
Experimental observation of a omplex periodi windowD. M. Maranhão,1 M. S. Baptista,2 J. C. Sartorelli,1 and I. L. Caldas11Instituto de Físia, Universidade de São Paulo,Caixa Postal 66318, 05315-970, São Paulo, SP, Brasil2Max-Plank Institute für Physik komplexer Systeme,Nöthnitzerstr. 38, D-01187 Dresden, DeutshlandThe existene of a speial periodi window in the 2D parameter spae of an experimental Chua'siruit is reported. One of the main reasons that makes suh a window speial is that the observationof one implies that other similar periodi windows must exist for other parameter values. However,suh a window has never been experimentally observed, sine its size in parameter spae dereasesexponentially with the period of the periodi attrator. This property imposes lear limitations forits experimental detetion.PACS numbers: 05.45.-aThe emergene of regular behavior is one of the moststudied topis in nonlinear dynamial systems. It isknown that by the hanging of an aessible parameter,haos [1℄ and periodi [2℄ behaviors will be observed.The expetation of �nding stable periodi behavior in-side haoti regions in parameter spae depends on thesizes and shapes of the parameter regions, regarded asperiodi windows (PWs), for whih stable periodi orbits(POs) are found. A PW is a region in parameter spaethat indiates parameter values for whih one �nds thelowest periodi attrator of period P , plus the period-doubling asade with attrators of period P 2n, with
n ∈ N [3℄.For systems whose haoti attrators have only onepositive Lyapunov exponent as the Chua's iruit, on-sidered in this experiment, a speial type of PW, regardedas omplex periodi windows (CPW), is everywhere ob-served in parameter spae. The appearane of one suhwindow implies in the appearane of an in�nite num-ber of self-similar others that appear side by side alignedalong a diretion. In addition, CPWs have an extendedharateristi in the parameter spae. They visit largeportions of the parameter spae, i.e. one an still stayin the same periodi windows even if espeial large vari-ations in two ontrol parameters are made. Due to thesetwo harateristis an arbitrary hange in only one aes-sible parameter an replae haos by periodi behavior,or vie-versa. So, a better understanding of a CPW isrelevant to appliations that relay either on a robust pe-riodi osillation, as mehanial mahines, or on a robusthaoti system, as haos-based ommuniation [4℄.These CPWs, regarded as shrimps [5℄, were extensivelystudied in maps [6, 7℄ and in periodially fored maps[8, 9℄. However, only reently these windows were numer-ially observed in systems of ordinary di�erential equa-tions [10, 11℄. The reason is that the parameter intervallength, ∆P , of a CPW sales exponentially with −P ,where P is the period P of the lowest-period periodi at-trator of the CPW [6℄. Sine CPWs have usually higher
P , they are too tiny to be observed, even though thesetiny windows are extended in parameter spae.This exponential saling learly imposes limitations to

the experimental detetion of suh a periodi window,and arguably due to that they have never been exper-imentally reported. However, for the Chua's iruit, itwas numerially shown in Ref. [11℄ that suh CPWs pos-sessing a low value for the lowest-period periodi attra-tor (P=4) exist. This work is dediated to experimen-tally report, for the �rst time, suh a CPW.To ertify that we observed a CPW, we show thatthere exists urves in parameter spae where the POsare super-stable, and that these urves ross transver-sally at least twie, a neessary ondition that de�nes aCPW. These parameter urves are deteted by the indi-ret method of noting the parameter values at whih thesymboli sequenes, enoding the type of POs existingwithin the CPW, hange.The well known Chua's iruit is shown in Fig. 1(A).The ontrol parameters are R1 = R10 − ∆R1 and R2 =
R20 − ∆R2, where R10 and R20 have �xed values, ∆R1and ∆R2 are varied by preision potentiometers, withsteps of 50mΩ and 200mΩ, in the ranges [0, 17]Ω and [1,
5.5℄Ω, respetively. We obtained time series by reord-ing the VC1

(t) voltage with a 12 bits ADC at the rateof 400 ksamples/s. All the attrators were reonstrutedby Takens method [12℄ with time-delay τ = 45.0 µs, thatorresponds to 18 data points. Then, the reonstrutedattrators are made disrete by measuring VC1(t + τ)when the reonstruted trajetory reahes the setion
VC1(t)=-2.25V in a lokwise orientation. The value of
VC1(t + τ) when the reonstruted trajetory realizes its
n-th rossing in this setion is denoted by V n

