Uncertainty-limited turnstile transport in deformed microcavities
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We present both experimental and theoretical evidences for uncertainty-limited turnstile trans-
port in deformed microcavities. As the degree of cavity deformation was increased, a secondary
peak gradually emerged in the far-field emission patterns to form a double-peak structure. Our ob-
servation can be explained in terms of the interplay between turnstile transport and its suppression

by the quantum mechanical uncertainty principle.
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In the studies of quantum counterparts of classical
chaotic systems, we often encounter a situation in which
classical diffusion is suppressed in quantum mechanics by
the intrinsic limitation of the resolvable action quantity
[1] due to the Heisenberg uncertainty principle. Partial
barrier localization[2-5] and the suppression of multipho-
ton ionization [6] are well-known examples. This suppres-
sion phenomenon would become more conspicuous when
a Hamiltonian system takes a gradual transition to chaos
so that the action transport by chaotic dynamics also in-
creases along the chaotic transition [7, 8].

Recently, many works have converged to a consensus
that the emission directionality in chaotic deformed mi-
crocavities is well explained by classical ray dynamics in
phase space [9-16]. However, the evanescent leakage from
a symmetric or slightly deformed microcavity is inexpli-
cable by the classical dynamics [17], and thus it is of con-
siderable interest to understand how emission mechanism
changes along the chaotic transition. In this context we
can expect that the resolvability of action quantity would
also play an important role in light transport and thus
emission directionality in deformed microcavities. Such
understanding is important not only for theoretical in-
terests, but also for the practical purpose of optimizing
the directional emission with a high cavity quality factor
@ for various photonics applications.

In this letter, we elucidate the effect of action resolv-
ability on the light transport in a deformed microcavity
with continuously variable shape deformation. We ob-
served in both experiment and theory that output emis-
sion is characterized by the emergence of a sharp sec-
ondary peak as the degree of cavity deformation is in-
creased. These double peaks originate from two sepa-
rate phase-space lobes in the so-called turnstile trans-
port [18, 19] for whispering-gallery-mode-like quasieigen-
modes. Moreover, the gradual emergence of the sec-
ondary peak is a direct evidence for suppression of chaotic
diffusion due to the quantum mechanical uncertainty
principle.

Our deformed microcavity is realized by optically ex-
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FIG. 1: (a)-(d) Far-field emission patterns observed in exper-
iment and (e)-(h) those in wave calculation. Degree of cavity
deformation 7 is 0.09 for (a) and (e), 0.10 for (b) and (f), 0.12
for (c) and (g) and 0.16 for (d) and (h). As the chaotic tran-
sition progresses, a secondary narrow peak emerges around
0 ~ £55° in the presence of a broad peak around 6 ~ 1+40°.
The baseline by the horizontal axis corresponds to zero signal.
All plots are normalized.

citing a thin cross-sectional volume across a liquid jet col-
umn of ethanol (refractive index m=1.361) doped with
Rhodamine B dye at a concentration of 10~"mol/cm?.
The details of our liquid-jet apparatus is described else-
where [20]. Surface profiling measurement based on for-
ward shadow diffraction shows that the shape of our cav-
ity is described by 7(¢) = a(1 + 19 cos 2¢ + eng cos 4¢) in
the polar coordinate with 7y continuously variable from
0 to 26% with € ~ 0.46 = 0.05 and ¢ ~14.8um. The
ray dynamics in this shape becomes chaotic following
the Kolmogorov-Arnold-Moser (KAM) scenario as 7y in-
creases. Accordingly, it can be approximated by another
KAM system, the quadrupolar billiard [21], the bound-
ary of which is given by r(¢) = a(1 + ncos2¢) while
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FIG. 2: Phase-space structure of stable (blue) and unstable
(red) manifolds of the unstable period-4 orbit F,, (n=1, 2, 3,
4) for n=0.12, presented in Birkhoff’s coordinates, in which a
ray collides with the cavity boundary at polar angle ¢ with an
incidence angle x. Chaotic transport from the region above
the chained areas into the chained areas (I, II, 111, IV) occurs
by the lobes dynamics a—b—c—d—e—f, the order of which
is given by the heteroclinic orbit points (..., -2, -1, 0, 1, 2).

the overall structures of their phase spaces are very sim-
ilar to each other except for the chaotic transition speed:
17 =~ ng — (0.05 ~ 0.08). For the convenience of anal-
ysis, our numerical works have been performed for the
equivalent quadrupolar deformed microcavity.

The farfield emission patterns of lasing modes observed
in our experiment is shown in Fig. 1, compared with the
calculated emission patterns based on the boundary el-
ement method [22, 23] for various cavity deformations,
covering from the mixed-phase-space regime (7=0.09) to
the fully chaotic one (n=0.16). The experimental pro-
cedure for measuring the far-field emission patterns is
similar to that of Ref. [14]. In the wave calculation, the
size of the cavity is characterized by the so-called size pa-
rameter © = 2wma/\ with A the wavelength. In our case,
x is in the range of 220. The most noticeable feature in
both experiment and wave calculation is the emergence
of a narrow secondary peak around 6 = £(55° ~ 60°) as
the cavity deformation increases.

