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Ring-diagram summations (equivalent to the random-phase approximation) for sev-

eral properties of the homogeneous electron gas, such as the total energy components

t and v, the chemical potential µ, and the quasi-particle weight zF, are reexamined.

The ring-diagram summations of the self-energy Σ(k, ω) that yield the correct small-

rs asymptotics of v, µ, and zF are identified with the help of rigorous theorems of

Galitskii-Migdal, Hugenholtz-van Hove, and Luttinger-Ward. The lowest-order ap-

proximation to the self-energy is given by the product of the non-interacting Green’s

function G0 and the static bare Coulomb repulsion v0, whereas replacing v0 by the

ring-diagram-summed dynamically screened interaction vr yields the proper lowest-

order correction to Σ(k, ω). The alternative replacement of G0 by the ring-diagram-

summed Gr contributes only to the higher-order terms, providing measures of the

correlation strength.
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I. INTRODUCTION

Although being an artificial construct, the homogeneous electron gas (HEG) constitutes

an important model system for electronic structure theory [1]. The ground state of spin-

unpolarized HEG is characterized by only one parameter, namely the radius rs of the Wigner-

Seitz sphere that contains one electron on average [2]. It determines the Fermi wave number

as kF = 1/(αrs) [where α = (4/(9π))1/3], and measures simultaneously the interaction

strength and the particle density; high density corresponding to weak interaction and hence

weak correlation (for recent papers on this limit see refs. [3]-[6]). One could naively ex-

pect that at this weak-correlation limit the bare Coulomb repulsion v0(q) = αrs/q2 (where

momenta and energies are measured in units of kF and k2
F, respectively) can be treated as

perturbation. However, already in his early work on the HEG, Heisenberg [7] has shown

that ordinary perturbation theory fails in this case. With e0 = 3/10 being the energy per

particle of the ideal Fermi gas and ex = −3
4
αrs
π

being the exchange energy in the lowest (first)

order, the total energy e = e0 + ex + ec defines the correlation energy ec = e2 + e3 + · · · ,
where en ∼ (αrs)n [note that ẽ = k2

Fe = e/(αrs)2 gives the energy in atomic units]. In the

second order, there is a direct term e2d and an exchange term e2x so that e2 = e2d + e2x.

The direct term e2d diverges logarithmically along the Fermi surface (i.e. for the vanish-

ing transition momenta q → 0, e2d → ln q). This failure of perturbation theory has been

remedied by Macke [8] with an appropriate partial summation of higher-order terms up to

an infinite order that describes screening effects and the collective mode plasmon with a

cut-off momentum qc =
√

4αrs/π. This ring-diagram summation, which is equivalent to

the random-phase approximation (RPA), yields ec = (αrs)2(a ln rs + const + · · · ), where

a = (1− ln 2)/π2 ≈ 0.031091, for the correlation energy at the weak-correlation limit. This

result has been subsequently confirmed by Gell-Mann and Brueckner [9]. The logarithmic

behavior of ec at the weak-correlation limit carries over to its kinetic and potential compo-

nents through the virial theorem [10]

tc = −r2
s

d

drs

1

rs
ec = −(αrs)

2(a ln rs + const + · · · ),

vc = rs
d

drs
ec = (αrs)

2(2a ln rs + const + · · · ). (1.1)

Note that t0 = e0, tx = 0, vx = ex, and ec = tc +vc. It has been shown [5] that these small-rs

non-analyticities result from the ring-diagram summation for the momentum distribution
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n(k) [11] and for the static structure factor S(q) [13]. In the lowest order, n(k) diverges

along the Fermi surface, n(k → 1) ∼ ∓1/(k − 1)2 for k<>1, and S(q) diverges for q → 0.

This makes t2d and v2d diverge correspondingly. The ring-diagram summations remove this

unphysical behavior [5, 11, 13]. The chemical potential µ = µ0 + µx + µc, where µ0 = 1/2

and µx = −αrs/π, enters our considerations through the Seitz theorem [14] ,

µc =

(
5

3
− 1

3
rs

d

drs

)
ec = (αrs)

2(a ln rs + const + · · · ). (1.2)

In the following, we use the term ”small-rs” with the meaning ”RPA in the lowest or-

der”, i.e. we derive and discuss here only the terms containing ln rs or those related to them.

The self-energy Σ(k, ω) is defined by

G = G0 +G0ΣG, G0(k, ω) =
Θ(1− k)

ω − 1
2
k2 − iδ

+
Θ(k − 1)

ω − 1
2
k2 + iδ

, δ → 0+ , (1.3)

where G0 and G are the Green’s functions of the ideal Fermi gas and the HEG, respectively.