C1.In Fig. 1(B), we show the parameter spae of thisiruit. There, �lled blak irles represent parametervalues for whih one obtain the lowest period PO. Alongthe left border between haos and the PW [parametersindiated by letters "a" within the boxes of Fig 1(B)℄ inthese two PWs, haos is replaed by a stable (period-3 orperiod-4) attrator by a tangent bifuration by inreasing
∆R2. In the other borders, [parameters indiated byletters "b", "" and "d"℄, the lowest-period PO insidethe PWs bifurate and haos (outside the PW) is reahedafter a period-doubling asade by modifying ∆R2.To illustrate our analysis tehniques, we �rst use a
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Figure 1: (A) Sheme of Chua's iruit. Their omponent val-ues are: R10 ≈ 1.4kΩ, R20 ≈ 37Ω, C1 ≈ 4.7nF, C2 ≈ 56nF,
L ≈ 9.2mH. (B) Parameter spae for the experimental Chua'siruit showing the period-3 and period-4 windows. Filledblak irles represent parameters for whih the lowest pe-riod POs are observed, �lled light gray irles represent thehigher period PO that appear by periodi-doubling bifura-tions, and �lled dark gray irles represent parameters forthe losest haoti attrator to the PWs. The straight linesindiate parameter values for the sets of time series X and Y.symboli representation to haraterize the lower periodPOs that appear for the parameters nearby the bordersbetween the PWs and the haoti regions, indiated bythe letters a, b,  and d, in the boxes I, II, and III, inFig 1(B). We use data sets olleted varying ∆R2 alongthe lines X and Y for ∆R1= 3 .0Ω and ∆R1=12 .5Ω,respetively, as shown in Fig. 1(B).The symboli haraterization of these POs is done byenoding them by the approah in Ref. [13℄, using theproperties of the nearby haoti attrators. The returnmaps of the reonstruted haoti attrators for param-eters in the borders a, b, , and d in box III, are shownin Figs. 2(A-D). These maps as well as the other haotiattrators at the borders in both period-3 and period-4windows display return maps typial of either uni (onemaximum) or bi-modal (one maximum and one mini-mum) maps, and they an be partitioned by the ritialpoints. The partitions are in the maximal and minimalpoints, assigned by V1 and V2. So, a trajetory pointin the interval VC1 < V1 is enoded by '0', a trajetory

point in the interval V1 < VC1 < V2 is enoded by '1',and a point in the interval VC1 > V2 is enoded by '2'.A stable period-P orbit an be enoded by omparing itsmapping with the mapping of the nearby haoti attra-tor, and depending on the position of the POs points withrespet to the partition points, a PO an be enoded by asequene s1s2 . . . sP , where si is a symbol of the alphabet
si = {0, 1, 2}. For haoti attrators lose to the borderswith the period-3 window, in box I, the haoti returningmaps are uni-modal, with only one ritial point V1. Inthe side a of the window, in box I, we obtain the symbolisequene 101 and in the right side b, the sequene 100.All the POs in the left side of this window are enoded by101 and the ones on the right side by 100. The period-4POs, in the period-4 window, lose to the borders a, b, and d, in box III, [whose return maps an be seen inFigs. 2(A-D), respetively℄ are enoded by the sequenes
1001, 1000, 2000 and 2000, respetively.In fat, as one varies a ontrol parameter, the symbolisequene of a stable PO hanges if some periodi pointrosses a ritial point of the return map [14℄. This meh-anism is responsible for the hanges in the symboli se-quenes of the stable POs in the period-3 window. There,the symboli sequene 101 hanges to 100 when the POrosses the ritial point V1.We name ξ the return map of the losest haoti attra-tor to the period-P PO, and O a stable PO with points
V 1

C1
, . . . , V P

C1
. Assuming that the return map ξ an beused as an approximation to alulate the �rst derivativeof the orbit points of a PO inside a PW, then the orbit

O is stable if
∆ < 1 (1)with ∆ = |

∏P
i=1

dξ

dV i

C1

|. If a PO ontains a ritial point,a point on the extremum of the map, ∆ = 0 and we saysuh orbit is superstable. For parameters ǫ-lose to a pa-rameter for whih a super-stable PO exists, Eq. (1) issatis�ed, whih means that it exists a PW in the neigh-borhood of parameter lines for whih V i
C1

