Phonon background versus analogue Hawking radiation in Bose-Einstein condensates
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We determine the feasibility of detecting analogue Hawking radiation in a Bose-Einstein conden-
sate in the presence of atom loss induced heating. We find that phonons created by three-body
losses overshadow those due to analogue Hawking radiation. To overcome this problem, three-body
losses may have to be suppressed, for example as proposed by Search et al. [Phys. Rev. Lett. 92
140401 (2004)]. The reduction of losses to a few percent of their normal rate is typically sufficient to
suppress the creation of loss phonons on the time scale of a fast analogue Hawking phonon detection.
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Introduction: An analogue of the Hawking effect [1, 2]
should in principle exist in cold moving fluids [3]. A
fluid whose velocity profile contains a transition from
subsonic to supersonic flow will emit a thermal radia-
tion of quantized sound waves (phonons). Gaseous Bose-
Einstein condensates (BECs) were often considered most
promising for the observation of this phenomenon [4-10].
However, for accessible Hawking temperatures the con-
densate must have densities for which three-body losses
become relevant [11]. These strongly constrain the time
available for phonon detection already on the level of the
mean-field. Here, we consider limitations arising from
three-body loss in a quantum treatment [12] and show
that they are even more severe.

The primary consequence of three-body loss is a re-
duction of the condensate density in time, resulting in a
decrease of the Hawking temperature. Three-body losses
also heat the condensate by driving the many-body quan-
tum state away from the Bogoliubov vacuum [13]. This
creates phonons, which contribute in general to a back-
ground indistinguishable from analogue Hawking radia-
tion [14]. Here we compare these two effects and show
that in equilibrium the loss-phonons always overshadow
those created by the Hawking effect. For the densities
required to observe analogue Hawking radiation [11] the
loss-phonons are created on the same time-scale as the
Hawking phonons.

Our findings indicate that it may be necessary to sup-
press three-body losses in a BEC in order to observe
analogue Hawking radiation. Fortunately, suppression
schemes exist [15, 16]. A suppression will have a two-
fold benefit: Firstly it increases the time-scale for the
loss-heating to reach equilibrium, making it possible to
conduct an experiment before they become relevant. Sec-
ondly, we can employ higher density condensates and ob-
tain a stronger Hawking signal, due to the reduced effect
of loss on the mean-field.

The surface at which the normal component of the con-
densate flow exceeds the local speed of sound is termed

*Electronic address: sew654@pks.mpg.de

sonic horizon [4]. As consequence of the causal discon-
nection of the supersonic and subsonic regions, quantum
field theory predicts particle creation [17]. The ana-
logue Hawking temperature that characterizes their ther-
mal spectrum is given by [5]
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Here v is the flow speed, ¢ the speed of sound, M = v/c
the Mach number, x; denotes a position on the horizon
and 7 a normal vector to it. The underlying correspon-
dence between the equations of motion for a scalar quan-
tum field in curved space-time and for quantum phonons
in a fluid can provide further analogies between cosmo-
logical effects and phenomena in a fluid [4].

Values of Ty for typical fluids are very small. Hence
Bose-Einstein condensates have been considered as prime
candidates for an observation of the analogue Hawking
effect, owing to their low temperatures. We have shown
in Ref. [11] however, that to reach temperatures even
of the order of 10 nK, condensates have to be typically
driven into a regime where three-body recombination sig-
nificantly affects the mean-field on a time scale of 50 ms.
Here we employ Bogoliubov theory used in Ref. [13] to
determine the consequences for the quantum field.
Bogoliubov-de Gennes equations: We split the field oper-

ator for bosonic atoms ¥(x) = ¢(x) + x(x) into a con-
densate wavefunction ¢(x) = (¥(x)) and its quantum
fluctuations x(x). The condensate wave function obeys
the Gross-Pitaevskii equation
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where m is the atomic mass and ¢ the interaction
strength related to the scattering length as by g =
4mh%as/m, while W denotes an external potential. We
use [d*x|¢(x)[? = Neond, the number of condensate
atoms. Where required, we use the notation p = |¢|?
for the condensate density, v = ifi/(2m)[(V¢*)p — ¢* V)]

for its velocity and ¢ = \/gp/m for the speed of sound.



