Memory Effects in the Two-level Model for Glasses.
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We study an ensemble of two-level systems interacting with a thermal bath. This is a well
known model for glasses. The origin of memory effects in this model is a quasi-stationary but non-
equilibrium state of a single two-level system, which is realized due to a finite-rate cooling and slow
thermally activated relaxation. We show that single particle memory effects, such as negativity
of the specific heat under reheating, vanish for a sufficiently disordered ensemble. In contrast, a
disordered ensemble displays a collective memory effect [similar to the Kovacs effect], where non-
equilibrium features of the ensemble are monitored via a macroscopic observable. An experimental
realization of the effect can be used to further assess the consistency of the model.

PACS numbers: 65.60.+a, 61.43.Fs

Introduction. Low temperature properties of glassy
and amorphous materials have been an active field of re-
search for more than 30 years [1]; see [2] for a review. Ex-
periments have shown that many characteristics of amor-
phous materials, e.g., the temperature dependence of the
specific heat, are universal but different frome those of
crystals. This evidence has captivated much interest in
the attempt of producing a coherent theoretical picture
[1, 2]. The ensemble of two-level systems (TLS) was one
of the first models to fit the experiments. It successfully
describes the low-temperature properties of glasses, e.g.,
the linear temperature dependence of the specific heat [2].
With time this model was improved to account for fea-
tures of amorphous solids at higher temperatures [3, 4],
and found applications in protein physics [5]. A draw-
back of the model is that there is an excessive freedom
in choosing the distribution of the ensemble parameters.

In this letter we study the two-level model in the ther-
mally activated regime, which is experimentally relevant
if the temperature is neither too low (otherwise, one has
to account for tunneling), nor too high (otherwise, the
two-level picture breaks down) [3, 4]. For instance, such a
model, with a gaussian distribution of disorder, explains
the attenuation and velocity variation of acoustic waves
in a range of temperature up to 300 K [6] and explains
as well the fact that after cooling from temperature Tg
to T}, the rate of heat released d@/dt is found to change
from T3/t in the tunnelling regime (e.g. T; < Tp < 3K
for epoxy resin) to Tlg/ * /t* with a < 1, at higher temper-
ature (3K < T; < Ty < 20K for epoxy resin) [7, 8].

Memory effects arise in the model when due to cooling
down to low temperatures the thermal activation is im-
peded [9]. Thus the relaxation time increases to an extent
that for realistic observation times each TLS is frozen
in a non-equilibrium, quasi-stationary state, which—in
contrast to its equilibrium analog—depends on the his-
tory of the relaxation [9]. Most visible effects of this
non-equilibrium appear during the subsequent reheating,
when due to thermal reactivation the single system spe-

cific heat becomes negative [10]. We shall show how-
ever that this single particle memory effects do not sur-
vive the averaging over a sufficiently disordered ensem-
ble. In contrast, we propose to implement a memory
effect, where due to the disorder in the ensemble, locally
non-equilibrium features of the system are monitored via
a macroscopic (disorder averaged) observable. This ef-
fect resembles the one implemented by Kovacs for glassy
polymers [11], and since then studied actively [12]. The
shape of the effect is sensitive to dynamic (relaxation)
and static (disorder) features of the model.
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FIG. 1: Upper level occupation n vs. dimensionless temper-
ature T'/V for a single TLS with £/V=0.2. Thick curve: neq.
The pairs of normal curves refer to cooling (upper curves) and
reheating (lower curves) with dimensionless rate (from top to
bottom) o = 0.01,0.001, 0.0001.

The two-level model of glasses amounts to independent
particles moving in an asymmetric double-well potential
with € and V being the energy difference between the
wells and the barrier height, respectively [1, 2]. Each
particle couples to a thermal bath. The positive vari-
ables € and V change from one particle to another, so
that to become observables the single-particle character-
istics, such as energy or specific heat, should be averaged
over the joint distribution P(e, V') to be specified later
on. There are two regimes in the motion of the single
system. i) The thermally activated regime is realized
when the bath-particle coupling is sufficiently large. At
each moment of time the particle is then effectively in one



FIG. 2: Specific heat C for a single TLS vs. T/V with e/V =
0.2. Thick curve: equilibrium C. Normal curves: C during
protocol (3) with (from left to right) o = 0.0001, 0.001, 0.01.
Dashed curves: continuation of each cooling protocol by
heating with the same o (but opposite sign), starting at
T/V=10"*, when n has relaxed to its zero temperature value.