= V1.A similar mehanism governs the hanges in the sym-boli sequenes of the stable POs inside the period-4 re-gion. The di�erene now is that we have two ritialpoints, V1 and V2 whih makes Eq. (1) to be satis�edin parameter urves for whih either V i
C1

= V1 (whihde�nes the ritial urve SV 1) or V i
C1

= V2 (whih de-�nes the ritial urve SV 2), or V i
C1

= V1 and V i
C1

= V2.It is typial for this type of CPW that the PW appearsnot only for the parameter point for whih V i
C1

= V1 and
V i

C1
= V2, a zero measure point in parameter spae, butalso along the urves SV 1 or SV 2. These two urves formthe spines introdued in Refs. [7, 8℄.Three important harateristis grant to this windowthe status of being a CPW: (i) if there is one CPW, thena ountable in�nite number of others must exist, withsizes that dereases exponentially [Eq. (2)℄ as the periodof the POs inrease; (ii) the two ritial urves SV 1 and

SV 2 ross transversally at least twie. For the parameters
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V2Figure 2: [Color online℄ Return maps (blak points) of thePoinaré setion of the haoti attrators obtained using theparameters indiated by the borders a, b,  and d in box IIIof Fig. 1. We also show the return maps (blue irles) ofthe periodi attrators obtained for the losest parameters tothese borders. The vertial lines, passing through the maxi-mum and the minimum de�ne the partition points. In (d') isshown a zoomed view of the minimum of the return map in(d).where the rossings happen, the PO has an orbit point
VC1

= V1 and another VC1
= V2; (iii) oexistene of POswith the same period.Conerning harateristi (i), for quadrati maps oneshould expet that

∆P(P ) ∝ e−βP (2)as shown in Ref. [6℄, with P being the parameter intervallength of a CPW, and P the period of the lowest-periodperiodi attrator. Also, from [6℄, we have that β ∼= 2HT ,where HT is the topologial entropy or Lyapunov expo-nent of the bordering haoti region [7, 8℄. But, in fat,for �ows suh as the Chua's iruit ontaining Shilnikov'shomolini orbits [15℄, a two-parameter analysis [16℄ per-formed in the neighborhood of this orbit shows that itexists a ountable (in�nity) number of CPWs that ap-pear side-by-side in parameter spae following the sameexponential saling law that desribe the appearane ofthe homolini orbits. This exponential saling law is ofthe form of Eq. (2) and as shown in Ref. [17℄, β = π ρ
ω
,with ρ and ω representing the real and imaginary part of
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Figure 3: [Color online℄ (A) The enoding of all the period-4POs found in the CPW. (B) Sketh of the ritial lines (SV 1and SV 2) struture of the CPW, disregarding the existene ofharateristi (iii) that auses the appearane of strutures asillustrated in Fig. 4.
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Figure 4: Illustration of the strutures that might appear ina CPW due to harateristi (iii).the eigenvalues of the fous point assoiated with the ho-molini orbit responsible for the generation of the manyCPWs.We estimate that for this experimental iruit β ≅ 2,in Eq. (2), for a parameter region in the viinity of theobserved period-4 CPW. That means that in order to ob-serve a higher period CPW, with period Ph = 42n, with
n ∈ N , assoiated with the observed period-4 CPW, weshould have a potentiometer with a resolution (step size)of 8∆p exp(−2(Ph−4)), being that 8 is roughly an averagewidth of the period-4 CPW observed. So, in order to ob-serve a period-8 CPW, we would need a potentiometerwith a resolution of about 0.14mΩ, whih is muh smallerthan our experimental resolution. Numerial simulations



4realized in a similar Chua's iruit, reported in Ref. [11℄,show that CPWs with attrators of period lower than 4exist. However, their sizes are of the order of 20 timessmaller than a period-4 large CPW, similar to the oneobserved experimentally. Therefore, for the resolution ofour experiment, we do not expet to �nd the many othersnumerially found CPWs, but only this "giant" one.To detet the existene of the ritial urves, we searhfor transitions in the symboli sequene of the POs loserto the borders between the PW and haos. In box II, thePO enoded by 1001 at the border a hanges its enodingto 2001 at the border b. So, between these two borders,there is a parameter ∆R2 for whih at least one pointof the period-4 orbit is V i
C1