In order to understand this double-peak structure, let
us first consider the manifold structure, especially given
by the unstable period-4 orbit. The reason for consid-
ering the period-4 orbit only is that the ray dynamics
in relevant phase space region is mainly governed by the
period-4 orbit since it is the shortest periodic orbit near
the line of critical angle. Figure 2 presents the phase
space diagram in the Birkhoff’s coordinate [24] for the
quadrupolar billiard. In this diagram the fixed points
of the period-4 orbit are indexed by F,(n = 1,2,3,4).
A stable manifold (in blue) and an unstable manifold
(in red) from each fixed point constitute a heteroclinic
tangled structure, where the central intersecting points,
marked by 0’s, of two opposite types of manifolds are set
as primary intersection points (PIP’s).

The segments of manifolds connecting the PIP’s en-

FIG. 3: Results of ray tracing simulations for (a) n=0.09, (b)
0.10, (c) 0.12 and (d) 0.16. In (a)-(d) it is shown that lobe d’
comes down below the critical line while the already existing
lobe f moves further downwards. Plots in (e)-(h) show the
corresponding output angular distributions histogramatically
calculated in the ray simulation. A narrow peak around 55°
originating from lobe f is ever present while a broad peak from
lobe d’ gradually grows as 7 increases.

close four chained areas marked by I, II, III and IV.
The quasieigenmodes with considerably high @ for lasing
should be distributed in the phase space well above the
chained areas [16]. It is because the chained areas I and
IIT are respectively connected to II and IV, whose signif-
icant portions are placed below the critical line, by a few
iterations of ray reflection off the boundary. Therefore,
any mode with its distribution substantially enclosed in
the chained areas tends to experience large losses.
According to the chaotic transport theory [18, 19],
however, the region above the chained areas can be trans-
ported to the chained areas through lobes (marked by a,
b, ¢, ...), small subareas enclosed by the segments of
the stable and unstable manifolds connecting the hete-
roclinic orbit points indexed by ... — 2,—1,0,1,2,... in
Fig. 2. In this theory, lobes are transported in the se-
quence of a—b—c—d—e—f...and the region enclosed
by a lobe above the chained areas can be transported to
the chained areas when the sequence crosses a PIP. Such
a transport across a manifold barrier is called turnstile
transport. In Fig. 2, lobes d and f, whose significant por-
tions lie below the critical line, then form two separate
output channels. We can also find the similar sequence of
another lobe dynamics a’—b’—c’—d’—e’—f"..., which
also lead to two additional output channels, lobes d’ and
f’, which are 180° shifted from lobes d and f, respectively.
Combining these two lobe dynamics, we can account
for the double-peak structure in the far-field emission
patterns. For this end, we performed a ray-tracing sim-
ulation with 10° counterclockwise rays (seen from the z
direction in the polar coordinate) uniformly prepared in
the region above the chained areas initially. The output



intensity is calculated for each ray by using the Fresnel
formula whenever it is reflected with its incident angle
smaller than the critical angle. The output intensity is
accumulated histogramatically on the phase space, re-
sulting in the phase-space plots in Figs. 3(a)-3(d). The
output angular distributions in Figs. 3(e)-3(h) are simi-
larly obtained by accumulating the output intensity his-
togramatically as a function of the refraction angle.

The results in Fig. 3 clearly show that lobe d’ and lobe
f of the turnstile process form two separate output chan-
nels. The output angular distribution in Figs. 3(e)-3(h)
resemble the far-field emission patterns observed in the
experiment and in the wave calculation. We can identify
that the broad peaks in Fig. 1 correspond to lobe d’ while
the narrow secondary peaks in Fig. 1 correspond to lobe
f.

However, there exists a significant discrepancy between
the experiment/wave calculation and the ray simulation
in the relative sizes of these two peaks. In the ex-
periment/wave calculation, the primary broad peak is
ever present while the narrow secondary peak gradually
emerges as 7 increase. On the other hand, in the ray
simulation, the secondary peak is already there while the
primary peak grows as 7 increases. Note that only the
left half of the output angular distribution is obtained in
the ray simulation since only the counterclockwise rays
are considered.

It will be shown below that this discrepancy is due
to the quantum mechanical effect associated with the fi-
nite sizes of lobes and partial barriers in the phase space.
If the output emission entirely came from the turnstile
ray transport, the primary peak observed in the experi-
ment /wave calculation should not be there according to
the ray simulation result of Fig. 3(e). In addition, in the
experiment/wave calculation of Fig. 1(a) with n=0.09, we
only see a hint of the secondary peak, which must come
from the turnstile transport according to Fig. 3(e). Ex-
cept that small contribution, the rest of the distribution
should come from a different emission mechanism.

