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hlandThe existen
e of a spe
ial periodi
 window in the 2D parameter spa
e of an experimental Chua's
ir
uit is reported. One of the main reasons that makes su
h a window spe
ial is that the observationof one implies that other similar periodi
 windows must exist for other parameter values. However,su
h a window has never been experimentally observed, sin
e its size in parameter spa
e de
reasesexponentially with the period of the periodi
 attra
tor. This property imposes 
lear limitations forits experimental dete
tion.PACS numbers: 05.45.-aThe emergen
e of regular behavior is one of the moststudied topi
s in nonlinear dynami
al systems. It isknown that by the 
hanging of an a

essible parameter,
haos [1℄ and periodi
 [2℄ behaviors will be observed.The expe
tation of �nding stable periodi
 behavior in-side 
haoti
 regions in parameter spa
e depends on thesizes and shapes of the parameter regions, regarded asperiodi
 windows (PWs), for whi
h stable periodi
 orbits(POs) are found. A PW is a region in parameter spa
ethat indi
ates parameter values for whi
h one �nds thelowest periodi
 attra
tor of period P , plus the period-doubling 
as
ade with attra
tors of period P 2n, with
n ∈ N [3℄.For systems whose 
haoti
 attra
tors have only onepositive Lyapunov exponent as the Chua's 
ir
uit, 
on-sidered in this experiment, a spe
ial type of PW, regardedas 
omplex periodi
 windows (CPW), is everywhere ob-served in parameter spa
e. The appearan
e of one su
hwindow implies in the appearan
e of an in�nite num-ber of self-similar others that appear side by side alignedalong a dire
tion. In addition, CPWs have an extended
hara
teristi
 in the parameter spa
e. They visit largeportions of the parameter spa
e, i.e. one 
an still stayin the same periodi
 windows even if espe
ial large vari-ations in two 
ontrol parameters are made. Due to thesetwo 
hara
teristi
s an arbitrary 
hange in only one a

es-sible parameter 
an repla
e 
haos by periodi
 behavior,or vi
e-versa. So, a better understanding of a CPW isrelevant to appli
ations that relay either on a robust pe-riodi
 os
illation, as me
hani
al ma
hines, or on a robust
haoti
 system, as 
haos-based 
ommuni
ation [4℄.These CPWs, regarded as shrimps [5℄, were extensivelystudied in maps [6, 7℄ and in periodi
ally for
ed maps[8, 9℄. However, only re
ently these windows were numer-i
ally observed in systems of ordinary di�erential equa-tions [10, 11℄. The reason is that the parameter intervallength, ∆P , of a CPW s
ales exponentially with −P ,where P is the period P of the lowest-period periodi
 at-tra
tor of the CPW [6℄. Sin
e CPWs have usually higher
P , they are too tiny to be observed, even though thesetiny windows are extended in parameter spa
e.This exponential s
aling 
learly imposes limitations to

the experimental dete
tion of su
h a periodi
 window,and arguably due to that they have never been exper-imentally reported. However, for the Chua's 
ir
uit, itwas numeri
ally shown in Ref. [11℄ that su
h CPWs pos-sessing a low value for the lowest-period periodi
 attra
-tor (P=4) exist. This work is dedi
ated to experimen-tally report, for the �rst time, su
h a CPW.To 
ertify that we observed a CPW, we show thatthere exists 
urves in parameter spa
e where the POsare super-stable, and that these 
urves 
ross transver-sally at least twi
e, a ne
essary 
ondition that de�nes aCPW. These parameter 
urves are dete
ted by the indi-re
t method of noting the parameter values at whi
h thesymboli
 sequen
es, en
oding the type of POs existingwithin the CPW, 
hange.The well known Chua's 
ir
uit is shown in Fig. 1(A).The 
ontrol parameters are R1 = R10 − ∆R1 and R2 =
R20 − ∆R2, where R10 and R20 have �xed values, ∆R1and ∆R2 are varied by pre
ision potentiometers, withsteps of 50mΩ and 200mΩ, in the ranges [0, 17]Ω and [1,
5.5℄Ω, respe
tively. We obtained time series by re
ord-ing the VC1

(t) voltage with a 12 bits ADC at the rateof 400 ksamples/s. All the attra
tors were re
onstru
tedby Takens method [12℄ with time-delay τ = 45.0 µs, that
orresponds to 18 data points. Then, the re
onstru
tedattra
tors are made dis
rete by measuring VC1(t + τ)when the re
onstru
ted traje
tory rea
hes the se
tion
VC1(t)=-2.25V in a 
lo
kwise orientation. The value of
VC1(t + τ) when the re
onstru
ted traje
tory realizes its
n-th 
rossing in this se
tion is denoted by V n

