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During the last few years, investigations of Rare-Earth materials have made clear that not only the
heavy fermion phase in these systems provides interesting physics, but the quantum criticality where
such a phase dies exhibits novel phase transition physics not fully understood. Moreover, attempts
to study the critical point numerically face the infamous fermion sign problem, which limits their
accuracy. Renormalization group and effective action techniques have been very popular in high
energy physics, where they enjoy a good record of success. Yet, they have been little exploited for
fermionic systems in condensed matter physics. In this work, we apply the RG to the heavy fermion
problem. We write for the first time the effective action which describes the low energy physics
of the system. The f -fermions are replaced by a dynamical scalar field whose nonzero expected
value corresponds to the heavy fermion phase. This removes the fermion sign problem, making the
effective action amenable to numerical studies as the effective theory is bosonic. Renormalization
group studies of the effective action can be performed to extract approximations to nonperturbative
effects at the transition. By performing one-loop renormalizations, resummed via Callan-Symanzik
methods, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical
susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in
excellent agreement with the experimental result at low temperatures (0.4).

PACS numbers: 71.27.+a, 73.43.Nq, 71.10.Hf

For a couple of decades, heavy fermion materials have
attracted the focus of a large part of the experimental and
theoretical condensed matter community[1, 2]. There
are many reasons for such a spotlight on these materi-
als. They exhibit exotic superconductivity, interesting
magnetism, but most importantly heavy quasiparticles
with an enlarged Fermi surface. This heavy quasipar-
ticle phase perishes into a quantum critical point with
interesting, puzzling and not yet understood nature[3, 4].

It is quite striking to see the fermionic quasiparticle
with masses from tenths to about thousandths of an el-
ementary electron mass. This has been understood as
arising from Kondo-like physics of the almost localized
f−electrons when they hybridize with the lower atomic
angular momentum bands of the material[2, 5]. This hy-
bridization gives rise to an enlarged Fermi surface as the
f−electrons now contribute to the Fermi volume, and to
the large quasiparticle mass and large specific heat coeffi-
cient, through enhanced collective Kondo-like low energy
scattering. Of course, the f−electrons have a strong ten-
decy to localize due to their large U which fights the

hybridization V .

Some of these materials can be tuned (by apply-
ing pressure, etc.) so that a critical value (U/V )c is
reached such that, for values larger than the critical
value, the f−electrons localize and there is no heavy
fermion phase. Instead, there is a small Fermi surface
metal that usually exhibits magnetic order mediated via
RKKY interactions[6, 7]. For subcritical values of U/V ,
the system is in the heavy fermion phase with large Fermi
surface and no magnetism.

At the critical value, a continous quantum phase tran-
sition occurs as corroborated via scaling experiments.
This transition is not understood. The lack of under-
standing is a barrier to the full characterization of the
physical properties, phase diagram and experimental re-
sponse features of these materials. In this work, we turn
our attention to understanding this heavy fermion quan-
tum criticality[3, 8].

We start from the partition function for f−electron
hybridizing with metallic c−electrons
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where the subscripts M , L (and all capital letters sub-
scripts for that matter) indicate the angular momentum
degeneracy of the ground state (j = 5/2), U is the Hub-
bard repulsion and V represents the strength of mixing
of f -electrons with the conduction band.

If we write ni =
∑

M f †
iMfiM , the Hubbard interaction

term then takes the form (in Euclidean time and real
space) U
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In order to have f levels occupied we choose E0 < µ.
This last action is what quantum field theorists would

call the bare action. It embodies the essential physics
of the heavy fermion phase and the heavy fermion crit-
icality. Unfortunately, it is very hard to solve the bare
action exactly or numerically to high accuracy in order
to extract the desired information from it. The famous

fermion sign problem thwarts numerics, and exact solu-
tions are normally impossible in many body problems
just as this one. Fortunately, there is a way forward that
can help extract some, and perhaps a lot of the physics.
The renormalization group[9], and in particular effective
action techniques[10–12], popular in particle physics, pro-
vide room for progress.

One of the lessons of the renormalization group is that
as we concentrate on longer wavelength, lower energy de-
grees of freedom, the short distance and high energy fluc-
tuations do two things. These fluctuations renormalize
the strength of the terms in the original action and they
generate new terms in the action which in turn change as
they get renormalized. The end result is that some terms
in the action become larger while others become smaller,
thus not contributing to the to the universal low energy
physics of the system. We will thus analyze the action for
heavy fermion materials above, and obtain the effective
action with terms relevant to the low energy physics of
the heavy fermion phase and to the critical point where
such a transition perishes.

In order to obtain the effective action, rather than ob-
tain the renormalizations all at once, it proves advan-
tageous to integrate out the f−electrons and get those
terms they contribute to the effective action which are
relevant for the low energy universal physics of the critical
point and heavy fermion phase. After the calculations are
performed, the f−electrons disappear from the theory.
We have instead the Hubbard-Stratonovih field ϕ, which
has acquired dynamics through the f−electron fluctu-
ations. Such fluctuations also generate self-interaction
terms for the ϕ-field, and interaction terms between the
ϕ’s and the metallic c−electrons.

The effective action for the heavy fermion materials
comes out to be
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where
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πD3
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−
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We see that the universal physics of the heavy fermion
system is captured by an action of dynamical scalar fiels
interacting with the metallic c−electrons. We call this
action the heavy-fermion dynamic ϕ4 action. The heavy
fermion phase corresponds to g2 being negative and ϕ
acquiring a nonzero expected value as ϕ is proportional
to the density of f−electrons that hybridizes with the
metallic ones. The heavy fermion critical point occurs at
g2 = 0, when 〈ϕ〉 first becomes 0.