We decompose the fluctuating component as

X(%) =D [un(x)én + v (x)a]. (4)
The presence of a subscript distinguishes references
to the condensate velocity v from those to the mode
VUp. The functions wu,, v, obey the Bogoliubov-de
Gennes (BdG) equations [18-20]: Lpag [un(x),va(x)]T =
€nftn (%), v, (x)]T, with
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where Q = 1 — |¢)(¢|/Neona pProjects onto the function
space orthogonal to the condensate mode. The modes
also must be normalized according to [ d3x[|u,(x)|*> —
|vn, (x)|?] = 1, for the fluctuations to obey bosonic com-
mutation relations [Gy,, &, = 0y -

For a homogeneous condensate in a quantization vol-
ume V we have W = 0, ¢ = u/g. The BdG equations
are then solved by [21, 22]
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In the following we will assume that a sonic horizon is
present in the condensate such that analogue Hawking
radiation is created, but that the bulk condensate can
still be considered as a homogeneous reservoir. No details
regarding how to achieve this situation are required here,
but can be found in [11].

Loss induced phonons: Dziarmaga and Sacha have shown
in Ref. [13] that besides a reduction of the condensate
population, atom losses also result in creation of phonons
since the many-body quantum state is driven away from
the Bogoliubov vacuum |0), defined by «,,|0) = 0. These
phonons will make a detection of analogue Hawking ra-
diation more difficult. Thus the relative strength of the
phonon sources has to be determined. We focus on three-
body losses in what follows, since they are most promi-
nent in BECs at high densities.

Three-body recombination results in a molecule and
an energetic atom. The excess energy due to molecu-
lar binding, E, = h?/ma?, is split between the kinetic
energies of molecule and fast atom in the ratio 1 : 2.
When these kinetic energies suffice for both particles to
leave the trap, their corresponding quantum fields can be
eliminated from the picture [23]. One obtains an effec-
tive master equation that describes the effect of the loss
process on the quantum state of the remaining trapped
atoms. Similar steps are possible for [-body loss and one
obtains [13, 23]
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where D[a]p = apal — alap/2 — pata/2. H is the usual
Hamiltonian describing the conservative dynamics of the
remaining trapped atoms. Importantly, v; is the event-
rate for a given loss process. Thus for example 3 =
K3/3 [24], where K3 is the usual number loss rate for a
condensate [25].

Inserting the expansion of U, Eq. (7) can be rewritten
in terms of quasi-particle operators &, din. One then
recognizes that each quasi-particle mode m is coupled
to a heat reservoir and its occupation n,,(t) will relax
towards a thermal state [13]. For the high density con-
densates that we consider, the three-body loss channel is
strongly dominant [11]. If a single channel dominates, we
can write [13]

A, (t)/dt = =1y NT7HE) [ (8) — nim], — (8)
where N (t) is the number of condensate atoms. The
coefficients «y,, and ny,, are determined by [13]
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with the condensate mode ¢y defined by ¢ = /N (¢)¢o.
Eq. (8) evolves each occupation number towards the equi-
librium value ng,,. This value itself is time dependent in
general, but can be assumed to vary slowly if losses are
not too strong [13].

Before we proceed we specify the considered geome-
try in more detail: It appears that analogue Hawking
studies are simplest in reduced dimensionality, that is in
quasi 1D or 2D condensates [11]. Let the condensate be
d-dimensional. We then have D = 3 — d transverse di-
mensions in which we assume the atoms to be tightly
confined. In the longitudinal dimensions we imagine a
homogenous condensate over a volume V. The three-
dimensional vector x is decomposed as x = z+r , where
z is longitudinal and r, transverse. With this split-
ting, we can write the condensate and Bogoliubov modes:
o = AL VT, ug(x) = iiqe! v AeT 2 VT,
vg(x) = ﬂqeique’Ti/2”2/\/V. Here o is the ground
state width of the transverse harmonic confinement and
ry = |ri|. We fix A by derlAQexp[—riUQ] =1,
which gives A = 7~ (3=4)/45=3=d)/2 " After replacing the
discrete index m by the continuous label ¢, Eq. (9) can
be solved by
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using |ig|? — |94)% = 1.