We show that this mechanism is quantum mechanical
tunneling. In the mixed phase-space regime of 1n=0.09,
the lowermost boundary of whispering-gallery-like high-
@ modes are distributed just below the period-6 orbit.
At this cavity deformation, all KAM tori in the region
between the period-6 orbit and the period-4 orbit are
broken, but some of them still remain as Cantor’s sets
or cantori forming partial barriers. The action transport
through the cantori is allowed classically, but in quantum
mechanics or wave mechanics it is allowed only when its
action quantity is larger than a half of an effective Planck
constant Aeg, the quantum mechanical resolution limit
in the phase space. In our system, the effective Planck
constant is given by the inverse of the size parameter x:
het = 1/x ~0.005.

When n=0.09, the action quantity associated with the
cantori is found to be much less than heg/2. Therefore,
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FIG. 4: Husimi distribution (blue) for (a) n=0.09 and (b)
1n=0.16. The heteroclinic tangled structure of the period-4
oribit are represented as green curves. The horizontal thick
red line is the line of critical angle. In (a) the cantori rep-
resented as red dots blocks the distribution from overlapping
with the tangled structure. In (b) the distribution has a con-
siderable overlap with the manifold structure. (c¢) The ratio
of the lobe area to the resolution limit fies /2 as a function of
the deformation parameter. The blue dotted line represents
the resolution limit under our experimental condition. The
lobe area becomes comparable to feg/2 when n ~ 0.1.

the action transport through the cantori is greatly sup-
pressed. In this case, the only output mechanism for the
high-@Q modes is the evanescent tunneling through the
closest point between the cantori and the critical line as
shown in Fig. 4(a), where Husimi distribution for a rel-
evant high-@Q mode is overlapped with the phase space
structure. The angular position of the primary peaks in
Figs. 1(a) and 1(e) coincides with the location of tunnel-
ing in Fig. 4(a), supporting this reasoning.

According to Fig. 4(a), the Husimi distribution also
overlaps with manifold structure with the same order of
magnitude as it does with the critical line. The distri-
bution overlapped with lobes ¢’ and a, for example, can
then be transported to lobes d’ and f. Therefore, we
expect to see an equally strong secondary peak in the
far-field distribution in Fig. 1. Instead, we only see a
hint of the secondary peak at most. It is because the ac-
tion quantity associated with lobes are also much smaller
than the quantum resolution limit, fieg/2, and thus the
turnstile transport is greatly suppressed.

In generic chaotic systems, the lobe areas increase as
the transition to chaos progresses. Figure 4(c) shows
the calculated action quantity associated with the lobes
around the period-4 orbit. The action quantity rapidly
grows as 7 increases and surpasses the resolution limit
heft/2 ~0.0025 around n = 0.10. In the mixed phase-
space regime of n=0.09, the action quantity is still smaller



FIG. 5: Configurational plots of quasi-eigenmodes. (a)
1n=0.09 and x=221.07-0.005i, (b) n=0.16 and x=227.65-
0.024i. In (a) the emission, coming from evanescent leakage,
has its direction tangent to the boundary. In (b) the emis-
sion comes from turnstile transport, and thus it is asymmetric
and refractive. Dual strong emissions to 6 ~ —45°, —60° di-
rections are visible.

than the resolution limit. Therefore, the high-Q modes,
although their distributions overlap with the lobe struc-
ture to some degree, cannot recognize the presence of
these lobes, and thus the turnstile transport is greatly
suppressed. This is why the secondary peak is barely
seen in the far-field emission pattern in the experiment
and wave calculation for n=0.09. In this case, the output
is made by the evanescent tunneling, and consequently
its emission direction is tangent to the cavity boundary
at the tunneling points with its angular divergence given
by the Fresnel filtering effect [25] as shown in Fig. 5(a),
the spatial mode distribution by wave calculation.

In the same line of reasoning, the growth of the sec-
ondary peak in the experiment/wave calculation can be
understood. As the degree of cavity deformation in-
creases beyond 1n=0.1, the action quantities associated
with the cantori and the lobes become larger than heg/2,
and thus the action transport through the cantori and
consequently the turnstile transport through the lobes
become dominant mechanisms for the output emission.
Accordingly, the portion of the output due to the evanes-
cent tunneling is reduced. In the full chaotic regime such
as in 7n=0.16, the Husimi distribution corresponding to
a scarred mode [10, 14, 16, 25, 26] shows considerable
overlap with the manifold structure as shown in Fig. 4(b),
and thus most of the output emission is due to the action
transport. This is confirmed by the same emission pat-
terns observed in both experiment/wave calculation and
the ray simulation. The most prominent feature of this
mechanism is the double-peak emission with each peak
coming from a separate lobe. In this case, the emission
is refractive in nature as can be seen in Fig. 5(b).

In conclusion, we have observed the turnstile light
transport and its suppression due to the action resolvabil-
ity in deformed microcavities. Our findings can explain
the observed robustness of high @) modes in chaotic mi-
crocavities [21, 26]; light can be strongly confined above

the critical line due to this suppression effect even in the
chaotic phase space. We expect our results can also be
applicable to other open nonintegrable systems such as
quantum dots and nano structures, where efficient con-
trol of electron transport for device applications might
be possible via manipulation of the effective Planck con-
stant.
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