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We investigate the high dimensional Hamiltonian chaotic dynamics in N coupled area-preserving
maps. We show the existence of an enhanced trapping regime caused by trajectories performing a
random walk inside the area corresponding to regular islands of the uncoupled maps. As a conse-
quence, we observe long intermediate regimes of power-law decay of the recurrence time statistics
(with exponent γ = 0.5) and of ballistic motion. The asymptotic decay of correlations and anoma-
lous diffusion depend on the stickiness of the N-dimensional invariant tori. Detailed numerical
simulations show weaker stickiness for increasing N suggesting that high-dimensional Hamiltonian
systems asymptotically fulfill the demands of the usual chaotic hypotheses.
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Chaotic hypotheses are keystone requisites for both
basic theories (statistical mechanics [1, 2]) and compu-
tation methods (transport properties [2], elimination of
chaotic variables [3]). The different chaotic hypotheses
consist essentially of two main assumptions about the
(high-dimensional Hamiltonian) dynamics: (i) ergodic-
ity, i.e., the existence of a single chaotic component and
negligible measure of the regions of quasi-periodic mo-
tion; and (ii) strong mixing (exponential decay of correla-
tions). Generic low-dimensional Hamiltonian systems vi-
olate both hypotheses since the chaotic trajectories stick
to the border of islands of regular motion introducing
long-term correlations in the dynamics [4–6].

For higher dimensional systems it is generally expected
that hypothesis (i) is effectively valid since the measure
of the quasi-periodic trajectories typically decreases (ex-
ponentially) with the number N of degrees of freedom
(see, e.g., Sec. 6.5 of Ref. [7]). However, the vanishing
measure of regular regions [hypothesis (i)] does not guar-
antee the fast decay of correlations [hypothesis (ii)]. The
breakdown of hypothesis (ii) occurs due to the trapping
(stickiness) of chaotic trajectories around non-hyperbolic
structures in the phase-space, and even zero measure sets
(e.g., the bouncing ball orbits in the Bunimovich sta-
dium billiard) can be responsible for the anomalous de-
cay of correlations [8]. Considerable progress has been
achieved for the problem of trapping in area-preserving
maps (N = 1) [4–6], while only few numerical results are
known for N = 2–5 [9, 10]. On the other hand, higher
dimensional systems are usually considered for the calcu-
lation of different properties, such as relaxation phenom-
ena [11] and diffusion [12, 13].

In this Letter we perform a detailed study of the trap-
ping properties of Hamiltonian systems with an increas-
ing number of degrees of freedom by coupling N area-
preserving maps [9, 12]. For weak coupling we observe an
intermediate regime of enhanced trapping which we show
to exist also for area-preserving maps perturbed by noise.
Asymptotically, our numerical results show that the trap-

ping decreases with N indicating the effective validity of
hypothesis (ii) for high-dimensional Hamiltonian systems
composed of coupled low-dimensional ones. Additionally,
we show how the different trapping regimes impact on the
anomalous diffusion of the perturbed standard map and
lead to a non-trivial dependence of the asymptotic dif-
fusion coefficient on the perturbation strength, clarifying
previous conflicting results [12–15].

We construct a time-discrete 2N -dimensional Hamil-
tonian system by the composition T ◦M of the indepen-
dent one-step iteration of N symplectic 2-dimensional
maps M = (M1, . . . , MN ) and a symplectic coupling
T = (T1, . . . , TN ). As a representative example of 2-d
maps we choose for our numerical investigation the stan-
dard map [7]:

Mi

(

pi

qi

)

=

(

pi + Ki

2π sin(2πqi) mod 1

qi + pi + Ki

2π sin(2πqi) mod 1

)

, (1)

and a coupling potential between the maps i, j given
by Vi,j = ξi,j cos[2π(qj − qi)][18]. The action of the cou-
pling on the i-th map is hence given by

Ti

(

pi

qi

)

=

(

pi +
∑N

j=1 ξi,j sin[2π(qi − qj)]

qi

)

, (2)

what corresponds to a perturbation ∆pi. The full cou-
pling T is symplectic provided ξi,j = ξj,i. For simplicity

we use all-to-all coupling with ξi,j = ξ√
N−1

. Numeri-

cally it is convenient to write the coupling in the usual
mean-field form [11]

∆pi =
ξ√

N − 1

N
∑

j=1

sin[2π(qi − qj)] = ξ|m| sin(2πqi − φ),

(3)
where m = (mx, my) = 1√

N−1

∑

j [cos(qj), sin(qj)]

and tan(φ) = my/mx. When the isolated systems are
chaotic and weakly coupled we can assume that the po-
sitions qj are uncorrelated and approximate each term of



2

the sum in Eq. (3) by a random variable y ∈] − 1, 1[ dis-

tributed according to the density P (y) = 1/(2π
√

1 − y2),
which has variance σy =

√
2/2. Additionally, for large N

Eq. (3) tends to a normal distribution.

