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We systematically analyze the influence of the superconducting gap symmetry and the electronic
structure on the dynamical spin susceptibility in superconducting NaxCoO2·yH2O within a three
different models: the single a1g-band model with nearest-neighbor hoppings, the realistic three-band
t2g-model with, and without e′g pockets present at the Fermi surface. We show that the magnetic
response in the normal state is dominated by the incommensurate antiferromagnetic spin density
wave fluctuations at large momenta in agreement with experimental temperature dependence of
the spin-lattice relaxation rate. Also, we demonstrate that the presence or the absence of the e′g-
pockets at the Fermi surface does not affect significantly this conclusion. In the superconducting
state our results for dx2

−y2- or dxy-wave symmetries of the superconducting order parameter are
consistent with experimental data and exclude nodeless dx2

−y2 + idxy-wave symmetry. We further
point out that the spin-resonance peak proposed earlier is improbable for the realistic band structure
of NaxCoO2·yH2O. Moreover, even if present the resonance peak is confined to the antiferromagnetic
wave vector and disappears away from it.

PACS numbers: 74.70.-b; 75.40.Gb; 74.20.Rp; 74.25.Jb

I. INTRODUCTION

The spin dynamics in unconventional non s-wave su-
perconductors is of fundamental interest due to its inter-
esting and peculiar properties. This includes a non-trivial
behavior of the magnetic part of the Knight shift in the
spin-triplet superconductors1, as well as an emergence of
the so-called resonance peak observed in superconduct-
ing layered cuprates2 which possesses spin-singlet dx2−y2 -
wave order parameter symmetry. Furthermore, magnetic
excitations are also often considered as a possible glue
for the Cooper-pairing in a number of heavy-fermion and
transition metal oxides compounds.

An analysis of the feedback effect of superconduc-
tivity on the magnetic spin susceptibility can be used
to determine the symmetry of the superconducting or-
der parameter. This is of particular significance for re-
cently discovered water intercalated sodium cobaltate
superconductor3, NaxCoO2 · yH2O, where the origin of
superconductivity as well as an underlying symmetry of
the superconducting order parameter is currently under
debate. The studies of the specific heat4–7 and the µSR
measurements of a magnetic penetration depth8 have re-
vealed a line of nodes in the superconducting gap func-
tion ∆k. Similar conclusion has been made based on the
measurements of the spin-lattice relaxation rate 1/T1T
by means of Nuclear Quadrupole Resonance (NQR),
where absence of the characteristic Hebel-Slichter peak
and power-law decrease upon decreasing temperature has
been observed9–13. Simultaneously, the developing of
the strong antiferromagnetic (AFM) fluctuations above
superconducting transition temperature, Tc, have been
found. At the same time, early reports on the Knight

shift’s temperature dependence, K(T ), have suggested a
spin-triplet symmetry of the superconducting gap14,15.
In these Nuclear Magnetic Resonance (NMR) experi-
ments, K(T ) was shown to be anisotropic for external
magnetic field applied parallel or perpendicular to the
ab-plane. In particular, Kc(T ) component has not shown
a substantial decrease below Tc. This behavior has been
interpreted in favor of the odd-parity Cooper-pairing in
sodium cobaltates16–21. However, the most recent NMR
experiments with higher precision have found a reduction
of both Knight shift components as a function of temper-
ature for T < Tc

22,23. These experiments points towards
spin-singlet Cooper-pairing.

From the group-theoretical analysis the even-
parity symmetries of the lowest harmonics
for the triangular lattice are classified accord-
ing to s-wave (∆k = ∆0), extended-s-wave

(∆k = 2/3∆0[cos ky + 2 cos (kx

√
3/2) cos (ky/2)]),

dx2−y2-wave (∆k = ∆0[cos ky−cos (kx

√
3/2) cos (ky/2)]),

dxy-wave (∆k = ∆0[
√

3 sin (kx

√
3/2) sin (ky/2)]), and

dx2−y2 + idxy-wave representations24. For both dx2−y2-
wave and dxy-wave symmetries ∆k has line of nodes
at the Fermi surface. Moreover, the time-reversal
symmetry is broken for dx2−y2 + idxy-wave state.

