0973 5.4589

130.0 1.67(+29) 13.3759 4.540 13.7749 18.3403 4.9644

140.0 1.93(+29) 10.4993 6.523 10.8046 14.9573 4.4579

150.0 2.22(+29) 7.9957 9.996 8.2203 11.9369 3.9412

160.0 2.52(+29) 5.8529 16.630 6.0077 9.2691 3.4162

170.0 2.85(+29) 4.0596 30.600 4.1533 6.9447 2.8851

180.0 3.19(+29) 2.6044 62.370 2.6435 4.9559 2.3515

190.0 3.56(+29) 1.4722 136.100 1.4643 3.2960 1.8238

200.0 3.94(+29) 0.6365 299.200 0.5974 1.9603 1.3238

210.0 4.35(+29) 0.0508 651.900 0.9471 0.8963
aWe have chosen here a typical case of 1000 eV plasma. The plasma screening
parameter λ chosen here gives the value of the possible electron density from Eq. (2).
bStandard second order perturbation theory result for the hydrogen-like system.
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Table 2

Structural properties of ddµ in Debye plasma.

Debye Plasma -E(d±µ∓) Dipole -E (d+d+µ−) (a.u.) Affinity

parametera densitya polarizability Radially Fully

λ (a.u.) n/c.c. (a.u.) α ∗ 106 (a.u.) correlated correlated (a.u.)

0.0 97.8708 0.600 100.7020 109.8165 11.9457

97.8708b 0.600b

10.0 9.87(+26) 88.2417 0.607 91.0103 100.1456 11.9038

20.0 3.95(+27) 79.3114 0.627 81.9278 91.0954 11.7840

30.0 8.88(+27) 71.0249 0.660 73.4384 82.6204 11.5955

40.0 1.58(+28) 63.3377 0.708 65.5224 74.6842 11.3465

50.0 2.47(+28) 56.2122 0.771 58.1591 67.2567 11.0445

60.0 3.55(+28) 49.6164 0.853 51.3277 60.3122 10.6958

70.0 4.84(+28) 43.5227 0.961 45.0079 53.8281 10.3054

80.0 6.32(+28) 37.9064 1.103 39.1799 47.7844 9.8780

90.0 7.99(+28) 32.7461 1.292 33.8247 42.1632 9.4171

100.0 9.87(+28) 28.0222 1.548 28.9242 36.9481 8.9259

110.0 1.19(+29) 23.7172 1.901 24.4609 32.1243 8.4071

120.0 1.42(+29) 19.8152 2.405 20.4181 27.6781 7.8629

130.0 1.67(+29) 16.3016 3.148 16.7802 23.5971 7.2955

140.0 1.93(+29) 13.1630 4.290 13.5319 19.8695 6.7065

150.0 2.22(+29) 10.3871 6.141 10.6593 16.4848 6.0977

160.0 2.52(+29) 7.9624 9.344 8.1486 13.4331 5.4707

170.0 2.85(+29) 5.8781 15.310 5.9870 10.7054 4.8273

180.0 3.19(+29) 4.1238 27.250 4.1618 8.2936 4.1698

190.0 3.56(+29) 2.6883 52.290 2.6597 6.1904 3.5021

200.0 3.94(+29) 1.5558 104.700 1.4656 4.3895 2.8337

210.0 4.35(+29) 0.6999 209.600 0.5585 2.8861 2.1862

220.0 4.77(+29) 0.0786 415.200 1.6768 1.5982
aWe have chosen here a typical case of 1000 eV plasma. The plasma screening
parameter λ chosen here gives the value of the possible electron density from Eq. (2).
bStandard second order perturbation theory result for the hydrogen-like system.
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Table 3

Structural properties of ttµ in Debye plasma.

Debye Plasma -E(t±µ∓) Dipole -E (t+t+µ−) (a.u.) Affinity

parametera densitya polarizability Radially Fully

λ (a.u.) n/c.c. (a.u.) α ∗ 106 (a.u.) correlated correlated (a.u.)

0.0 99.6363 0.569 102.5203 112.9718 13.3355

99.6363b 0.569b

10.0 9.87(+26) 90.0009 0.575 92.8231 103.2953 13.2944

20.0 3.95(+27) 81.0528 0.594 83.7245 94.2289 13.1761

30.0 8.88(+27) 72.7389 0.625 75.2091 85.7272 12.9883

40.0 1.58(+28) 65.0157 0.667 67.2580 77.7540 12.7383

50.0 2.47(+28) 57.8467 0.728 59.8511 70.2793 12.4326

60.0 3.55(+28) 51.2006 0.780 52.9684 63.2776 12.0770

70.0 4.84(+28) 45.0504 0.897 46.5902 56.7266 11.6762

80.0 6.32(+28) 39.3721 1.024 40.6972 50.6066 11.2345

90.0 7.99(+28) 34.1444 1.192 35.2710 44.8999 10.7555

100.0 9.87(+28) 29.3484 1.418 30.2939 39.5905 10.2421

110.0 1.19(+29) 24.9668 1.727 25.7489 34.6639 9.6971

120.0 1.42(+29) 20.9839 2.161 21.6198 30.1065 9.1226

130.0 1.67(+29) 17.3855 2.792 17.8911 25.9061 8.5206

140.0 1.93(+29) 14.1583 3.744 14.5483 22.0512 7.8928

150.0 2.22(+29) 11.2904 5.251 11.5773 18.5315 7.2410

160.0 2.52(+29) 8.7702 7.766 8.9649 15.3370 6.5668

170.0 2.85(+29) 6.5870 12.210 6.6984 12.4590 5.8720

180.0 3.19(+29) 4.7303 20.460 4.7653 9.8892 5.1589

190.0 3.56(+29) 3.1881 36.210 3.1527 7.6201 4.4320

200.0 3.94(+29) 1.9442 66.080 1.8459 5.6452 3.7010

210.0 4.35(+29) 0.9737 120.600 0.8258 3.9589 2.9852

220.0 4.77(+29) 0.2401 217.400 0.0638 2.5569 2.3168
aWe have chosen here a typical case of 1000 eV plasma. The plasma screening
parameter λ chosen here gives the value of the possible electron density from Eq. (2).
bStandard second order perturbation theory result for the hydrogen-like system.
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