Motivated by the previous considerations we study ini-
tially the trapping properties of one standard map per-
turbed by white noise, i.e, we replace Eq. (3) by ∆p1 =
ξδ, where δ is a Gaussian distributed random number
with zero mean and variance σ = σy . We fix K1 = 0.52
in (1), where a single large regular island is visible in the
phase space (lower inset of Fig. 1), what facilitates the in-
terpretation of our results. The trapping is measured by
regimes of power-law decay of the recurrence time statis-
tics (RTS) ρ(τ) ∼ τ−γ , defined as the probability of a tra-
jectory to return at a time T > τ to a pre-defined region.
During the long recurrence times the trajectory performs
almost a quasi-periodic motion leading to a power-law de-
cay of correlations with exponent γc = γ−1 [4]. We have
iterated a single trajectory 1012 times and recorded the
times T between successive recurrences to a large region
away from the island. The RTS for different noise inten-
sities ξ is shown in Fig. 1. Three different regimes can
be identified for small ξ:

(R1) For small times (τ < τ1,2) the RTS follows the
unperturbed one (ξ = 0), i.e., it shows an exponential
followed by a power-law decay (with exponent γR1).

(R2) For intermediate times (τ1,2 < τ < τ2,3) the RTS
shows an enhanced trapping due to trajectories that en-
tered the island through the action of the noise. Once
inside the island the trajectories circle the central elliptic
periodic orbit and perform a random walk in the perpen-
dicular direction. The power-law exponent tends to the
value of a random walker γR2 ≈ γRW = 0.5. As in typi-
cal RTS of Hamiltonian systems, we observe additionally
log-periodic oscillations.

(R3) For large times (τ > τ2,3) the RTS decays expo-
nentially.

We obtain now the dependence of τ1,2 and τ2,3 on ξ.
The starting time of (R2), τ1,2, occurs when the displace-
ment due to the noise is of the same size of the chaotic
layer between two cantori where the trajectory is stuck.
Using the Markov-tree model for stickiness introduced in
Ref. [5], the authors of Ref. [14] obtained

τ1,2 ∼ ξ−β , (4)

with β = 1/(2γR1 − 1). Since usually 1 < γR1 < 2 we
obtain 1/3 < β < 1. Differently from Ref. [14], we ob-
serve the onset of the exponential regime (R3) at the
time τ2,3 > τ1,2, due to the finiteness of the random walk
domain. Considering the measure µI of the (largest) is-
land inside which a random walker (with step size propor-
tional to ξ) performs a diffusive motion, the dependence
of τ2,3 on ξ can be estimated as

τ2,3 ∼ µIξ
−2. (5)
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FIG. 1: (Color online) RTS for the standard map with K =
0.52. The thick solid line corresponds to the unperturbed
case (ξ = 0), whose phase space is shown in the lower inset.
The thin solid lines correspond to perturbations due to white
noise with ξ = 100, ..., 10−5 (from left to right). The dashed
lines correspond to the cases of two (upper) and three (lower)
coupled standard-maps with ξ = 10−3 and Ki ≈ 0.52. The
Upper inset shows the dependence of τ1,2 and τ2,3 on ξ: τ1,2 =
0.58ξ−0.93 (upper line) in agreement with Eq. (4); and τ2,3 =
0.04ξ−2 (lower line) in agreement with Eq. (5).

In the upper inset of Fig. 1 we verify the agreement of
Eqs. (4) and (5) with the values estimated numerically.
The noise has two qualitatively different effects: while
(R3) represents the typical cut-off of the power-law dis-
tribution [14], during the novel regime (R2) the noise acts
constructively (increasing the regularity of the dynamics)
by allowing trajectories to penetrate the regular island.