For the pure trigonal symmetry of the CoO2-plane,
all three d-wave states are degenerate. However, due
to the absence of nodes dx2−y2 + idxy-wave seems to
be most energetically favorable. Until now, a break-
ing of time-reversal symmetry has not been observed
in experiment25,26. Generally, the combined influence
of the impurities and some competing instabilities, such
as Cooper-pairing in a secondary channel as well as the
lattice symmetry breaking, can lift the degeneracy be-



2

tween these three d-wave competing ground states27.
This may indeed be the case for sodium cobaltates
where Na arrangement introduces disorder at x = 0.33
concentration28. More sophisticated theories, involving
multi-orbital model for sodium cobaltates, suggest two
different gap symmetries (one of which is dx2−y2 + idxy)
for two different Fermi surface topologies29.

Obviously, there is still a controversy on the symmetry
of the superconducting order parameter in sodium cobal-
tates. In present study we systematically analyze the in-
fluence of the superconducting (SC) gap symmetry and
the electronic structure on the dynamical spin suscep-
tibility in NaxCoO2·yH2O. In particular, assuming spin
singlet s-wave and d-wave symmetries of the supercon-
ducting order parameter we have calculated the real and
the imaginary part of the magnetic response as a function
of the momentum, temperature and frequency. We de-
duce the characteristic temperature dependencies of the
Knight shift and spin-lattice relaxation rate. Further-
more, we have studied the feedback of the superconduct-
ing order parameter on the frequency dependence of the
imaginary part of the spin susceptibility. We investigate
the role played by the details of the electronic structure
of NaxCoO2·yH2O and, in particular, the changes of the
Fermi surface (FS) topology induced by the multi-orbital
effects.

Structurally, a parent compound, NaxCoO2, has a
quasi-two-dimensional structure with Co ions in the
CoO2 layers forming a triangular lattice. Na ions re-
side between these layers and donate x electrons to the
partially filled Co-d(t2g) orbital. Apart from doping, Na
ions also induce structural ordering at higher doping con-
centrations (x ≥ 0.5) where superconductivity does not
occur. Due to the presence of a trigonal crystalline elec-
tric field (CEF), the t2g level splits into the higher ly-
ing a1g singlet and the two lower lying e′g states. The
ab-initio band structure calculations within a Local Den-
sity Approximation (LDA) predict NaxCoO2 to have a
large Fermi surface with mainly a1g character and six
hole pockets of mostly e′g character30. At the same time,
surface sensitive Angle-Resolved Photo-Emission Spec-
troscopy (ARPES)31–33 reveals a doping dependent evo-
lution of the Fermi surface, which shows no sign of the
e′g hole pockets for 0.3 ≤ x ≤ 0.8. Instead, the observed
Fermi surface is centered around the Γ point and has
mostly a1g character. It has been argued that such an
effect may arise due to strong electronic correlations34,35,
however, no consensus in the literature has been reached
yet (see e.g.36–38).

In NaxCoO2·yH2O due to the water intercalation the
inter-layer CoO2 distance becomes larger and, thus, the
trigonal CEF increases. Since the corresponding energy
splitting between a1g and e′g levels is proportional to the
trigonal crystal filed, it increases as well. For exam-
ple, if one chooses a1g-e

′
g splitting δǫ of about 150 meV,

the six e′g pockets disappear from the FS. Furthermore,
upon water intercalation the material becomes more two-
dimensional leading to a substantial decrease of the bi-

layer splitting.
In order to take into account the multi-orbital effects

we analyze the effect of superconductivity for the three
different cases: the single-band (a1g) model with nearest-
neighbor hoppings, the realistic three-band (t2g) model
with, and without six e′g pockets at the FS.

