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Abstract. We investigate ray dynamical properties and resonance patterns of a

spiral-shaped dielectric microcavity in which quasiscarred resonances can be supported.

The ray dynamical properties of this open system can be characterized by the

steady probability distribution which contains informations of the dynamics and the

openness of the chaotic microcavity. It is shown that the quasiscarring phenomenon

can be understood by considering the unique properties of wave propagation at

the dielectric boundary. The bouncing positions of the quasiscarred resonances are

explained through a semiclassical quantization condition with Maslov indices. We also

show qualitative agreements between the ray dynamical distributions and the wave

dynamical distributions obtained from the average over resonance modes.

PACS numbers: 05.45.Mt, 42.55.Sa
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1. Introduction

Microcavity (micro-disk, -cylinder, or -droplet) lasers have been much studied recently

as a new idea that might replace purely electronic large-scale integrated circuits by

photonic or optoelectrical circuits [1]. Initial interest was concentrated on generating

high Q resonances. The high Q modes of microcavity lasers are based on so-called

whispering gallery modes (WGMs) in which rays circulate inside the boundary of circular

microcavity and are completely confined by total internal reflection. The advantage of

these modes is the small losses only due to evanescent leakage (tunneling) and scattering

from the surface roughness. Although the microcavity lasers based on WGM exhibit a

high performance of low-threshold current density and low noise, they suffer from small

output powers and isotropic emissions because of the high-reflectivity and the rotational

symmetry.

In this respect, however, asymmetric resonant cavities (ARC) are more promising

concept to achieve high power and directional emissions. Gmachl et al. [2] have reported

that a completely different type of resonance compared to WGM, so-called bow-tie

resonance, emerges and is responsible for highly directional and high-power emission

for“flattened” quadrupole shape cavity laser. Since then, many different boundary

shapes smoothly deformed from circle, e.g., ellipse, quadrupole, hexadecapole, and

etc., are studied so far. (Note that most of these ARCs are not “truely” asymmetric

because they have reflection symmetries for major and minor axes of cavities.) Their far-

field emission patterns show reproducible anisotropic patterns and dramatic sensitivity

depending on the boundary shapes [3]. Most recently, Chern et al. reported that

even unidirectional emissions are possible from a truely asymmetric microcavity, a

spiral-shaped microcavity [4]. Besides the photonics applications such as optical

computing and networking, study of deformed microcavities can also provides invaluable

pedagogical insight into cavity quantum electrodynamics [5, 6], chaotic transport

phenomena [7, 8, 9], and even the theory of quantum chaos [1].

In general, statistics of quantum mechanical eigenvalues and eigenfunctions of

classically chaotic systems can be well described by random matrix theory (RMT) [10].

From the viewpoint of RMT the existence of scarred eigenfunctions [11], which show

enhanced probability amplitude along an unstable periodic orbit, cannot be justified.

The scar phenomenon would, therefore, be regarded as the first correction on RMT

containing specific information of the chaotic system concerned [12, 13, 14, 15, 16].

The scar phenomenon has been most intriguing aspect of quantum manifestations of

classical chaos. Since the seminal finding of scarred eigenfunctions in a chaotic stadium

billiard has been reported by Heller [11], many authors have studied this abnormal

phenomenon both theoretically and numerically to understand the impact of classical

periodic orbits in various chaotic systems [11, 17, 18]. Experimental investigations

of quantum chaos have been performed in various contexts such as microwave cavity,

quantum dots, surface waves, etc. [19, 20, 21, 22, 23] since the original microwave

experiment had been performed in 1990 by Stöckmann and Stein [24]. Scarred modes
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were first noted by Sridhar and Heller [25] in microwave experiment of Sinai-billiard.

The recent growing interests in microcavity lasers naturally bring up again the topic

of observing evidences of scarred modes in optical systems. There are series of reports

on observation of scarred lasing modes in dielectric microcavities of various boundary

shapes [26, 27, 28, 29]. In these papers the authors have identified the scarred lasing

modes by matching the directionality of lasing emission (far-field emission pattern)

and possible unstable periodic orbit in the chaotic microcavities. They took it for

granted that the scar theory of chaotic billiards would be applied to the resonances

of microcavities without any modification. However, basically dielectric microcavities

have quite different classical dynamics compared with that of billiard systems. The

major differences are twofold. First, it is an open system, i.e., the energy confined

in cavity is a decreasing function of time and the energy loss corresponds to the

escaping energy by emission. Second, the refractive index n plays a crucial role in

characterizing ray dynamics in the microcavities, e.g., it determines the critical angle

of total internal reflection, θc = arcsin(1/n), and θc is, in turn, closely related to

directionality of rays on the boundary. We note that these inherent characteristics

of dielectric cavities can give rise to important and enormous differences in resonance

patterns. For example, the spatial splitting in the type I scarred resonance patterns and

the unique far field distribution of the type II scarred resonances [30] can be understood

based on characteristics of dielectric cavities. More striking example should be the

existence of quasiscarred resonances in dielectric cavities [31].