C1.In Fig. 1(B), we show the parameter spa
e of this
ir
uit. There, �lled bla
k 
ir
les represent parametervalues for whi
h one obtain the lowest period PO. Alongthe left border between 
haos and the PW [parametersindi
ated by letters "a" within the boxes of Fig 1(B)℄ inthese two PWs, 
haos is repla
ed by a stable (period-3 orperiod-4) attra
tor by a tangent bifur
ation by in
reasing
∆R2. In the other borders, [parameters indi
ated byletters "b", "
" and "d"℄, the lowest-period PO insidethe PWs bifur
ate and 
haos (outside the PW) is rea
hedafter a period-doubling 
as
ade by modifying ∆R2.To illustrate our analysis te
hniques, we �rst use a
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Figure 1: (A) S
heme of Chua's 
ir
uit. Their 
omponent val-ues are: R10 ≈ 1.4kΩ, R20 ≈ 37Ω, C1 ≈ 4.7nF, C2 ≈ 56nF,
L ≈ 9.2mH. (B) Parameter spa
e for the experimental Chua's
ir
uit showing the period-3 and period-4 windows. Filledbla
k 
ir
les represent parameters for whi
h the lowest pe-riod POs are observed, �lled light gray 
ir
les represent thehigher period PO that appear by periodi
-doubling bifur
a-tions, and �lled dark gray 
ir
les represent parameters forthe 
losest 
haoti
 attra
tor to the PWs. The straight linesindi
ate parameter values for the sets of time series X and Y.symboli
 representation to 
hara
terize the lower periodPOs that appear for the parameters nearby the bordersbetween the PWs and the 
haoti
 regions, indi
ated bythe letters a, b, 
 and d, in the boxes I, II, and III, inFig 1(B). We use data sets 
olle
ted varying ∆R2 alongthe lines X and Y for ∆R1= 3 .0Ω and ∆R1=12 .5Ω,respe
tively, as shown in Fig. 1(B).The symboli
 
hara
terization of these POs is done byen
oding them by the approa
h in Ref. [13℄, using theproperties of the nearby 
haoti
 attra
tors. The returnmaps of the re
onstru
ted 
haoti
 attra
tors for param-eters in the borders a, b, 
, and d in box III, are shownin Figs. 2(A-D). These maps as well as the other 
haoti
attra
tors at the borders in both period-3 and period-4windows display return maps typi
al of either uni (onemaximum) or bi-modal (one maximum and one mini-mum) maps, and they 
an be partitioned by the 
riti
alpoints. The partitions are in the maximal and minimalpoints, assigned by V1 and V2. So, a traje
tory pointin the interval VC1 < V1 is en
oded by '0', a traje
tory

point in the interval V1 < VC1 < V2 is en
oded by '1',and a point in the interval VC1 > V2 is en
oded by '2'.A stable period-P orbit 
an be en
oded by 
omparing itsmapping with the mapping of the nearby 
haoti
 attra
-tor, and depending on the position of the POs points withrespe
t to the partition points, a PO 
an be en
oded by asequen
e s1s2 . . . sP , where si is a symbol of the alphabet
si = {0, 1, 2}. For 
haoti
 attra
tors 
lose to the borderswith the period-3 window, in box I, the 
haoti
 returningmaps are uni-modal, with only one 
riti
al point V1. Inthe side a of the window, in box I, we obtain the symboli
sequen
e 101 and in the right side b, the sequen
e 100.All the POs in the left side of this window are en
oded by101 and the ones on the right side by 100. The period-4POs, in the period-4 window, 
lose to the borders a, b,
 and d, in box III, [whose return maps 
an be seen inFigs. 2(A-D), respe
tively℄ are en
oded by the sequen
es
1001, 1000, 2000 and 2000, respe
tively.In fa
t, as one varies a 
ontrol parameter, the symboli
sequen
e of a stable PO 
hanges if some periodi
 point
rosses a 
riti
al point of the return map [14℄. This me
h-anism is responsible for the 
hanges in the symboli
 se-quen
es of the stable POs in the period-3 window. There,the symboli
 sequen
e 101 
hanges to 100 when the PO
rosses the 
riti
al point V1.We name ξ the return map of the 
losest 
haoti
 attra
-tor to the period-P PO, and O a stable PO with points
V 1