II. a1g-BAND MODEL

We first consider the simple a1g-band model, repre-
sented by a two-dimensional Hubbard Hamiltonian on
the triangular lattice:

H = −
∑

k,σ

εka†
kσakσ +

∑

i

Uni↑ni↓, (1)

where niσ = a†
iσaiσ, aiσ (a†

iσ) is the annihilation (cre-
ation) operator for the a1g hole at the Co site i with spin

σ. Here, εk = 2t[cosky + 2 cos (kx

√
3/2) cos (ky/2)] − µ,

t=0.123 eV is the nearest-neighbor hopping integral, and
µ is the chemical potential which has been calculated
self-consistently for x = 0.33. The energy dispersion, εk,
along the principal directions of the hexagonal Brillouin
zone (BZ) and the corresponding Fermi surface are shown
in the inset of Fig. 1(a) and in the Fig. 1(b), respectively.

Here, Γ = (0, 0), K = (0, 2/3), and M = (1/2
√

3, 1/2) [in
units of 2π/a] denote the symmetry points of the first
BZ. Later, coordinates of the wave vectors will be given
in units of 2π/a with a being the in-plane lattice con-
stant.

To calculate the dynamical spin susceptibility, we em-
ploy the Random Phase Approximation (RPA) which
gives

χRPA(q, iωm) =
χ0(q, iωm)

1 − Uχ0(q, iωm)
, (2)

where χ0(q, iωm) is the BCS Lindhard susceptibility

χ0(q, iωm) =
1

2N

∑

k

[

f(Ek+q) − f(Ek)

iωm − Ek+q + Ek

C+
k,q

+
1 − f(Ek+q) − f(Ek)

2
C−

k,q

×
(

1

iωm + Ek+q + Ek

− 1

iωm − Ek+q − Ek

)]

, (3)

with C±
k,q = 1± εkεk+q+Re(∆k∆∗

k+q)

EkEk+q
being the BCS coher-

ence factors. Here, ωm are the Matsubara frequencies,
f(E) is the Fermi function, and Ek =

√

εk + |∆k|2.
In Fig. 1(a) we show both the bare and the RPA mag-

netic susceptibility in the normal state at ω = 5 meV and
U = 0.25 eV. One immediately notices that the magnetic
response is dominated by the scattering at the incommen-

surate wave vector, QSDW = (0, 0.598) ≈ (0, 3/5). The
value of Im[χ(q, ω)] at the commensurate wave vector,
QAFM = (0, 2/3), appears to be much smaller. There
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FIG. 1: (Color online) Calculated results for the a1g-band
model. (a) q-dependence of Im[χ0(q, ω)] and Im[χRPA(q, ω)]
at ω = 5 meV in the normal (non-SC) phase. The scattering
wave vectors QAFM, QSDW, and Q′

SDW are denoted by the
arrows. In the inset the a1g-band dispersion is shown, where
the horizontal (green) line stands for the chemical potential.
(b) The calculated Fermi surface with the corresponding scat-
tering wave vectors. The panels (c)-(e) show imaginary and
real parts of χ0, and imaginary part of χRPA at q = QAFM in
non-SC phase and in SC phase with various superconducting
order parameter symmetries. The same quantities are plot-
ted in the panels (f)-(h) at the wave vector q = QSDW. The
nodes of the dx2

−y2-wave and dxy-wave superconducting gaps
in the first BZ are shown in the insets of (c) and (f), respec-
tively. Here we choose the amplitude of the superconducting
order parameter ∆0 = 2 meV. For the numerical purposes we
also employ the broadening of the Green’s function, δ = 0.2
meV.

is also another incommensurate wave vector present,
Q′

SDW. Both QSDW and Q′
SDW correspond to the umk-

lapp processes, as it is seen from the FS plot in Fig. 1(b).
The presence of a set of incommensurate wave vectors
with substantial magnitude of magnetic scattering shows
a tendency of the itinerant electrons on the triangular
lattice towards spin density wave (SDW) instability.