Let us denote the “I-body loss temperature” of this
thermal state by Tr;. We have nyy = (eeq/kBT“ -1,
hence kT = €,/log[1/ni, + 1]. Since ny, = [9,]* ~



me/2hq ~ 1/€q > 1 for phonons, we can finally ap-

proximate kpTr; = €niq. Using 9, = y/mc/(2hg) and
€q = hgc for phononic wave numbers gives
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The Hawking temperature is limited to
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with D > 1 to avoid too rapidly varying Mach numbers
at the horizon [11]. We see that with both effects in equi-
librium the loss-temperature is always greater than T.
In a situation where atoms are continuously lost from the
condensate, a rigorous equilibrium in which to interpret
Eq. (11) does not exist. Nonetheless, when the loss is not
too strong, we expect a quasi-equilibrium to apply. It is
found that the actual heating can even slightly exceed
Eq. (11) [13].

Heating time scale: Note, that the equilibrium temper-
ature associated with any loss process is independent of
the corresponding loss rate, while the evolution towards
equilibrium, Eq. (8), is not. Inserting the expression for
«q,, one obtains

dn, (t) B
dt
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where we use the condensate density in reduced dimen-
sions peond = N (t)/V and the effective loss rate

i = rB=D-D/25B-d)(1-1), (14)
If we consider short time scales on which plcgid (t) can be
treated as constant, the solution of Eq. (13) is

Pon(t) = [1 = exp (—1V258L L] (15)

The time-scale on which the phonon population reaches
its equilibrium value is therefore 7 = {(1=4/23,7dpl =1
Since the reduced-dimensional density is related to
the three-dimensional peak density by p3ppeak =
pcondw_(3_d)/2a_(3_d), we can estimate 7 using 3D quan-
tities as

T= l(lid)/Q _lpéDfpeak (16)

For usual condensate densities 7 can be quite large. One
obtains 7 = 141s for #Na at psp ~ 102 m~3 (d = 1).
However, the densities required for reasonable analogue
Hawking temperatures are much higher [11] with conse-
quently faster loss phonon creation. Let us parametrize
the density as p = 1/3f/K3At, which implies that within
a time At a fraction f of this density will be lost due to
three-body recombination. We now choose At as the
time which is required to detect the Hawking effect. We
imply At ~ 50 ms in what follows, about the time re-
quired for quick spectroscopic phonon detection [26]. We

atom| *He 2°Na 8"Rb ¥7Cs

g x10°° [Jm3]|15.7 1 0.5 0.66

K3 x 10" [m®/s]|9000 2.12 32 130
pmax X 1071 [m™3]| 3.0 194 50 25
£lum][0.42 0.086 0.12 0.12

Ti nK]| 3.8 16 22 14

no (%] 0.7 13 0.2 0.09

mcmax/kB [1K][0.34 14 02 025
hwi/kp [WK]| 6 30 4 5
wy /27 [kHZ]| 125 625 83 104
Ey/kp [uK]|2100 2700 190 29

ro/aJ_ 27 14 9.7 3.4

TABLE I: Comparison of common BEC species regarding
analogue Hawking radiation and loss heating. The upper 5
rows are reproduced from Ref. [11]. Nextly we indicate 7o, de-
fined as fraction of the original three-body loss rate that allows
m = 30nK for At = 50 ms, while delaying the time scale for
loss phonon production to 7 ~ 20At, see Eq. (18). The lower
5 rows show the hierarchy of energy scales mc? < hw, < Ey
required to achieve quasi 1D or 2D trapping, while still allow-
ing three-body loss products to escape. The w, are selected
to allow this. The mean field energies use p = pmax. We de-
fine 7o by W(ro) = Eb, where W is the transverse harmonic
trap. The radius ro should be large compared to a . This
allows a tightly harmonic trap in the condensate region and a
smooth transition to an asymptotic value W(r > a1 ) < Ep.