Limiting the summation of the Feynman diagrams for Σ(k, ω)t to those terms that afford

correct results for rs → 0 allows one to apply several rigorous theorems, which yield

(i) the condition for µ through the Luttinger theorem Im Σ(1, µ) = 0 [15],

(ii) the momentum distribution

n(k) =

∫
dω

2πi
eiωδG(k, ω) , (1.4)

(iii) the quasi-particle weight (through the Luttinger-Ward formula [16])

zF =
1

1− Re Σ′c(1, µ)
, Σ′c(k, ω) =

∂Σc(k, ω)

∂ω
, (1.5)

(iv) the potential energy (through the Galitskii-Migdal formula [17] )

v =
1

2

∫
d(k3)

∫
dω

2πi
eiωδG(k, ω)Σ(k, ω) . (1.6)

Note that Σ = Σx + Σc, Σc = Σ2 + Σ3 + · · · , and Σ2 = Σ2d + Σ2x. In the lowest order, one

has Σx = G0v0 and vx = G0Σx. With v0(q) = αrs/q2 [compare Eq. (A.5)], this produces

Σx(k) = −1

k

(
1 +

1 − k2

2k
ln

∣∣∣∣
1 + k

1 − k

∣∣∣∣
)
αrs
π
, Σx(1) = −αrs

π
, vx = −3

4

αrs
π

. (1.7)

Note that Σx(k) does not depend on ω. With Gc = G − G0, the correlation part of the

potential energy reads

vc = (G0 +Gc)Σc +GcΣx = G0Σc +Gc(Σx + Σc) . (1.8)
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However, our main interest is the Hugenholtz-van Hove (the Luttinger-Ward) theorem [16,

18],

µc = Σc(1, µ), µ = µ0 + µx + µc, µ0 =
1

2
, µx = −αrs

π
, µc = (αrs)

2a ln rs + · · · . (1.9)

The rhs of the above equation depends on rs through both Σc(k, ω) and µ. At the limit of

rs → 0, µ can be replaced by µ0 = 1/2.

The ring-diagram summation is equivalent to setting vr = v0 + v0Qvr, where Q(q, ω) is

the polarization propagator [in the lowest order, see Eq. (A.1) in the Appendix]. For the

self-energy, this means that Σr = G0vr. It is easy to show that employing the correlation

part Σr
c = G0(vr − v0) of Σr in conjunction with Eqs. (1.4)and (1.6) results in the RPA

approximations for nr
c(k) [5, 11] and vr

c [5, 13], respectively. In this paper, we show that

Σr
c is also the proper rhs for Eqs. (1.5) and (1.9) at the limit of rs → 0, the remainder

Σnr
c = Σc − Σr

c contributing only to the higher-order terms. We also investigate whether

ΣHF
c = (G −G0)v0, which appears in ref. [21], is an alternative candidate for the rhs of Eq.

(1.9). In this case, we find that the ”remainder” ΣnHF
c = Σc − ΣHF

c = Σr
c + · · · determines

the lowest-order terms and ΣHF
c contributes only to the higher-order ones.

II. THE RING-DIAGRAM SELF-ENERGY Σr
c(k, ω)

According to the diagram rules, the ring-diagram-summed self-energy is given by

Σr
c(k, ω) = (αrs)

2 2

π3

∫
d3q

q2

∫
dη

2πi

Q(q, η)

q2 + q2
cQ(q, η)

×

×
[

Θ(|k + q| − 1)

ω + η − 1
2
k2 − q · (k + 1

2
q) + iδ

+
Θ(1 − |k + q|)

ω + η − 1
2
k2 − q · (k + 1

2
q)− iδ

]
.(2.1)

If in the above equation the term q2
cQ(q, η), which describes the RPA screening of the

bare Coulomb repulsion of αrs/q2, is deleted, Σr
c(k, ω) simplifies to Σ2d(k, ω). Whereas

Σ2d = Re Σ2d(1, 1/2) diverges with an artificial cut-off q0 according to (αrs)2
∫
q0
dq/q, the

ring-diagram sum Σr
c = Re Σr

c(1, 1/2) is non-divergent, as it effectively replaces q0 by the

”natural” cut-off qc ∼
√
rs, producing Σr

c ∼ (αrs)2 ln rs. We follow the procedure of Gell-

Mann and Brueckner for the correlation energy [9]. Upon the substitution η = iqu and
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contour deformation from the real to the imaginary axis, one arrives at

Σr
c = −(αrs)

2

π4

∞∫

0

du

∫
d3q

q2

R(q, u)

q2 + q2
cR(q, u)

· 2(x+ q
2
)

u2 + (x+ q
2
)2

= −(αrs)
2 2

π3

∞∫

0

du

∞∫

0

dq
R(q, u)

q2 + q2
cR(q, u)

· ln u
2 + ( q

2
+ 1)2

u2 + ( q
2
− 1)2

. (2.2)

The asymptotic behavior for rs → 0 is determined by the lower integration limit of q → 0,

which allows for the approximate replacements of R(q, u) with R0(u) [setting R0(u) 6= 0

makes the Coulomb repulsion effectively screened] and ln[· · · ] with 2q/(1 + u2) that yields

Σr
c = (αrs)

2




 2

π3

∞∫

0

du
R0(u)

1 + u2


 ln rs + const + · · ·


 . (2.3)

[see Eq. (A.4) in the Appendix for the integral]. The resulting Σr
c = (αrs)2(a ln rs + const +

· · · ) is in full agreement with the lhs of the Hugenholtz-van Hove theorem [Eq. (1.9)].