We investigate now the fully deterministic system
given by the composition of Eqs. (1) and (2). The ex-
istence of N -dimensional invariant tori is confirmed for
small coupling by the application of the Kolmogorov-
Arnold-Moser theorem to the tori build as a direct prod-
uct of the 1-dimensional tori of the N uncoupled maps
(the quasi-periodic orbits inside the island). All our nu-
merical simulations for ξ ≤ 0.1 are consistent with the
assumption that these are the only existent tori. This is
in agreement with a more general picture of Hamiltonian
systems: exponential decay of the measure of the tori
with N (µtori = µI

N for ξ → 0) and nonexistence of tori
of dimension smaller than N – “Froeschlé conjecture” [7].
Furthermore, due to Arnold diffusion, a single chaotic er-
godic component exists. This means that the motion in
the 2N -dimensional phase space belongs to the chaotic
component if the variables of at least one map belong to
its chaotic component when uncoupled.

The numerical RTS obtained for N > 1 and for the
noisy model are almost indistinguishable for recurrence
times belonging to the regimes (R1) and (R2). Two rep-
resentative examples – for ξ = 10−3 and N = 2, 3 – are
depicted as dashed lines in Fig. 1[19]. Remarkable differ-
ences are observed in regime (R3), which are analyzed in
detail in Fig.2a for ξ = 0.05, and show that:
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(R3’) For large times (τ > τ2,3) the RTS shows an
exponential followed by a power-law decay (with expo-
nent γR3) due to the stickiness to N -dimensional tori [9].
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FIG. 2: (a) RTS for ξ = 0.05 and N = 2, 3, 4, 5, and noise
(from top to bottom). (b) Survival probability f(t) of 1010

trajectories near the N-dimensional tori for ξ = 0.05 and
N = 2, ..., 15 (from top to bottom). (c) Exponent γR3 fitted to
the power-law regime of f(t) for ξ = 0.1, 0.05, 0.03 (from top
to bottom). In all cases K1 = 0.52 and Ki ∈ [0.51, 0.53], i ∈
{2, ..., N} was used in map (1).

We investigate next the dependence on N of the
asymptotic power-law exponent γR3, what corresponds
to a pure high-dimensional effect. The term asymptotic
here has to be taken with caution since already for N = 1
the convergence is very slow [4]. However, for our pur-
poses it is enough to perform a comparative analysis for
different N and similar times and initial conditions. It
is necessary to distinguish between two effects of N on
the RTS seen in Fig. 2a: the later onset of the power-law
regime for increasing N , which is related to the smaller
measure of the tori – hypothesis (i); and the different
values of γR3 (slopes of the tails), which are related to
the stickiness to higher dimensional tori – hypothesis (ii)
investigated here. Figure 2a already suggests that γR3

increases with N . In Ref. [9] similar results were re-
ported for a different system and N = 2 and 3. For im-
proved statistics in the tails we study the survival prob-
ability f(t) inside a region containing the N -dimensional
tori of 1010 trajectories started close to them [20]. f(t)
is shown in Fig. 2b where it is evident that the power-
law exponent increases with N . The estimated expo-
nents shown in Fig. 2c for different moderate values of
the coupling ξ suggest a linear dependence γR3 ∝ N .
This result is consistent with hypothesis (ii) for high-
dimensional systems since the sharp tails indicate fast
decay of correlations.

One of the most important effects induced by the
stickiness is the anomalous diffusion of chaotic trajec-
tories. We consider next the influence of the trapping
regimes (R1-3) discussed above on the widely studied
case of diffusion in the momentum p of the standard
map [6, 7, 16]. The diffusion is measured considering

the map (1) opened in p and calculating the temporal
evolution of the dispersion of an ensemble of trajecto-
ries: 〈∆p2(t)〉 = Dtν . Diffusion is normal if ν = 1. It
is well-known that anomalous superdiffusion 1 < ν < 2
is obtained for the parameters K of the standard map
where the so-called accelerator modes (ballistic islands of
the open map) exist [6, 7, 16]. The diffusion exponent ν
is directly linked to the exponent γ, of the trapping of
chaotic trajectories around accelerator modes, by [16]

ν =







2 if γ < 1 ,
3 − γ if 1 ≤ γ ≤ 2 ,
1 if γ > 2.

(6)

Previous publications report numerical results that
emphasize different effects of the noise on the diffusion:
while in Refs. [13, 14] the onset of normal diffusion was
obtained, in Ref. [15] the possible enhancement of anoma-
lous diffusion was reported. Applying the results de-
scribed above we show that actually both effects exist
for different time scales.