In this paper, we discuss extensively the ray and wave dynamical properties in

a spiral-shaped microcavity. The spiral-shaped microcavity has a special geometry in

which the quasiscarred resonances dominate at some n values [31]. The aim of this paper

is to understand the quasiscarring phenomenon through the ray and wave dynamical

properties. In Section 2, we introduce the steady probability distribution (SPD) and

explain the ray dynamical properties based on the SPD in the spiral-shaped microcavity.

We present resonance patterns and discuss about the quasiscarring phenomenon in

Section 3, and in Section 4 the bouncing position of the quasiscarred patterns are

explained through a semiclassical quantization condition. A brief comparison between

the ray and the wave dynamical results is given in Section 5, and we conclude in the

final section.

2. Ray dynamics

In this section, we first explain the steady probability distribution (SPD) which is a

distribution in phase space (s, p), s is the boundary coordinate and p is its conjugate

variable defined by p = sin θ, where θ is the incident angle (see Fig. 1). The SPD

characterizes both the dynamical behaviors and the openness of the chaotic dielectric

microcavities [31, 30, 32]. The basic concept of the SPD can be directly applicable to

other open systems with chaotic dynamics. We discuss the ray dynamical properties of

the spiral-shaped microcavity based on the SPD, and show that the periodic orbits in
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Figure 1. The spiral-shaped microcavity with ǫ = 0.1. It is fully chaotic and

asymmetric. The phase space coordinates (s, p) are shown.

the spiral-shaped cavity have at least one bounce from the notch.

2.1. Steady probability distribution (SPD)

The dielectric microcavity is an open system, which is an important difference from

typical billiards, closed systems. At the boundary of the dielectric cavity the internal

waves can partially transmit according to the Fresnel equations, thus the energy confined

in the cavity would decrease with time. When the boundary geometry gives compeletely

chaotic dynamics, due to this leaky property, the ray trajectory starting an arbitrary

initial point (s0, p0) cannot survive infinitely long time so that it cannot fills the whole

phase space evenly as in the billiard case. Even in the case that (s0, p0) locates in the

total internal reflection region (1/n < |p0| < 1), the ray would diffuse along unstable

manifolds and eventually reach the open region (0 < |p0| < 1/n) and partially escapes.

As a result, when we consider an ensemble of initial points, the rays distribute, after a

transient time, on some structure of unstable manifolds containing the open property

of the systems in the phase space, which is the basic concept of the SPD and is very

useful to understand the resonance properties [31, 30].

The basic physical object characterizing the dynamical properties in an open system

is the survival probability distribution P̃ (s, p, t) [32]. Its integration over the phase space

would give the survival probability P̃ (t) and P̃ (t) =
∫

ds dp P̃ (s, p, t) ≤ 1 where the

equality hold only at t = 0 due to the energy loss by emission in the dielectric cavity.

The initial distribution can be arbitrary when the system is fully chaotic, but here we

consider a uniform initial distribution, P̃ (s, p, t = 0) = 2/sm, where sm is the total

length of the perimeter of the cavity. The confined energy and escape time distribution
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Figure 2. The escape time distributions Pes(t) when n = 2 and 3 in the spiral-shaped

microcavity with ǫ = 0.1. These show exponential long time behaviors, which is typical

in fully chaotic systems.

can then be described by

E(t) = E0

∫

ds dp P̃ (s, p, t), (1)

Pes(t) =
1

〈d〉
∫

ds dp P̃ (s, p, t)T (p), (2)

where E0 is the initial energy confined in the cavity, and 〈d〉 is the average length of

ray segment between two successive bounces. Here, the length of the trajectory can be

regarded as time. T (p) is the transmission coefficient, which has nonzero value in the

range of −pc < p < pc (pc = sin θc = 1/n), given by Fresnel’s equation [33],

T =
4n cos(θi) cos(θt)

(n cos(θi) + cos(θt))2
, (3)

for TM wave where cos(θi) =
√

1 − p2 and cos(θt) =
√

1 − n2p2 by Snell’s law. Since the

confined energy decreases by the ray transmission through cavity boundary, the relation

between the confined energy and the escape time distribution is given by

dE(t)

dt
= −E0Pes(t). (4)

The above equations are generally satisfied by construction.