In Fig. 1(c) and (d) we present the imaginary and the

FIG. 2: Calculated temperature dependence of the Knight
shift K(T ) (a) and the spin-lattice relaxation rate 1/T1T
(b) for the a1g-band model. Note the logarithmic temper-
ature scale in (b). Here, we assume the conventional BCS
temperature dependence of superconducting gap, ∆0(T ) =

∆0

p

1 − T/Tc.

real parts of χ0(QAFM, ω) as a function of frequency ω
at T = 1 K. In the non-SC state, the imaginary part
is linear in ω at low frequencies which is a typical Lan-
dau damping within the Fermi-liquid picture. In the SC
phase, the imaginary part of the magnetic susceptibility
becomes gapped. The magnitude of the gap, Ωg, is equal
to 2∆0 in the s-wave case. At larger frequencies Imχ0 in-
creases slowly from zero. In comparison, for the d-wave
symmetries the value Ωg = |∆k|+ |∆k+Q| is smaller than
2∆0. Furthermore, as it is readily seen from the insets
of Fig. 1(c) and (f), ∆k = −∆k+QAFM

at the FS which
yields a discontinuous jump of Imχ0 at Ωg. Correspond-
ingly, the real part will possess a logarithmic singularity
as it is also shown in Fig. 1(d). Within the RPA the for-
mation of the pole (spin resonance) in the total magnetic
susceptibility below Ωg is possible if Im[χ0(q, ω)] = 0
and simultaneously 1/U = Re[χ0(q, ω)]. Due to the log-
arithmic character of the singularity this condition will
be generally fulfilled for any small value of U which would
give a position of the resonance exactly at or very close
to Ωg. However, a small amount of impurities or disor-
der will smear the singularity out and suppress the res-
onance peak. In NaxCoO2·yH2O the value of U should
be relatively large which shifts the position of the spin
resonance towards energies smaller than Ωg and makes it
robust against impurity scattering. The calculated sus-
ceptibility is shown in Fig. 1(e) where we use Ures=0.579
eV. It is interesting to note that the resonance occurs for
both dx2−y2- and dx2−y2 + idxy-wave symmetries, how-
ever, for different values of Ωg. The present value of
Ures is of course too small to be the on-site Coulomb
repulsion which is of the order of several electron volts.
Therefore, the effective interaction U entering our model
(1) originates mainly from the Hund’s exchange, JH . In
the lamellar sodium cobaltate, the value of JH is about
1 eV39. Taking this value into account, one assumes
U = αJH , where JH is the mean-field value of the Hund’s
exchange and α is the coefficient that describes correc-
tions beyond mean-field theory.

The situation changes for the wave vector QSDW

[Fig. 1(f)-(h)]. There is one striking difference in the low-
energy behavior of Im[χ0(QSDW, ω)]. Namely, already in
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the normal state the scattering rate is non-linear for small
ω. It is obviously a consequence of the 2kF instability
and a resulting non-Landau damping at this wave vec-
tor. Furthermore, in the SC state the SDW wave vector
connects now states with the same sign of the supercon-
ducting order parameter. As a result the discontinuity
does not occur and the real part of χ0 is always smaller
in the superconducting state than in the normal state.
Therefore, for reasonable values of U there is no reso-
nance condition for χRPA [see Fig. 1(h)].

Generally, a formation of the resonance peak below Tc

in the unconventional superconductors is a well-known
consequence of the sign change of the superconducting
order parameter. It has been originally discussed in rela-
tion to the layered high-Tc cuprates40 and also recently
has been used to explain the inelastic neutron scatter-
ing results in heavy-fermion compound UPd2Al3

41. In
layered superconducting cobaltates the emergence of the
resonance peak for several symmetries of the supercon-
ducting order parameter has been analyzed within sim-
ple single-band model42. In contrast to Ref. 42, we have
found that the resonance peak (even within simple a1g-
band model) is very sensitive to the small variation of
U -values and to disorder. As a result the resonance is
confined to the wave vector QAFM and disappears for
|Q| < |QAFM|.