The three trapping regimes (R1-3) induce different dif-
fusion regimes, as shown in Fig. 3 and described below.
During (R1) the anomalous diffusion is similar to the
unperturbed case. In (R2) the trapping exponent tends
to γR2 = 0.5 and ballistic motion ν = 2 is predicted ac-
cording to Eq. (6). We have verified numerically that the
beginning and end of this regime occur at times propor-
tional to, but greater than, those of (R2) (we denote these

times as τ†
1,2 and τ†

2,3, respectively). Asymptotically the
exponential RTS in (R3) implies normal diffusion. The
asymptotic diffusion coefficient DA = limt→∞〈∆p2(t)〉/t
is determined by the intermediate anomalous regimes and
shows a nontrivial dependence on the noise intensity ξ:
for weak noise, Eqs. (4) and (5) indicate that the dom-
inant contribution comes from the ballistic regime asso-
ciated to (R2) and thus DA ≈ [DR2(τ

†
2,3 − τ†

1,2)] ∼ ξ−2.
For stronger noise the major contribution is given by a
regime of superdiffusion corresponding approximately to
(R1), that can be estimated as DA ≈ (DR1τ

†
1,2)

ν−1 ∼
ξ−β(1−ν) ∼ ξ(ν−1)/(5−2ν), where ν is the unperturbed
anomalous diffusion exponent (for small times) which is
related to β and γ through Eqs. (4) and (6). Considering
the composition of this two effects and joining the mul-
tiplicative terms in two fitting parameters a, b we obtain

DA(ξ) = a ξ(1−ν)/(5−ν) + b ξ−2. (7)

In the inset of Fig. 3 we show the remarkable agreement
of the numerically obtained diffusion coefficient and ex-
pression (7). The exponent ν = 1.45 was obtained inde-
pendently by fitting the anomalous diffusion of the un-
perturbed standard map for small times. Specially inter-
esting is the transition for small ξ to an asymptotic ξ−2

dependence of DA, which is a direct consequence of the
nontrivial trapping regime (R2), is absent in the case of
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FIG. 3: (Color online) Diffusion in a standard map with K1 =
1.07 (accelerator mode) coupled to noise (thin solid lines)
and to one other standard map with K2 = 0.52 (dashed
lines). The uncoupled case is depicted as a thick solid line.
From top to bottom ξ = 0.0003, 0.001, 0.005, 0.1. 106 tra-
jectories were used with initial conditions away from islands.
When the curves become constant (for t → ∞) diffusion is
normal. Inset: asymptotic diffusion coefficient for different
noise intensities. The solid line correspond to Eq. (7) with
a = 0.776, b = 1.7 10−5 and ν = 1.45.

1-d maps (e.g., Pomeau-Manneville maps) [14, 17], and
was not previously reported [13–15].

The diffusion theory described above is valid for noise
perturbation and for deterministic high-dimensional sys-
tems whenever γR3 > 2 [see Eq. (6)]. When γR3 < 2 one
observes additionally an asymptotic regime of anoma-
lous diffusion, as shown in Fig. (3) for N = 2 coupled
standard maps and different coupling strengths ξ. We
see that the question of whether the asymptotic diffu-
sion is anomalous or normal depends crucially on how
the chaotic trajectories stick to N -dimensional tori (ex-
ponent γR3). Our results indicate that in general γR3

increases with N (Fig. 2) and the diffusion is normal, in
agreement with Refs. [12, 13]. However, our explanation
for this behavior is not the absence of hierarchical tori or
the Arnold diffusion, as argued in Ref. [12] for a similar
system, but simply that γR3 > 2 for sufficiently large N .

In summary, we have shown that correlations decay
faster as the dimensionality N of a paradigmatic class
of Hamiltonian systems increases. More precisely, our
numerical simulations show that the asymptotic power-
law exponent of the RTS increases with N , providing
evidence that, for large enough N and times, coupled
symplectic maps can be considered for all practical pur-
poses as ergodic and strongly chaotic, satisfying thus
the usual chaotic hypotheses. The unexpected observa-
tion however is that for small coupling strength or noise
intensity a long intermediate enhanced-trapping regime
with γR2 ≈ 0.5 exists due to the trapping inside rem-
nants of lower-dimensional regular regions. This implies
a regime of enhanced anomalous diffusion and a non-

trivial dependence of the asymptotic diffusion coefficient
on the perturbation strength, given by Eq. (7). The rel-
evance of these results to galaxy dynamics [10] and ac-
tive transport [13] is apparent and further investigations
are needed to determine whether our results provide a
valid description also of systems like Hamiltonian mean
field models, where similar transient regimes were ob-
served [11].
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