= V2. Thus, within theseborders there must exist a urve SV 2. In box III, the POenoded by 1001 (border a) hanges its enoding to 1000(border b), indiating that within these borders there isa PO that visits the ritial point V1. Thus, within theseborders there must exist a urve SV 1. In box III, thePO in both borders  and d are enoded by the sym-boli sequene 2000, what suggests that within these twoborders there must exist either (or both) urves SV 1 or
SV 2.As we go from one side of the CPW to the other side byhanging ∆R2, for a �xed ∆R1, the points of the returnmap of the POs wander along an imaginary smooth urve
ξ′. This imaginary urve hanges its form smoothly, as wevary ∆R2. For a ∆R2 lose to a parameter where haos isfound (lose to the borders a, b,  or d), ξ′ resembles thereturn maps ξ of the haoti attrators. The urve ξ′ anbe onstruted using all the POs observed in this CPW,for a onstant ∆R1. Then, we estimate the loation ofthe ritial points of ξ′, whih provide us the enodingfor the period-4 POs within the CPW, in Fig. 3(A). Theurves SV 1 and SV 2 are loated where two di�erent ol-ors (that desribe the di�erent enodings) meet. A urve
SV 1 is the border line between two regions representingdi�erent enodings. Either '1001' and '1000', or '2001'and '2000'. A urve SV 2 is the border line between the

regions that enode either '1001' and '2001', or '1000'and '2000'. Note that these urves ross transversallyat least twie inside the windows, at the points wherethe regions that enode the four di�erent types of POsmeet. This is harateristi (ii) of a CPW [8℄. It an beunderstood by the way CPWs appear in the parameterspae. The proess an be desribed as having a nor-mal PW whih ontains two urves SV 1 and SV 2 thatdo not ross. One an imagine that both urves have aparaboli shape appearing side-by-side. As one hangesa parameter of the iruit, the urve SV 2 approahes SV 1rossing it in at least two points forming a struture simi-lar to the one shown in Fig. 3(B), a sketh of a simpli�edversion of what it ould be really happening inside theCPW. There, one sees that some regions in the param-eter spae that represent POs with some enoding (e.g.'1001') do not border a region with some other enoding('2000'), exept for the point where the urves SV 1 and
SV 2 ross. And when that happens (exluding the atyp-ial ase when the urves are tangent), there has to beat least one more rossing inside the CPW, so that thePOs appear side-by-side other allowed POs. The rule is'1001' appears aside '1000', whih appears aside '2000',whih appears aside '2001', whih appears aside '1001'.Suh rule an be apparently violated due to harater-isti (iii) that leads to points where two or three di�erentregions meet, as represented in Fig. 4. But note that, infat, the line SV 1 does not ross the line SV 2, and thus,the rule that desribes the rossing between these lines isnot violated. Internal noise and parameter �utuationsof the iruit partially destroys the CPW. Adding thefat that we have limitations in our parameter resolu-tion, we do not expet to identify all these �ne details ofthe CPW, but rather a lower resolution piture, in whihthis rule might be apparently violated.Aknowledgments We thank the �nanial supportof CNPq, FAPESP, and disussions with R. O. Medrano-T.[1℄ M. V. Jaobson, Comm. Math. Phys., 81, 39 (1981).[2℄ J. Grazyk and G. �wi�atek, Annals of Math. 146, 1(1997).[3℄ Sine the parameter interval oupied by higher-periodattrators dereases in a power-law fashion with the pe-riod of the attrator, we do not expet to observe thehigher-period attrators of a PW, in an experiment. Inthis work, we only onsider the lowest-period periodiattrator in a PW.[4℄ M. S. Baptista, E. Maau, C. Grebogi, E. Rosa, and Y.-C. Lai, Phys. Rev. E, 62, 4835 (2000).[5℄ J. A. C. Gallas, Phys. Rev. Lett. 70, 2714 (1993).[6℄ B. Hunt and E. Ott, J. Phys. A: Math. Gen., 30, 7067(1997).[7℄ E. Barreto, B. R. Hunt, C. Grebogi, and J. A. Yorke,Phys. Rev. Lett. 78, 4561 (1997).[8℄ M. S. Baptista, E. Barreto, C. Grebogi, Int. J. Bifura-
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