of the wells, making sudden jumps between them. The
classical two-state approach is thus a good description of
this regime. i) For low temperatures and weak particle-
bath couplings only the lowest two energy levels of the
quantum double well Hamiltonian are relevant and the
problem reduces to a quantum TLS coupled to a bath
[2]. Here we study only the thermally activated regime.
Let n and 1 — n be the probabilities for the particle to
be in the higher and lower well, respectively. Within the
thermally activated dynamics one has:

i =y0e PV (1 —n) —y0e ™V m, (1)

where e #(V+e) and e=#V are the rates of the inter-well
motion, T = 1/ is the bath temperature, and where vy
is the attempt frequency. Eq. (1) is solved as

np = €77 (no—neg) Freq, T ="V /Po(1+e)], (2)

where 7 is the relaxation time and ne,(8) = 1/(e% + 1)
the equilibrium value of n reached for t > 7. At low
temperatures the relaxation time 7 becomes very large,
since there is no enough energy for thermal activation.
In this regime a freezing temperature 7 can be defined
below which n is essentially frozen-in at T = T* [2, 9].
Note that besides TLS’s there are other degrees of free-
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FIG. 3: Specific heat C versus x/o = exp(—V/T) /o for a sin-
gle TLS with €/V = 0.2. Thick curve: equilibrium C. Normal
(dashed) curves: C' got via cooling (reheating) protocol (3).
From top to bottom: o = 1.5 x 107°,107%,1073.

dom (electronic, vibrational) whose contribution ot the

total energy is not neglegible in the thermally activated
regime. However, the successful applications of TLSs for
describing experiments indicate that at least for moder-
ate temperatures the additional degrees of freedom de-
couple, and bring additive and equilibrated (since their
relaxation is not impeded) contribution to the energy
[3, 4, 6, 7, 9]. Thus they are not expected to be rele-
vant for non-equilibrium features [2].

Cooling. Assume that the bath temperature is cooled
according to the following non-linear protocol:

By =1/Ty = By + wt (3)

where w > 0 is the dimensional cooling rate. This pro-
tocol is reasonable for low T, since it satisfies the third
law, not allowing cooling to 7" = 0 in a finite time. Ex-
pectedly, for a small rate w and a high temperature Ty, n
sticks to its equilibrium value n.q(3;) while for lower T
there will not be sufficient time to reach this value, since
T increases; see Fig. 1. We rewrite Eq. (1) as:
odn/dx = (2" + 1)n(z) — =", pw=elV,
(4)
where the variable x; = exp(—/3;V) is introduced and &
is the dimensionless cooling rate. The solution of (4) is:

o =wV/0,

ptl el
T zl)

- r — X
n(x) - n(xo)exp[ U([L—Fl) ]
To o gm x—z ghtl — el
+ /m dz? exp [ . + T D) 1, (5)

where 2y = exp(—V/Tp). Note from (5) that the memory
about the initial condition zq is eliminated for x¢ > o.
If this is satisfied and if o is small, the integral in (5) is
approximated as [a(z) = 2#, b(z) = z + 2L /(u + 1)]:

xo
/ dza(z) e = oa(z) e b@/a, (6)

Egs. (5, 6) leads to the equilibrium value of n: n(t) =
# /(1 + x") = neq(B(t)) This, however, holds under ne-
glection of terms o/(z)(z — #) and 1b'(z)(z — x)? in
(6). Thus for the validity of the approximation we
need: a(x)b'(z) > od’(x) and b’ (x)o < [b/(x)]?, which
amounts to oprt ! < (1 + 2#)?, and op < z(1 + ).
For p <1 and = < 1 we write the relevant conditions as

x> o or T > V/[-In(ow)). (7)
For any finite oy this condition breaks down for low tem-
peratures x — 0. For these temperatures, * < ou, we
obtain a non-equilibrium, stationary (time-independent)
value for n by putting in (5) z = 0. If in addition z¢ > o,
we put in (5) z¢g = co and get for o# < 1:

e ZH s entl
n(0) = / dz=—e 7 7@ =g T(1 + u) + o(c*). (8)
0

g



Compared to neq, the non-equilibrium 7 in (8) depends
on the dynamical quantities such as the attempt fre-
quency 7o and the barrier height V: n is smaller for a
slower cooling; see Fig. 1.