It is well known that in hyperbolic chaotic scattering the survival probability of a

particle in the scattering region decays exponentially with time, while in nonhyperbolic

chaotic scattering does algebraically due to the stickiness of KAM surfaces [34, 35,

36, 37]. The same argument holds in dielectric cavities. If the internal ray dynamics
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Figure 3. (a) The steady probability distributions Ps(s, p), when n = 3. (b) The

distance distributions dm=5(s, p) after five bounces. The similar distribution for n = 2

case is shown in Fig. 2 in [31]. From the comparison between Ps(s, p) and dm(s, p),

it is clear that the partially reflected rays near p = −pc (red line) make roughly (not

exact) a triangle shape (n = 2) and a star shape (n = 3) trajectories.

is chaotic, then the survival probability and the escape time distribution Pes(t) have

exponential tails [32]. The exponential tail of Pes(t) implies that the survival probability

distribution P̃ (s, p, t) can separate into time part and phase space part, i.e.,

P̃ (s, p, t) = B(t)Ps(s, p). (5)

Since the phase space part Ps(s, p) is statistically invariant with time, it is called as the

steady probability distribution.

Substituting Eq.(5) into Eqs.(1), (2) and, in turn, into Eq.(4), we can obtain the

exponential time behavior, B(t) = exp(−γt). The decay rate γ is given by

γ =
1

〈d〉
∫

ds dp Ps(s, p)T (p). (6)

We get, therefore, the exponential behaviors of the confined energy and the escape

probability distribution at the long time tail,

E(t) = E0 exp(−γt), (7)

Pes(t) = γ exp(−γt). (8)

We emphasize that in chaotic microcavity systems the steady probability

distribution Ps(s, p) plays a central role to characterize the long time behavior of the

ray dynamics which is associated with the patterns of high Q resonances [30]. The near

field and far field distribution based on the ray dynamics are then expressed as

Pnear(s) ∝
∫

dp Ps(s, p)T (p), (9)

Pfar(φ) ∝
∫

dsdp Ps(s, p)T (p)δ(φ − f(s, p)), (10)
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where the far field angle φ is given as f(s, p) determined by the geometry of boundary

and Snell’s law. The refraction angle distribution is

Pref(θt) ∝
∫

dsdp Ps(s, p)T (p)δ(θt − g(p)), (11)

where g(p) = arcsin(np). Since the steady probability distribution Ps(s, p) illustrates

the long time behavior of the ray dynamics in the dielectric cavity, it is natural to expect

that Ps(s, p) would give some information about the pattern formation of resonances

with relatively high Q which are supported mainly by the rays having long trajectories

before escaping. These relationship will be discussed in Section 5.

2.2. Spiral-shaped boundary geometry

The spiral-shaped microcavity has been introduced by Chern et al.[4] to generate

unidirectional lasing emission, and the boundary shape is given by

r(φ) = R
(

1 +
ǫ

2π
φ

)

. (12)

in polar coordinates (r,φ), where R is the radius of the spiral at φ = 0 and ǫ is the

deformation parameter and we set ǫ = 0.1 throughout the paper (see Fig. 1). The spiral

geometry of the cavity has interesting aspects compared with typical shapes treated

in the previous studies. First the internal ray dynamics is fully chaotic. A trajectory

starting from an arbitrary initial point (s0, p0) fills evenly the whole phase space (s, p)

when refractive escapes are ignored. Second, it is totally asymmetric, i.e., does not have

any continuous or discrete symmetries, which results in the chirality of the SPD and

even resonance patterns (see Fig. 6 and 7).

The internal rays in the spiral-shaped cavity have a simple flow. Consider a ray

circulating clockwisely (p0 < 0). As long as the ray circulates clockwise, there is no

chance to bounce off from the notch and the negative incident angle increases gradually

and, after some bounces, change its circulating direction, i.e., circulates counterclockwise

(p > 0). Then the incident angle of the ray increases (p increases) gradually until it

bounces off from the notch. After that, the ray again circulates clockwise and repeats

the above description. Note that the p value of the ray always increases except the case

that the ray hit the notch.