C1
, . . . , V P

C1
. Assuming that the return map ξ 
an beused as an approximation to 
al
ulate the �rst derivativeof the orbit points of a PO inside a PW, then the orbit

O is stable if
∆ < 1 (1)with ∆ = |

∏P
i=1

dξ

dV i

C1

|. If a PO 
ontains a 
riti
al point,a point on the extremum of the map, ∆ = 0 and we saysu
h orbit is superstable. For parameters ǫ-
lose to a pa-rameter for whi
h a super-stable PO exists, Eq. (1) issatis�ed, whi
h means that it exists a PW in the neigh-borhood of parameter lines for whi
h V i
C1

= V1.A similar me
hanism governs the 
hanges in the sym-boli
 sequen
es of the stable POs inside the period-4 re-gion. The di�eren
e now is that we have two 
riti
alpoints, V1 and V2 whi
h makes Eq. (1) to be satis�edin parameter 
urves for whi
h either V i
C1

= V1 (whi
hde�nes the 
riti
al 
urve SV 1) or V i
C1

= V2 (whi
h de-�nes the 
riti
al 
urve SV 2), or V i
C1

= V1 and V i
C1

= V2.It is typi
al for this type of CPW that the PW appearsnot only for the parameter point for whi
h V i
C1

= V1 and
V i

C1
= V2, a zero measure point in parameter spa
e, butalso along the 
urves SV 1 or SV 2. These two 
urves formthe spines introdu
ed in Refs. [7, 8℄.Three important 
hara
teristi
s grant to this windowthe status of being a CPW: (i) if there is one CPW, thena 
ountable in�nite number of others must exist, withsizes that de
reases exponentially [Eq. (2)℄ as the periodof the POs in
rease; (ii) the two 
riti
al 
urves SV 1 and

SV 2 
ross transversally at least twi
e. For the parameters
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V2Figure 2: [Color online℄ Return maps (bla
k points) of thePoin
aré se
tion of the 
haoti
 attra
tors obtained using theparameters indi
ated by the borders a, b, 
 and d in box IIIof Fig. 1. We also show the return maps (blue 
ir
les) ofthe periodi
 attra
tors obtained for the 
losest parameters tothese borders. The verti
al lines, passing through the maxi-mum and the minimum de�ne the partition points. In (d') isshown a zoomed view of the minimum of the return map in(d).where the 
rossings happen, the PO has an orbit point
VC1

= V1 and another VC1
= V2; (iii) 
oexisten
e of POswith the same period.Con
erning 
hara
teristi
 (i), for quadrati
 maps oneshould expe
t that

∆P(P ) ∝ e−βP (2)as shown in Ref. [6℄, with P being the parameter intervallength of a CPW, and P the period of the lowest-periodperiodi
 attra
tor. Also, from [6℄, we have that β ∼= 2HT ,where HT is the topologi
al entropy or Lyapunov expo-nent of the bordering 
haoti
 region [7, 8℄. But, in fa
t,for �ows su
h as the Chua's 
ir
uit 
ontaining Shilnikov'shomo
lini
 orbits [15℄, a two-parameter analysis [16℄ per-formed in the neighborhood of this orbit shows that itexists a 
ountable (in�nity) number of CPWs that ap-pear side-by-side in parameter spa
e following the sameexponential s
aling law that des
ribe the appearan
e ofthe homo
lini
 orbits. This exponential s
aling law is ofthe form of Eq. (2) and as shown in Ref. [17℄, β = π ρ
ω
,with ρ and ω representing the real and imaginary part of
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Figure 3: [Color online℄ (A) The en
oding of all the period-4POs found in the CPW. (B) Sket
h of the 
riti
al lines (SV 1and SV 2) stru
ture of the CPW, disregarding the existen
e of
hara
teristi
 (iii) that 
auses the appearan
e of stru
tures asillustrated in Fig. 4.
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Figure 4: Illustration of the stru
tures that might appear ina CPW due to 
hara
teristi
 (iii).the eigenvalues of the fo
us point asso
iated with the ho-mo
lini
 orbit responsible for the generation of the manyCPWs.We estimate that for this experimental 
ir
uit β ≅ 2,in Eq. (2), for a parameter region in the vi
inity of theobserved period-4 CPW. That means that in order to ob-serve a higher period CPW, with period Ph = 42n, with
n ∈ N , asso
iated with the observed period-4 CPW, weshould have a potentiometer with a resolution (step size)of 8∆p exp(−2(Ph−4)), being that 8 is roughly an averagewidth of the period-4 CPW observed. So, in order to ob-serve a period-8 CPW, we would need a potentiometerwith a resolution of about 0.14mΩ, whi
h is mu
h smallerthan our experimental resolution. Numeri
al simulations