arrive at a heating time scale under these conditions of
7= At/3f. (17)

This is of the order of the proposed measurement time
At and hence too short, unless we have f < 1/3. How-
ever as was found in [11], in the regime of such small
loss the Hawking temperatures become problematically
low. Hence, we usually have 7 ~ At. Alternatively we
can calculate the time to create one phonon in a given
spectral region, by the Hawking effect or by the loss. For
the same parameter regime as above, one finds that the
time scales are comparable.
Suppression of three-body loss: It has been proposed to
inhibit three-body loss processes in BECs by periodically
flipping the phase of the weakly bound molecular state
that causes the loss [15]. The phase flip can be achieved
using repeated 27 pulses of laser light resonant on an
electronic exited state transition of the bound state. De-
structive interference is then responsible for a reduction
in three-body loss rates to only a few percent of their
usual value. We now investigate whether this is suffi-
cient to overcome three-body loss related obstacles to
the creation of analogue Hawking radiation in BECs.
By Eq. (17), we require a loss suppression that enables
f < 1/3. We pick a specified target temperature and



assume three-body loss was reduced to Ky = nKs, with
0 < n < 1. The fractional loss within the measurement
time At will then be

o 27‘(‘2(k'BTH)2D2K3At

f 352

n= fon. (18)

We have used p = /3f/K3At and Eq. (12). See table I
for values of 1 that allow analogue Hawking radiation at
Ty = 30 nK while separating the time-scales for phonon
measurement and loss heating (7 > At).

A crucial indicator for the efficiency of the scheme pre-
sented in [15] is the number of laser pulses that fit into
the average life-time of a molecule, before its quantum
state is perturbed by a collision with a condensate atom.
This life-time can be estimated as 7 = (kp)~!, where
K~ 107m3s~! for 87Rb [27] and 23Na [28]. For densi-
ties prp = 5 x 102°m =3, pna = 2 x 102'm ™3, we obtain
7 ~ 10us. According to Ref. [15] this allows a loss reduc-
tion to a few percent.

A side effect of the laser pulses that suppress three-
body losses is one-body loss due to Rayleigh scattering
of laser photons [15]. The increased one-body loss rate
has been estimated as v; ~ 0.1 s~1. We then see from
Eq. (16) that the time scale for one-body loss induced
phonon creation is about 10 s and hence unproblematic.
Reaction products of loss process: Given the importance
of three-body losses, we have to address the evolution of
the molecules and fast atoms created in the recombina-
tion process. For Eq. (7) to be valid, it is required that

they are energetic enough to leave the trap [23]. Also for
the cosmological analogy to hold, we wish to avoid the
complications of a coupled atom-molecular condensate.
Finally, collisions between the loss products and remain-
ing atoms would induce further unwanted heating if the
loss products remained in the trap [29].

To ensure that the molecules and fast atoms can leave

the trap, we require the trap depth characterized by Aw
to satisfy hw; < Ej. If we further wish to study the
sonic horizon in a quasi one or two dimensional setup,
the strength of transverse confinement is constrained by
mc? < hw, < Ey, where mc? is the interaction energy of
the confined condensate. Exemplary numbers for these
energies are shown in table I, which demonstrate that
this hierarchy can just be fulfilled.
Conclusions: We have shown that loss induced phonons
are an overwhelming background for analogue Hawking
radiation in a Bose-Einstein condensate. To overcome
this problem we suggest a moderate suppression of three-
body losses. This can make the time-scale of loss induced
phonon creation sufficiently long for a fast detection of
the analogue Hawking effect.
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