In order to obtain numerical results for Pes(t) and Ps(s, p), let us consider an

ensemble of initial points which are uniformly distributed on the 700 × 700 grid points

over the whole phase space. The rays starting from the initial points would suffer

bounces from the boundary, and some rays with |p| > 1/n are totally reflected and the

other rays are partially transmitted through the boundary with probability T (p). After

this process the points are rearranged and weighted. If the transmission probabilities

of each rays are summed up in the time interval (t, t + δ), then we can get numerically

the escape time distribution Pes(t). The numerical results are shown in Fig. 2 for n = 2

and 3 cases. A characteristic feature of Pes(t) is the exponential decay behavior, which

is typical in fully chaotic systems as mentioned before.
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Figure 3(a) shows the approximate steady probability distribution Ps(s, p) for n = 3

(the similar distribution for n = 2 is shown in Fig. 2(a) in [31]), given by normalizing

the survival probability distribution P̃ (s, p, t) in the time range of 57 < t < 60 for

the uniform ensemble of initial points. The structure of the approximate Ps(s, p) is

almost invariant in other time ranges of the exponential region in Fig. 2. The restricted

distribution of the SPD in p < 0 region means that most of the rays, after the transient

time, circulate clockwisely, which is very different from the stadium shape cavity [32],

and means the strong chirality of the spiral-shaped microcavity. This chiral property

will be also appearred in resonance patterns in the next section. In the details of the

SPD we can see tentacular structure and some fine structures. These structures reveal

the result of mixing of two structures, one is of the unstable manifolds given by the

boundary geometry and the other is of the openness of dielectric cavity determined by

Fresnel equations. From the SPDs it is clear that the rays escape refractively at the

notch and just above the critical line (−pc = −1/n).

Since the rays near the critical line p = −pc play a central role in the formation

of the quasiscarred resonances [31], it is necessary to follow the ray trajectories and

see what type of polygon is similar to those. In fact, this is easily expected from a

consideration of circular cavity under an assumption that the deformation parameter

ǫ = 0.1 would not give a big change from the case. For n = 2 case, the critical angle θc is

arcsin(1/2) = π/6 and therefore the ray with the incident angle θc follows the triangular

periodic orbit in a circular cavity. Also, for n = 3 case, θc = arcsin(1/3) ≃ 0.3398

is similar to π/10 ≃ 0.314, the incident angle required to make a star-shaped periodic

orbit in the circular cavity. To check this expectation, we show the distance distribution,

defined as dm(si, pi) = (sf − si)
2 + (pf − pi)

2 where (si, pi) is the initial position and

(sf , pf) being the position after m bounces. We note that in Fig. 3 (b) the critical line

p = −pc lies on the dark region representing the initial positions which give low values

of d5 (d3 is shown in Fig. 2 (b) in [31]). Therefore, we confirm that the rays reflected

near the critical line p = −pc are would make roughly triangle shape (n = 2) and star

shape (n = 3) geometries. As discussed later in Section 3 , the imprint of this fact

appears apparently in resonance patterns.

2.3. Periodic orbits in the spiral-shaped geometry

Here, we prove the absence of periodic orbits of simple geometry such as triangle and

star shapes. In other words, we have to prove nonexistence of periodic orbits without

bouncing the notch, i.e., all periodic orbits must bounce the notch more than once. Let

us define Di as the distance between the origin and the ith ray segment determined by a

line from si−1 to si on the boundary (See Fig. 4(a)). Now, consider two different cases.

The first case is the arbitrary ith ray segment move around the origin in counterclockwise

sense and the other is clockwise case.

Case-1: If the ith ray-segment move counterclockwisely around the origin, the

distance Di is always increasing after bouncing off from the boundary. It is easy to
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Figure 4. (a) The distance Di always increases for counterclockwisely propagating

rays. (b) The clockwisely propagating rays eventually change its direction of rotation

as far as it does not hit the notch part. (The dotted line is a virtual circle passing ith

bouncing point and having common origin with the spiral)

see by introducing virtual circle passing the ith bouncing point and having common

origin with the spiral as is shown in Fig. 4(a). This condition is satisfied by any points

on the spiral perimeter since r(φ) is always increasing as φ increases. So, we get the

following relation; Di < Di+1 < Di+2 · · ·. If there is a periodic orbit of N -bouncing on

the spiral perimeter, it must satisfy the relation; Di = Di+N . This relation definitely

contradictory with the previous one. So, if the ray-segment move counterclockwisely

around the origin, it never make a periodic orbit without bouncing at the notch.

Case-2: If the ith ray-segment move clockwisely around the origin, we can say

that the distance Di is always decreasing after bouncing while the ray-segment move

clockwisely around the origin. However, unlike the Case-1, when Di becomes close to

zero, the ray-segment turns its rotational direction from clockwise to counterclockwise

as shown in Fig. 4.(b). Then, the Case-2 reduces to the Case-1. Such a turning always

occurs in clockwise case eventually as far as it does not hit the notch. As a result, we

can conclude there is no periodic orbit without bouncing the notch.