4realized in a similar Chua's 
ir
uit, reported in Ref. [11℄,show that CPWs with attra
tors of period lower than 4exist. However, their sizes are of the order of 20 timessmaller than a period-4 large CPW, similar to the oneobserved experimentally. Therefore, for the resolution ofour experiment, we do not expe
t to �nd the many othersnumeri
ally found CPWs, but only this "giant" one.To dete
t the existen
e of the 
riti
al 
urves, we sear
hfor transitions in the symboli
 sequen
e of the POs 
loserto the borders between the PW and 
haos. In box II, thePO en
oded by 1001 at the border a 
hanges its en
odingto 2001 at the border b. So, between these two borders,there is a parameter ∆R2 for whi
h at least one pointof the period-4 orbit is V i
C1

= V2. Thus, within theseborders there must exist a 
urve SV 2. In box III, the POen
oded by 1001 (border a) 
hanges its en
oding to 1000(border b), indi
ating that within these borders there isa PO that visits the 
riti
al point V1. Thus, within theseborders there must exist a 
urve SV 1. In box III, thePO in both borders 
 and d are en
oded by the sym-boli
 sequen
e 2000, what suggests that within these twoborders there must exist either (or both) 
urves SV 1 or
SV 2.As we go from one side of the CPW to the other side by
hanging ∆R2, for a �xed ∆R1, the points of the returnmap of the POs wander along an imaginary smooth 
urve
ξ′. This imaginary 
urve 
hanges its form smoothly, as wevary ∆R2. For a ∆R2 
lose to a parameter where 
haos isfound (
lose to the borders a, b, 
 or d), ξ′ resembles thereturn maps ξ of the 
haoti
 attra
tors. The 
urve ξ′ 
anbe 
onstru
ted using all the POs observed in this CPW,for a 
onstant ∆R1. Then, we estimate the lo
ation ofthe 
riti
al points of ξ′, whi
h provide us the en
odingfor the period-4 POs within the CPW, in Fig. 3(A). The
urves SV 1 and SV 2 are lo
ated where two di�erent 
ol-ors (that des
ribe the di�erent en
odings) meet. A 
urve
SV 1 is the border line between two regions representingdi�erent en
odings. Either '1001' and '1000', or '2001'and '2000'. A 
urve SV 2 is the border line between the

regions that en
ode either '1001' and '2001', or '1000'and '2000'. Note that these 
urves 
ross transversallyat least twi
e inside the windows, at the points wherethe regions that en
ode the four di�erent types of POsmeet. This is 
hara
teristi
 (ii) of a CPW [8℄. It 
an beunderstood by the way CPWs appear in the parameterspa
e. The pro
ess 
an be des
ribed as having a nor-mal PW whi
h 
ontains two 
urves SV 1 and SV 2 thatdo not 
ross. One 
an imagine that both 
urves have aparaboli
 shape appearing side-by-side. As one 
hangesa parameter of the 
ir
uit, the 
urve SV 2 approa
hes SV 1
rossing it in at least two points forming a stru
ture simi-lar to the one shown in Fig. 3(B), a sket
h of a simpli�edversion of what it 
ould be really happening inside theCPW. There, one sees that some regions in the param-eter spa
e that represent POs with some en
oding (e.g.'1001') do not border a region with some other en
oding('2000'), ex
ept for the point where the 
urves SV 1 and
SV 2 
ross. And when that happens (ex
luding the atyp-i
al 
ase when the 
urves are tangent), there has to beat least one more 
rossing inside the CPW, so that thePOs appear side-by-side other allowed POs. The rule is'1001' appears aside '1000', whi
h appears aside '2000',whi
h appears aside '2001', whi
h appears aside '1001'.Su
h rule 
an be apparently violated due to 
hara
ter-isti
 (iii) that leads to points where two or three di�erentregions meet, as represented in Fig. 4. But note that, infa
t, the line SV 1 does not 
ross the line SV 2, and thus,the rule that des
ribes the 
rossing between these lines isnot violated. Internal noise and parameter �u
tuationsof the 
ir
uit partially destroys the CPW. Adding thefa
t that we have limitations in our parameter resolu-tion, we do not expe
t to identify all these �ne details ofthe CPW, but rather a lower resolution pi
ture, in whi
hthis rule might be apparently violated.A
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