The heavy-fermion dynamic ϕ4 action is a new and im-
portant result. It opens the door to accurate numerics for

the fermion action, as the interacting fermions that drive
the transtion have been replaced by a scalar field. This
should eliminate the fermion sign problem that plagues
numerics, for all the action is happening in the scalar
fields and not the left-over metallic fermions.

One can apply standard order parameter RG to this ac-
tion. As an example, below we do a one-loop momentum
shell renormalization with the help of Callan-Symanzik
equations à la Weinberg[12–14]to resum and thus catch
some of the nonperturbative physics of the transition.
This can of course be improved by going to higher orders,
and there is also plenty of room to perform ǫ-expansion
studies instead of momentum shell.

Since we can use the bare Fermi velocity of the metal-
lic c−electrons as a standard of speed in the material, we
use it as such to express our frequencies in units of mo-
mentum and work in “God-given” heavy fermion units:
vF = 1 and ~ = 1, kF = m = Λ. After renormalization,
the heavy-fermion dynamic ϕ4 action becomes
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(4)

We now move to consider the specific momentum shell
renormalizations to determine the renormalization fac-
tors. The inverse ϕ propagator, ω − Λg2 goes into
−µgR

2 Z2
ϕ + Z2

ϕω + Zkkr = −Λg2 + ω + Σϕ, where

Σϕ =
g2
3Λ

8π4
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4Λ

]

+
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(1 − µ/Λ)

(g2 − 1)

Next we tackle the renormalization of the c− elec-

tron inverse propagator ω − (ǫ~k − µ) which becomes
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∣
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∣

∣

∣
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∣

∣
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∣
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∣
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Notice that the c−electron propagator does not renor-
malize as expected. The reason is that if g2 is nonzero,
we need to include the nonzero expected value of ϕ and
expand around it in the heavy fermion phase in order to
get the physics right. We are not interested in the heavy
phase but in the critical point, where such a phase dis-
appears. At the critical point, g2 = 0 and things work
out as expected.

We now turn our attention to vertex renormalizations,
starting with the ϕ − c vertex, Λ1/2 g3. It renormalizes
into −µ−1/2 gR

3 ZϕZ2
c = −Λ−1/2 (g3 + Γc), where

Γc =
g2
3

(2π)4
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And finally to the renormalization of the ϕ4 interaction,
µ−2 gR

4 Z4
ϕ = Λ−2g4 + Γϕ, with
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. . .
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The heavy fermion criticality occurs when g2 = 0. In
the g2 = 0 critical manifold
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≃
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To this order of approximation
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∂gR

3

∂µ

∣

∣

∣

µ=Λ
=

1

2
g3 −

g2
3

(2π)3

[ g3

8π
− 1

]

gc
3 = 4π

[

1 +
√

1 + 2π2
]

β4 = µ
∂gR

4

∂µ

∣

∣

∣

µ=Λ
= 2g4 −

6g2
4

(2π)4
+

g4
3

8π4
+

3g2
3g4

(2π)4

gc
4 =

gc2
3

4
+

(2π)4

6
+

√

19gc4
3

48
+

(2π)8

36
+

(2π)4

12
gc2
3

The ϕ anomalous dimension at cricitcality is

γϕ = µ
∂ lnZϕ

∂µ

∣

∣

∣

µ=Λ
=

g2
3

64π4
=

1

2π2

[
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√
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.

In the heavy fermion phase, the f -electrons contribute
to the susceptibility and specific heat since they are
mixed with the metallic band electrons, forming in con-
junction one “Fermi liquid”. The susceptibility of con-
duction electrons is negligible since they are nonmag-
netic. The susceptibility is proportional to the number of
f -electrons being “pulled” by an applied field, and hence
to their density of states, which is given by the imaginary
part of the f−electron propagator[2]. Such a propagator
is proportional to 〈ϕ〉, which satisfies a Callan-Symanzik
equation[12, 13]

0 =

[

µ
∂

∂µ
+

γϕ

2

]

G(1)
∣

∣

∣

µ=ω

G(1)(ω) =

(

1

ω

)γϕ/2

∼

(

1

ω

)[1+π2+
√

1+2π2]/(4π2)

F (ω,~k = 0) ∼ i〈ϕ(ω,~k = 0)〉 = iG(1)(ω)

χ(ω) = lim
ǫ→0

Im [F (ω + iǫ)] ∼

(

1

ω

)γϕ/2

. (5)

The specific heat coefficient is also proportional to the
density of states, which is inversely proportional to the
Fermi energy[2]. The f -electrons, being quasi-localized,
form a quite thin band and hence have a small EF . Thus
their density of states is so big in comparison with that
of the conduction electrons, that the density of states of
the “mixed Fermi liquid” can be approximated to be that
of the f -electrons. We obtain

CT ∼ T lim
ǫ→0

Im [F (ω + iǫ)]
∣

∣

∣

ω∼T
∼ T

(

1

T

)γϕ/2

(6)

We obtain a specific heat coefficient exponent γϕ/2 =
0.39. This is in excellent agreement with the exponent
0.4 found for YbRh2Si2 at low temperatures[3].

Via renormalization group studies and effective ac-
tion techniques common to field theories of particle
physics, we have obtained the effective field theory for
heavy fermion quantum criticality. This marks impor-
tant progress as the effective field theory is bosonic, viti-
ating the fermion sign problem and thus being amenable
to numerical studies and high order ǫ expansion studies.

The critical field theory can be studied using the renor-
malization group. We did so via one-loop renormalization
studies, improved by means of Callan-Symanzik resuma-
tions to access some of the nonpertrubative effects. We
thus approximated the exponents that characterize the
critical divergence of the specific heat coefficient and the
critical charge susceptibility. Our specific heat coefficient
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exponent of 0.39 is in excellent agreement with the 0.4
found in experiments at low temperatures[3].
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