3. Wave dynamics

In this section, we present resonance positions around Re(nkR) ≃ 110, and

corresponding resonance patterns in the spiral-shaped microcavity for n = 2 and 3.

This direct numerical calculation of the resonances can improve the physical insight into

the pattern formation in microcavities through the comparison with the ray dynamical

analysis in the previous section.

We use the boundary element method [38] to get the resonance positions and

patterns. Since the spiral shape has two nonanalytic points which invoke the infinite

curvature problem in the boundary element method, we round the corners with circle
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Figure 5. The resonance positions. The solid circles and the open triangles represent

resonance positions for n = 2 and 3, respectively.

with a radius r. The radius r should be much less than λ = 2π/Re(nkR) so that the wave

cannot be aware of the rounding. In principle, it is possible to get all resonances in a

finite range of Re(nkR), but it requires much time in practical calculations. Therefore,

we take the following strategy to find a part of resonances. We consider a tension

function T (nkR) [39] which is a measure indicating how far away kR is from the

resonance positions, so if T (nkiR) = 0 then the nkiR is just a resonance position.

We first evaluate the tension on the three straight lines in the complex kR plane which

are Im(kR) = 0.04, 0.08, and 0.12 in the range of 109.5 < Re(nkR) < 111. Then,

starting from the positions giving local minimums of the tension on the lines, we apply

Newton’s method to find the resonance positions. In our calculations, we divide the

boundary into 1000 elements, i.e., 900 elements on the perimeter of the spiral part

and 100 elements on the notch part, which approximately correspond to more than 8

elements per wavelength λ on the boundary.

3.1. Resonance positions

Figure 5 shows the resonance positions for n = 2 and 3 in the spiral-shaped microcavity.

We find 30 resonances for n = 2 and 24 resonances for n = 3. These numbers are surely

much smaller than the expected total numbers, i.e., about 91, which is estimated by the

modified Weyl’s theorem [40, 41]. These numbers of resonances, however, are enough

to reveal resonance properties of the spiral-shaped microcavity.

A notable feature shown in Fig. 5 is that the resonances for n = 3 (the open

triangles) distribute in the upper part of the complex plane in comparison with those

for n = 2 (the solid circles). This implies that internal waves can be more effectively
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Figure 6. (Color online) Resonance patterns for n = 2 case. These correspond

to the solid circles in Fig. 5, and are arranged in the increasing order of |Im(nkR)|.
(The intensity of the fields is normalized by scaling the maximum intensity inside the

cavity as one.) The calculated resonance positions are (a) nkR = (110.25,−0.0637),

(b) (110.54,-0.0871), (c) (109.81,-0.0873), (d) (109.88,-0.0887), (e) (109.97,-0.0896),

(f) (110.89,-0.1003), (g) (110.81,-0.1029), (h) (109.70,-0.1128), (i) (110.40,-0.1142), (j)

(110.09,-0.1174), (k) (110.61,-0.1233), (l) (109.76,-0.1367), (m) (109.63,-0.1866), (n)

(110.12,-0.2198), (o) (109.95,-0.2297), (p) (110.65,-0.2543), (q) (110.26,-0.2740), (r)

(110.31,-0.3078), (s) (110.41,-0.3208), (t) (109.55,-0.3375), (u) (109.70,-0.3680), (v)

(109.80,-0.3684), (w) (109.59,-0.3904), (x) (110.01,-0.3927), (y) (110.80,-0.3992), (z)

(110.91,-0.4002), (aa) (110.70,-0.4036), (bb) (110.11,-0.4063), (cc) (109.92,-0.4066),

(dd) (110.59,-0.4164), respectively.
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confined by the microcavity when the reflective index n is increased. The open region

is reduced with increasing n, since the open region is −1/n < p < 1/n, and the

transmission coefficient T (p) in Eq. (3) decreases, e.g., for the normal incident case,

T (p = 0) = 4n/(n + 1)2. Therefore, as n increases, the resonance positions would

distribute closer to the real axis.

3.2. Resonance patterns: quasiscarred resonances

The resonance patterns in the case of n = 2 and 3 corresponding to the resonance

positions in Fig. 5 are shown in Fig. 6 and Fig. 7, respectively. In the resonance patterns

we note that the basic localized structures of the resonances with relatively high Q are

triangular and star shapes for n = 2 and 3, respectively, which is closely related to the

fact that the rough polygons drawn by the rays near the critical line p = −pc are triangle

and star as discussed in the previous section. These basic structures appear in about

half of the resonances. Since the localized patterns of resonances are not supported by

any exact unstable periodic orbit, we call these quasiscarred resonances.