Note that some asymmetry £/V = pu # 0 between the
wells is crucial for n(0) # neq. For pp — 0 we get from the
integral in (8) almost equilibrium result: n(0) = 1/2 +
w(ve +Ino/2)/4 + O(u?), where v is Euler’s gamma.

Specific heat—or the response of the energy en on the
temperature change—provides more visible effects of the
memory on the relaxation history. Using (4) the equilib-
rium and the non-equilibrium specific heat are:

Cog = edney/dT = p?(Inz)?2k[1 + 2+ 2 (9)
C =¢e(dn/dt)(dt/dT) = gac(ln z)?[(z" + V)n(x) + z*].

Since C¢q is zero both for high and low temperatures, it
displays a maximum at some intermediate temperature;
see Fig. 2. Under cooling from some high temperatures
according to (3), the specific heat C, shows signs of freez-
ing: it is smaller than C¢q, saturates quicker to zero, and
has a smaller maximum. Let us now terminate the cool-
ing at some temperature T; which is low enough so that
the energy en relaxed to its stationary value (8). Now
heat up the bath using the same protocol (3) with Ty = T;
and w < 0, and the same dimensionless rate |o|.

C¢q is the same for cooling and reheating. In contrast,
the specific heat C}, under heating is seen to be negative
for sufficiently small temperatures [10]. This is related
to the decrease of the upper-level occupation n under
reheating; see Fig. 1. Moreover, Cj, = —C, at these tem-
peratures: the system keeps memory of the cooling stage
and still decreases its energy after thermal reactivation.
Once C}, reaches its negative minimum, it quickly in-
creases to the positive maximal value that can be larger
than the maximum of C¢,: the reheating can bring in
more thermal instability; see Fig. 2. For higher temper-
atures both C. and C}, tend to Ce,.

The negativity of C} shows that the quasi-stationary
state of the TLS cannot be viewed as effective equilib-
rium, as far as the reheating is concerned. In order to
make this result more clear, we note that in the slow
limit, where one decreases |o| and simultaneously in-
creases the time and T remains costant, we expect con-
vergence to equilibrium. Indeed, the temperature region
where C}, is negative, shrinks to zero as ~ In(1/|o]) [see
(7)], but the magnitude of the negative minimal value of
C}, in this region does not depend much on ¢. This is
seen upon potting Cj, versus z/o = exp(—V/T)/o; see
Fig. 3. However the negativity of C},, and the very differ-
ence between C}, and C., is sensitive to the values ¢ and
V of the single-system motion. This is seen, in particular,
from the structure of the scaling variable x/c in Fig. 3.
We thus expect that upon averaging over the disorder the
single-system memory effects gradually disappear, i.e.,
though each TLS remains non-equilibrium, C} tends to
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FIG. 4: Average sp. heat C vs. T} in cooling from To=100K
(normal curve) to T;=1K and reheating (dashed curve), with
cooling rate: w=10"3(Ks)~* over the SPM distribution with:
Vimn=100K, Vay=400 K, £,,=0K and en;=5K (top left insert),
20K (main figure), 40K (bottom right insert). yo = 10"%s™*,
as for experiments by A. Nittke et al. in [2].

C. eliminating the difference between cooling and heat-
ing. The same holds for the energy en. In order to il-
lustrate this effect let us take the Soft Potential Model
(SPM) approach, in which the probability P(e, V) is [3]
proportional to V=34 for e,, < e < ear, Vi <V < Vs
and zero elsewhere. The values of ey, en, Vin, VAt are
found by fitting to experiments; see [3] for details. It is
seen on Fig. 4, that the difference between the cooling
and heating indeed disappears once the disorder is suf-
ficiently strong. The same holds for other distributions
of the disorder. We shall now discuss another method
for displaying this non-equilibrium feature. In contrast
to the above features which are essentially single-system
and tend to disappear in the presence of disorder, the
new method is based on the presence of an ensemble.

Temperature shift protocol. Motivated by Kovacs ex-
periment [11], we perform the following protocol.

1. Consider an ensemble of non-interacting TLSs char-
acterized by a distribution P(e, V). The ensemble is equi-
librated at a given high temperature Tj.

2. Between times ¢t = 0 and t. the bath is cooled
down following (3). The cooling is terminated at a
low temperature 7; so that the ensemble averaged en-
ergy (en) = [ededV P(e,V)n(e, V) reached a station-
ary value. This determines the final time t.. Note that
(em) is observable in experiments using, e.g., heat release
measurements [2]. Now (en) equals its equilibrium value:

(en)limt, = (e[ +1]71) = (eneg)- (10)

This condition defines the temperature 7y = 1/6;. If
most of the TLSs in the ensemble happen to be described
at t = t. by a single temperature, then this temperature
will be close to T by definition. T turns out to be of
the same order of the average freezing temperature (7).