The temperature dependence of the Knight shift,
K(T ), and the spin-lattice relaxation rate, 1/T1T , is cal-
culated according to the expressions:

K(T ) ∝ lim
q→0

Reχ(q, ω = 0), (4)

1/T1T ∝ lim
ω→0

1

π

∑

q

Imχ(q, ω)

ω
. (5)

In Fig. 2 we show both quantities as a function of temper-
ature. In the normal state 1/T1T increases with decreas-
ing temperature that reflects the presence of the incom-
mensurate antiferromagnetic fluctuations in this system.
At the same time, the Knight shift is a constant which
stresses that there are no small-q fluctuations. Below Tc

both physical observables drop rapidly due to opening
of the superconducting gap in the energy spectrum. As
expected, the decrease is exponential for dx2−y2 + idxy-
wave symmetry due to its nodeless character in Ek. For
dx2−y2-wave symmetry the behavior of 1/T1T and K(T )
follows standard power-law temperature dependence due
to the presence of the line nodes in the energy spectrum.
In the next section we will compare our results to the ex-
perimental data where we describe a more realistic model
in application to the superconducting cobaltate.

III. t2g-BAND MODEL

The a1g-band model is, of course, oversimplified for
describing the physics of NaxCoO2·yH2O since a1g-e

′
g

level splitting, δǫ, is only 53 meV. As a result there is

a substantial hybridization of the a1g and the e′g bands,
completely neglected in the simple a1g-band model. In
particular, the e′g bands may form hole pockets at the FS

in addition to a large a1g-pocket30. To take into account
these details, we further analyze the magnetic response in
the full t2g-band model including both a1g and e′g cobalt
states.

FIG. 3: (Color online) Calculated results for the t2g-band
model. (a) q-dependence of Im[χ0(q, ω)] and Im[χRPA(q, ω)]
at ω = 5 meV in the normal (non-SC) phase. The scattering
wave vectors QAFM, QSDW1, QSDW2, Q′

SDW, Qae′ , Qe′ ,
Qe′′ , and Qe′′′ are denoted by the arrows. (b) The calcu-
lated Fermi surface with the corresponding scattering wave
vectors. In (c) the band dispersion is shown where the bold
(blue) curve denotes the topmost band used for the suscep-
tibility calculations. A horizontal (green) line stands for the
chemical potential. The panels (d)-(f) show imaginary and
real parts of χ0, and imaginary part of χRPA at q = QAFM

in the normal state and in SC state with various supercon-
ducting order parameter symmetries. The imaginary parts
of the bare and the total susceptibilities are plotted in the
panels (g)-(h) and (i)-(j) at the wave vectors q = QSDW1

and q = QSDW1, respectively. Here we choose the ampli-
tude of the superconducting order parameter ∆0 = 2 meV.
For the numerical purposes we also employ the broadening of
the Green’s function, δ = 0.2 meV.

The free electron Hamiltonian of the t2g-band model
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FIG. 4: Calculated temperature dependence of the Knight
shift K(T ) (a) and the spin-lattice relaxation rate 1/T1T (b)
for the t2g-band model.

in a hole representation is given by

H0 = −
∑

k,α,σ

(ǫα − µ)nkασ −
∑

k,σ

∑

α,β

tαβ
k d†kασdkβσ, (6)

where nkασ = d†kασdkασ, dkασ (d†kασ) is the annihilation
(creation) operator for the t2g-hole with spin σ, orbital

index α, and momentum k, tαβ
k is the hopping matrix ele-

ment, ǫα is the single-electron energy, and µ is the chemi-
cal potential. All of the in-plane hoppings and the single-
electron energies were derived previously by us from the
ab-initio LDA calculations, and we use here the parame-
ters for x=0.33 from Ref. 35. To obtain the dispersion we
diagonalize the Hamiltonian (6) calculating the chemical
potential µ self-consistently. The resulting FS topology
and energy dispersion are shown in Fig. 3(b) and (c),
respectively.

Due to the non-zero inter-orbital hopping matrix ele-
ments, a1g and e′g bands are hybridized. However, only
one of the hybridized bands crosses the Fermi level thus
making the largest contribution to the low-energy proper-
ties of the system. We refer to this band as εk. Note, it is
substantially different from the simple a1g-band. Later,
this effective band εk will be used to calculate the dy-
namical magnetic susceptibility with some effective on-
site Coulomb interaction U .