The figures in Fig. 6 and Fig. 7 are arranged in the order of the |Im(nkR)| value, i.e.,

the upper is the smaller |Im(nkR)|. From these patterns we can find a general rule about

the relationship between the intensity distributions of patterns and |Im(nkR)| values or

Q values. The high Q resonances with smaller |Im(nkR)| show WGM-type patterns,

resulting larger hollow region at the central part. As the |Im(nkR)| increases, resonances

start to show clear localization on triangle or star shape geometry, i.e., quasiscarred

patterns. As the |Im(nkR)| further increases, quite leaky patterns start to appear that

show many beams emitted from the cavities and result smaller hollow region at the

central part. This implies that the leaky resonances are supported by the part far above

the critical line p = −pc (smaller incident angle), while the quasi-scarred resonances

are done with the part near the line p = −pc in the phase space. The quasiscarred

resonances clearly show the chirality, i.e., the internal waves circulate only clockwise

(see the Husimi functions in Fig. 8), which is consistent with the SPD structures in

Fig. 3(a).

Now, let us consider the quasiscarring phenomenon in the dielectric microcavity.

From the results of the ray dynamical analysis and the resonance patterns, one can

simply expect that, although there is no exact unstable periodic orbit matched to the

quasiscarred patterns, slightly diffractive trajectories can make a closed orbit, and the

quasiscarring phenomenon would be based on the waves propagating along the diffractive

closed orbit and satisfying constructive interference condition. This might be the case

in the closed billiard case, but in the dielectric microcavity case only considering the

diffractive waves is not enough to explain the numerical results. First, wave diffraction

can occur equivalently in a closed spiral-shaped billiard system, but it is not easy to find

quasiscarred eigenfunctions in the closed cavity [42, 43]. Note that about half of the

resonances in Fig. 6 and 7 are quasiscarred in the open dielectric microcavity. Second,

the dominant pattern of quasiscarring is triangles for n = 2 and stars for n = 3. With
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Figure 7. (Color online) Resonance patterns for n = 3 case. These correspond to

the open triangles in Fig. 5, and are arranged in the increasing order of |Im(nkR)|.
(The intensity of the fields is normalized by scaling the maximum intensity inside the

cavity as one.) The calculated resonance positions are (a) nkR = (110.90,−0.0654),

(b) (109.92,-0.0766), (c) (110.11,-0.0873), (d) (109.60,-0.0907), (e) (110.41,-0.0991),

(f) (109.78,-0.1030), (g) (109.59,-0.1127), (h) (110.68,-0.1135), (i) (109.52,-0.1152), (j)

(110.63,-0.1303), (k) (110.81,-0.1318), (l) (110.33,-0.1330), (m) (109.86,-0.1361), (n)

(110.56,-0.1403), (o) (110.27,-0.1712), (p) (110.95,-0.1718), (q) (109.98,-0.1829), (r)

(110.12,-0.1855), (s) (110.75,-0.1885), (t) (109.73,-0.1920), (u) (110.25,-0.2477), (v)

(110.87,-0.2491), (w) (109.95,-0.2578), (x) (110.65,-0.2962), respectively.
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Figure 8. (Color online) (a) The incident Husimi function of the quasiscarred

resonance (j) in Fig. 6. (b) The incident Husimi funcution of the quasiscarred resonance

(j) in Fig. 7. The solid line denotes the critical line, p = −pc = −1/n.

only diffractive waves, one cannot explain why the quasiscarring pattern changes with

the refractive index n.

Therefore, in order to understand quasiscarring in dielectric microcavities, we

should take account of the unique properties of the dielectric openness. It is emphasized

that the localization of quasiscarred resonances appears near the critical line p = −pc as

shown clearly in the Husimi functions [44] in Fig. 8. This implies that the waves with an

incident angle near θc are effective to form the quasiscarred resonance. In fact, recent

studies [30, 45] pointed out that the wave beam propagation at a dielectric interface

shows very different behavior from the expected ray trajectory, and the difference reaches

a maximum when the incident angle of the wave beam crosses the critical angle θc. The

difference is described by the Goos-Hänchen shift [46, 47] and the Fresnel filtering effect

[48]. The Goos-Hänchen shift is the distance between the incident beam center and the

reflected beam center on the dielectric interface, and the Fresnel filtering effect gives the

result that the reflection angle of the beam is slightly greater than the incident angle

of the beam due to the partial transmission. In the triangular patterns in Fig. 6, when

connecting the bouncing positions, the reflection angle is greater than the incident angle

by about 1.7o. It is now believed that the unique properties in dielectric cavities play a

central role in quasiscarring phenomenon shown in the spiral-shaped microcavity.