3. We want to monitor via a macroscopic (i.e.,
ensemble-averaged) quantity to what extent the state of
the ensemble reached at t = t. is really close to some
internal equilibrium. To this end, the bath temperature
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FIG. 5: Ae vs. time t for the disordered ensemble with
flat distribution (top) of ¢ and V and with SPM distribu-
tion (bottom). The cooling protocol (3) is applied between
To=100K and T;=2K, with w=10"% (Ks)~!. For all curves:
em=0K,V,=100K Thick curve: em=100K, Vr=800K;
Ty=16.6K (top) and 15.12K(bottom).  Normal curve:
em=50K,Vy=800K; Ty = 15.3K (top) and 13.46K (bot-
tom). Dashed curve: ey =50K, Vyy=400K; Ty = 8.8K (top)
and 8.6K (bottom)

is suddenly switched to Ty, and the resulting evolution
of (en) is monitored. Due to the sudden switching, the
evolution is obtained averaging Eq. (2) at the bath tem-
perature Ty, and with initial state (10):

t—te

Ac = (eng) — (eneg) = (ee™ 7 (n—[ePr5+1]71)). (11)

It is seen from (11) that by our construction Ae should

be zero both at t = ¢, and for a very large t — t.. It
will stay zero for all times ¢ > t., if the state of (almost)
each TLS in the ensemble is described by the same tem-
perature (which need not be equal to that of the bath).
Yet another case, where Ae is constant for ¢t > t. is
when there is no disorder in the ensemble. Thus, the
change of Ae depends both on the disorder and on a
non-equilibrium state at t = t.. The behaviour of Ae
for experimentally meaningful parameters is shown in
Figs. 5. Since the change of Ae(t) is finite, a sizable
fraction of the ensemble is at t = t, far from a local
equilibrium. To gain more understanding, consider the
simplest ensemble: an equal-weight mixture of two TLSs
with parameters (e1, V) and (g2, V2). Eq. (11) implies

t—te

Ae=(e ™ —e

) nler, Vi) - 1/(eP5 + 1)]er/2,

where 7; = exp(8;V;)/[v0(1 + exp(—fBye;))] for i = 1,2
are the relaxation times (see (2)), n(e1, V1) is given
by (8), and where the temperature (; is defined as
in (10) = 3, pemn(e Vi) = Y, ailef + 170
For the considered simplest ensemble, ‘Ae is positive for
t > t.. This is because the slower system—e.g., sys-
tem 1, if m; > m»—has its non-equilibrium upper-level
probability n(e1, V1) larger than the final equlibrium one
[e#751 +-1]71. In other words, the slower system is further

from the equilibrium. The behaviour of Ae(t) for an ex-
perimentally relevant disorder distributions is displayed
in Figs. 5. The fact that Ae(t) > 0 -which holds for all
checked cases- implies the same explanation as above: the
slow elements of the ensemble are further from equilib-
rium. Two important (and for the present effect general)
facts seen in Fig. 5 is that the stronger disorder leads to
i) larger value of Ty and i) larger maximum of Ae.

In conclusion, we studied memory effects in the two-level
model for glasses. It is known [9, 10] that when a single
TLS is cooled down to low temperatures, the relaxation
time increases due to impeding of the thermal activa-
tion, and the TLS appears in a quasi-stationary, non-
equilibrium state. In contrast to equilibrium, this state
depends on the detailed features of the relaxation, such
as the barrier height or the cooling rate. In reheating the
non equilibrium nature of this state manifests itself via a
negative specific heat [10].

We confirmed the latter results by showing that the neg-
ative magnitude of the reheating specific heat is almost
insensitive to the decreasing of the cooling-reheating rate.
Next we showed that the single-particle non-equilibrium
(memory) effects disappear for a disordered ensemble.
Our main result is that motivated by Kovacs experiments
in [11], we designed a protocol which is able to reflect the
non-equilibrium features of a disordered ensemble. The
effect is sensitive to the details of the disorder and, if re-
alized experimentally, it can assess the consistency of the
model. We have also found two universal features of the
effect: 4) it is more visible for a stronger disorder and )
its sign is determined by the fact that slower elements of
the ensemble are further from equilibrium.
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