Present FS has more complicated structure in com-
parison to the a1g-band model. This results in a number
of additional scattering wave vectors as calculated from
χ0, see Fig. 3(a). In particular, there are three wave
vectors that are solely due to the e′g FS pockets (Qe′ ,
Qe′′ , and Qe′′′ ), the one wave vector is due to a1g-e

′
g

scattering (Qae′), and the two other wave vectors are
due to the curved form of the central a1g FS pocket
(QSDW1 = (0, 0.649) and QSDW2 = (0, 0.495)). The
pronounced peaks at all these wave vectors are present
in both the bare and the RPA magnetic susceptibility
(U=0.15 eV). Again, similar to the a1g-band model, the
magnetic response is not dominated by the scattering at
the commensurate wave vector QAFM. The overall pic-
ture of the magnetic response is consistent with the one
presented in Ref. 19.

In the non-SC phase and the SC phase with s-wave or-
der parameter the behavior of χ(q, ω) at q = QAFM [see
Fig. 3(d)-(f)] is similar to the one in the a1g-band model.

However, for the d-wave symmetry of the order param-
eter, one finds that for ω ≥ Ωg the states with equal
signs of the superconducting order parameter contributes
first, and the discontinuous jump in Im[χ0(QAFM, ω)] oc-
curs at higher energies. The particular form of the FS in
the realistic t2g-band model and more complicated band
structure produce this effect. Therefore, the resonance
peak in Im[χRPA(QAFM, ω)] may in principle still ex-
ist, however, it occurs in a very narrow interval of the
U values. This interval is determined by the resonance
condition in the superconducting state and by the sta-
bility of a paramagnetic state above Tc. Here, we use
Ures=0.26 eV, which is more than twice smaller than in
the a1g-band model.

Although the formation of the spin resonance is un-
realistic for the antiferromagnetic wave vector QAFM it
may now occur at other wave vectors. In Fig. 3(g)-(j) we
present the imaginary parts of χ0(q, ω) and χRPA(q, ω)
at QSDW1 and at QSDW2. Here, one notices the pro-
nounced effects of the complicated t2g-band structure at
high energies for the scattering at both wave vectors.
Deviations from the linear-ω damping start already at
low energies, smaller than Ωg. For U = Ures the spin-
resonance is present at QSDW1 for both d-wave symme-
tries. However, at QSDW2 the resonance peak is present
for dx2−y2 + idxy-wave symmetry only. Similar to the sit-
uation with QAFM, this is due to smallness of the allowed
U values.

In Fig. 4 we show the corresponding results for the
1/T1T and K(T ). Below superconducting transition tem-
perature the behavior is very similar to the results ob-
tained for the simple a1g-band model. This is because be-
low Tc the symmetry of the superconducting gap and its
nodal structure determines the temperature dependen-
cies of the 1/T1T and the K(T ) values. At the same time,
notice the stronger AFM fluctuations in the normal state.
For almost the same value of U this is due to the narrower
conduction band than in the simple a1g-band model.
Such a behavior is observed in the experimental NQR
data9,11,43. It is interesting to note that without water
the parent non-superconducting compound Na0.33CoO2

shows much weaker AFM fluctuations11. In our the-
ory the fluctuations occur for the parent compound too.
It probably demonstrates a possible significance of the
third dimension and, in particular, the bilayer splitting
which may reduce the two-dimensional AFM fluctuations
in Na0.33CoO2.

Note, the presence of the e′g pockets on the FS can
also lift the degeneracy between the three d-wave states.
Since in the dx2−y2 -wave SC state the e′g FS pockets
are fully gapped, the additional condensation energy is
gained [compare the topology of the line-nodes in the in-
set in Fig. 1(c) and FS topology in Fig. 3(b)]. For the
dxy-wave SC state this gain in energy will be smaller
[compare the inset in Fig. 1(f) and FS in Fig. 3(b)].