4. Bouncing positions in quasiscarred resonances

Now, we consider bouncing positions of the triangle formed in quasi-scarred resonances

when n = 2 in the spiral-shaped dielectric microcavity. These have a definite dependence

on their Re(nkR) values (see Fig. 12). We assume that the triangle in a quasi-scarred
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Figure 9. Schematic diagram for quantifying the deviation from the periodic orbit

condition. The trajectory satisfying reflection law, with an incident angle (φ12+φ13)/2,

is denoted by dashed lines.

resonance would have minimum deviation from the periodic orbit condition governed

by the reflection law, and satisfy the semiclassical quantization rule including the effect

of Maslov index.

4.1. Triangles showing minimum deviation from periodic orbit condition

We quantify the deviation from the periodic orbit condition as α. Let si (i = 1, 2, 3) be

the bouncing positions of a triangle, from the angles (φij, φik) to the normal line on the

boundary at si, we can define pij = sin(φij), pik = sin(φik), and pi = sin(
φij+φik

2
) (here

i, j, k are cyclic). Also we get the new positions sij , sik as the next positions of (si, pi)

and (si,−pi), respectively (see Fig. 9). Then we define partial deviations of the triangle

given by (s1, s2, s3) as

αi = [(pi − pij)(sj − sij)]
2 + [(pi − pik)(sk − sik)]

2. (13)

Total deviation, therefore, is the sum of these terms, α =
∑

3

i=1 αi. By definition, α

becomes zero when the triangle is a periodic orbit.

From a numerical calculation, we obtain the triangles which have local minimum

values of α. The local minimum value linearly decreases as s1 increases, and the

corresponding partial deviations are shown in Fig. 10. We can see the inequality,

α1 < α2 < α3, and the α∗ is introduced for convenience and defined as α∗ =

∆p2(
√

3R arcsin(∆p))2 with ∆p = 0.03 and R = 1, noting pc − ∆p < pij,ik < pc + ∆p.

Figure 11 show the bouncing positions of the triangle showing the minimum deviation

as a function of s1. They are well fitted as a linear function of s1,

s2(s1) ≃ 1.0326s1 + 2.1104,

s3(s1) ≃ 1.0656s1 + 4.3285. (14)
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Figure 10. The minimum α(= α1 + α2 + α3) from the periodic obit condition (see

Eq. (13)).

The corner angles of the triangles are almost invariant with s1. The details are

p1 ≃ 0.516, p13 ≃ 0.529, p12 ≃ 0.503, p2 ≃ 0.5, p21 ≃ 0.513, p23 ≃ 0.487, p3 ≃ 0.484,

p32 ≃ 0.497, and p31 ≃ 0.470. The lengths of the line segments of the triangles increase

with s1 and if lj is defined by the line length between sj and si, then the triangles show

l2 < l1 < l3 as shown in Fig. 11 (b). The perimeter of the triangle, L = l1 + l2 + l3, is

well described by a linear function of s1,

L(s1) ≃ 0.0815s1 + 5.3698. (15)

These information of the triangles with minimum deviation from the periodic orbit

will be used in the next subsection and enable us to express the result in an analytic

form.

4.2. Semiclassical quantization condition

To be a triangular quasiscarred resonance obtained in the previous subsection, the

waves should be exactly in phase after a round trip so that a constructive interference

occurs and then the wave inside the cavity survives longer time. It is known that the

total accumulated phase consists of three contributions: a dynamical phase, a pure

quantum phase introduced by boundary conditions and a topological phase associated

with the rotation of the manifolds [49]. In the present case, the dynamical phase is nkL

corresponding the phase developed during wave propagation, where L is the perimeter
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Figure 11. (a) The bouncing positions (s1, s2, s3) and (b) the lengths of line segments

(l1, l2, l3) of the triangles giving the minimum α.

of the triangle. The pure quantum phase arises when the wave is reflected from the

boundary, but it is always accompanied with the topological phase. We note that there

is a phase loss of π due to Dirichlet boundary conditions while the phase does not change

for Neumann conditions. In the dielectric cavity, the phase loss at the boundary varies

from zero to π as the incident angle goes from θc to π/2 [33], i.e.,

φ(θ) =
2 arctan

(

√

sin2 θ − 1/n2

)

cos θ
. (16)

In the triangles with minimum deviation, the incident angles correspond to arcsin(p12),

arcsin(p23) and arcsin(p31). Only arcsin(p12) is greater than θc and contributes to the

phase loss. This phase loss varies slightly with s1 as

φ(s1) ≃ −0.000286 π s1 + 0.0387 π. (17)