Presently, there is still a discussion on the details of the
Fermi surface topology in the water intercalated cobal-
tates. In particular, ARPES experiments do not ob-
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FIG. 5: (Color online) Calculated results for the t2g-band
model with enlarged crystal field splitting. (a) q-dependence
of the Im[χ0(q, ω)] and the Im[χRPA(q, ω)] at ω = 5 meV
in the normal (non-SC) phase. The scattering wave vec-
tors QAFM, QSDW, Q′

SDW, and Q′′

SDW are denoted by the
arrows. The band dispersion is shown in the inset of (a),
where the bold (blue) curve denotes the topmost band used
for the susceptibility calculations, and the horizontal (green)
line stands for the chemical potential. (b) The calculated
Fermi surface with the corresponding scattering wave vec-
tors. (c)-(e) The calculated imaginary (c) and real (d) parts
of the χ0(QAFM, ω), and the imaginary part of χRPA (e) in
the normal and in the SC state with various superconducting
order parameters. The same quantities are plotted in (f)-(h)
at q = QSDW. Here we choose the amplitude of the super-
conducting order parameter ∆0 = 2 meV. For the numerical
purposes we also employ the broadening of the Green’s func-
tion, δ = 0.2 meV.

serve the e′g-pockets at the FS31–33. It has been shown
that an inclusion of the electronic correlation within
Gutzwiller approximation may shift the e′g-bands below

the Fermi level34,35, although this conclusion has been
challenged36–38. In our study we further consider the t2g-
band model with increased crystal filed splitting, δǫ=153
meV. This makes e′g band sink below the Fermi level, as
it is seen in the inset of Fig. 5(a). The behavior of the

FIG. 6: (Color online) Calculated temperature dependence of
the Knight shift K(T ) (a) and the spin-lattice relaxation rate
1/T1T (b) for the t2g-band model without e′g FS pockets.

dynamical spin susceptibility for U=0.15 eV at ω = 5
meV presented in Fig. 5(a) shows more similarity to the
simple a1g-band model with additional features due to
peculiarities (“rounded hexagon” form) of the large FS
pocket as shown in Fig. 5(b). The scattering is most pro-
nounced at the wave vector QSDW = (0, 0.633), which is
smaller than in the simple a1g-band model. There is also
intensive scattering at the wave vector Q′′

SDW, owing its
appearance to the curved shape of the FS.

Fig. 5(c)-(e) and (f)-(h) displays the magnetic suscep-
tibility at QAFM and at QSDW, respectively. Contrary
to both a1g-band model and t2g-band model with e′g FS
pockets, here we observe a well-defined linear behavior of
Im[χ0(q, ω)] in the considered frequency range at these
wave vectors. For the d-wave order parameter, the be-
havior of the susceptibility resembles that in the t2g-band
model with e′g FS pockets. Again one could find a nar-
row range of parameters where the resonance peak exists,
which we illustrate in Fig. 5(e),(h) for Ures=0.342 eV.

Similarly, the change of the FS topology does not in-
fluence significantly the temperature dependence of the
Knight shift and the spin-lattice relaxation rate above
and below Tc. This is illustrated in Fig. 6 where we plot
both quantities as a function of temperature.

IV. CONCLUSION

Our analysis of the dynamical spin susceptibility in
application to the NaxCoO2·yH2O have shown that the
magnetic response in the normal state is dominated by
the incommensurate SDW fluctuations at large momenta
close to QAFM. This is consistent with experimental
NQR data which shows a pronounced AFM-like fluctu-
ations in the temperature dependence of the spin-lattice
relaxation rate. It is interesting to note that the pres-
ence of the e′g-pockets at the Fermi surface is not affect-
ing significantly this result. In the normal state we note
the absence of ferromagnetic-like fluctuations. This ob-
servation justifies our choice of spin-singlet order param-
eter, because to induce the spin-triplet Cooper-pairing
the fluctuations with small momenta are required. Be-
low Tc our results for dx2−y2- or dxy-wave (not shown)
symmetries of the superconducting order parameter are
consistent with experimental data which excludes node-
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less dx2−y2 + idxy-wave symmetry. We further stress that
the resonance peak, predicted previously42 for the sim-
ple a1g-band model, is improbable for the realistic band
structure of NaxCoO2·yH2O. Moreover, we find that even
if present the resonance peak is confined to the AFM
wave vector and disappears away from it.
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