As mentioned before, this phase loss includes the topological phase, i.e., an increment of

Maslov index by one when a reflection from the cavity occurs. Thus, the net phase loss

by the pure quanutum phase would be φ− Nbπ/2, where Nb is the number of bounces,

Nb = 3 for the triangle. Finally, the topological phase is expressed by µπ/2 where µ is

Maslov index, in the present case µ = Nb + ν, ν is the number of bounces from circular

boundary, i.e., ν = 3 in our case. Therefore, the semiclassical quantization condition

for the quasiscarred resonance is

nkL(s1) − φ(s1) − νπ/2 = 2πm, (18)

where m is an integer. Using Eqs.(15) and (17), we can express s1 as a function of k as

s1 =
2πm − 5.3698nk + 0.0387π + 3π/2

0.0815nk + 0.000286π
. (19)
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Figure 12. Variation of the bouncing positions of the triangular quasiscarred

resonances of n = 2 case in Fig. 6. The solid lines denote the results given by

the semiclassical quantization condition. Three solid circles with the same Re(nkR)

correspond to the main triangular pattern, and three open circles to the secondary

triangular pattern in a quasiscarred resonance. The shaded regions indicate the

forbidden zones which is consistent with the SPD structure.

So, for a given nk value, we can obtain s1 from the above equation, and then use Eq.(14)

to get s2 and s3. The result is shown as solid lines in Fig. 12 where m = 94, 95, and 96

are used. The data points correspond to the center positions of intensity peaks in the

boundary functions of the quasiscarred resonances shown in Fig. 6. The open circles

represent the bouncing positions of the secondary triangle of the quasiscarred resonances

showing two triangles. It is impressive that the semiclassical quantization condition gives

very good agreement with the data points without any fitting parameter. Absence of

bouncing positions near s = 2.2 and 4.5 is consistent with the dark tentacular structure

of the approximate steady probability distribution Ps(s, p) in Fig. 2(a) of [31].

5. Comparison between ray and wave dynamics

As mentioned in section II, the far field and the near field distribution can be calculated

ray dynamically from the SPD. The numerical results are shown as histograms in Fig. 13

for both n = 2 and 3. Far field distributions P (φ) can also be obtained by taking an
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Figure 13. The far field distributions P (φ) and the near field distribution P (s) are

compared with the results from the ray dynamical analysis. (a) P (φ) for n = 2, (b)

P (φ) for n = 3, (c) P (s) for n = 2, and (d) P (s) for n = 3. The ray dynamical results

based on the SPD are blue histograms, and the wave dynamical results obtained from

the resonance patterns are black solid lines.

average over the individual far field distribution of the resonances shown in Figs. 6

and 7. The individual far field distribution for a specific resonance is obtained by

calculating intensities over a large circle (the radius used is 50R) and normalizing the

intensities. For the near field distributions, the boundary wave functions obtained from

the boundary element method calculations are used for the average process. In the

average process, we exclude very leaky resonance modes because the SPD characterizes

long time ray dynamical behaviors and corresponds to relatively high Q resonances. We

have compared these results based on the resonance patterns (the solid lines in Fig. 13)

with the results from the ray dynamical analysis (histograms in Fig. 13). We can see

good qualitative agreements between them in spite of only limited number of resonances

being used for calculations.

6. Conclusion

We study both the ray and wave dynamical properties in the dielectric spiral-shaped

microcavity when n=2 and 3. The ray dynamical property is well characterized by the

steady probability distribution which contains the mixed characters of the ray dynamics

and the openness of the dielectric cavities. The quasiscarred patterns in resonances
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are shown as triangle for n = 2 case and star for n = 3 case. These quasiscarring

phenomenon can be understood by taking account of the unique property of wave

propagation at the dielectric boundary. We also explain the bouncing positions of the

quasiscarred pattern using the semiclassical quantization condition including the effect

of Maslov index, and show a qualitative agreement between the ray and wave dynamical

results in both far field and near field distributions.
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[20] Stein J and Stöckman H-J 1992 Phys. Rev. Lett. 68 2867

[21] Fromhold T M, Wilkinson P B, Sheard F W, Eaves L, Miao J and Edwards G 1995 Phys. Rev.

Lett. 75 1142

[22] Wilkinson P B, Fromhold T M, Eaves L, Sheard F W, Miura N and Takamasu T 1996 Nature

380 608

[23] Kudrolli A, Abraham M C and Gollub J P 2001 Phys. Rev. E 63 026208
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