The frequency derivative Σr
c
′ = Σr

c
′(1, 1/2) can be treated similarly [20],

Σr
c
′ =

(αrs)2

π4

∫
d3q

q3

∫
du

R(q, u)

q2 + q2
cR(q, u)

∂

∂u

u

u2 + (x+ q
2
)2

(2.4)

= −(αrs)2

π4

∫
d3q

q3

∫
du

R(q, u)

q2 + q2
cR(q, u)

∂

∂u

1

2

(
arctan

1 + q
2

u
+ arctan

1− q
2

u

)

δ

.

Note that a thin layer of vanishing thickness δ has to be deleted along |e + q|, allowing

integration by parts. The small-q replacements R(q, u) with R0(u) and arctan(1 ± q/2)/u

with arctan 1/u yield

Σr
c
′ =


 α

π2

∞∫

0

du
R′0(u)

R0(u)
arctan

1

u


 rs +O(r2

s ) (2.5)

[see Eq. (A.4) in the Appendix for the integral]. Combining this equation with Eq. (1.5)

affords the well known RPA result of zF = 1/(1 − Σr
c
′) = 1 + Σr

c
′ + · · · = 1 − 0.18 rs + · · ·

[11].
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III. THE HARTEE-FOCK SELF-ENERGY ΣHF
c (k)

Since the bare Coulomb repulsion v0(q) is a static one, the Hartree-Fock self-energy ΣHF
c =

(G −G0)v0 is given by the momentum distribution n(k) alone [21]

ΣHF
c (k) =

αrs
π

1

k

∞∫

0

dk′ k′ ln

∣∣∣∣
k − k′
k + k′

∣∣∣∣ nc(k
′) , nc(k) = n(k)−Θ(1 − k) . (3.1)

In the above equation, the factor in front of n(k) arises from the Coulomb repulsion. Because

ΣHF
c (k) does not depend on ω, it cannot contribute to the deviations of n(k) from Θ(1− k)

and of zF from 1 according to Eqs. (1.4) and (1.5). Such deviations are caused by the

non-HF part ΣnHF
c = Σc − ΣHF

c = Σr
c + · · · . For n(k) set to Θ(1 − k), the Galitskii-Migdal

formula [Eq. (1.6)] yields the lowest-order exchange energy vx = −3
4
αrs
π

, whereas for the

actual n(k) it produces the full exchange or Fock energy,

vF = −3

2

αrs
π

∞∫

0

dk

∞∫

0

dk′ n(k)n(k′) kk′ ln

∣∣∣∣
k + k′

k − k′
∣∣∣∣ , (3.2)

which constitutes only one component of the exact potential energy v [see Eq. (43) of

ref. [12]]. Consider the (dimensionless) pair density g(r) and its cumulant partitioning

g(r) = 1 − 1
2
f2(r) − h(r) [3], where f(r) is the (dimensionless) one-body density matrix

[i.e. the Fourier transform of n(k)] and h(r) is the cumulant pair density [i.e. the diagonal

part of the cumulant (non-reducible) two-body density matrix]. The potential energy

v = vF + vcum follows from the full pair density g(r). The Hartree term g0(r) = 1 is

compensated by the positive background, whereas gx(r) = −1
2
f2(r) and gcum(r) = −h(r)

give rise to vF of Eq. (3.2) and vcum, respectively. Consequently, the knowledge of the

non-HF part ΣnHF
c = Σr

c + · · · is essential for proper evaluation of n(k), zF, and v. One

may inquire whether it is nevertheless possible to employ the expression (3.1) in Eq. (1.9).

Within perturbation theory, the leading term of nc(k) is proportional to r2
s , requiring

that ΣHF
c (1) ∼ r3

s , which contradicts the scaling µc ∼ r2
s . The following analysis demon-

strates that this contradiction remains after the ring-diagram summation, which turns out

to yield, respectively, r2
s ln rs and r3

s ln rs as the leading terms for the lhs and rhs of Eq. (1.9).
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Because of the availability of exact nc(k)[11], the rhs of

ΣHF
c (1) =

αrs
π
I, I =

∞∫

0

dk nc(k)f(k), f(k) = k ln

∣∣∣∣
1 − k
1 + k

∣∣∣∣ (3.3)

can be readily computed at the weak-correlation limit of rs → 0. In the following, the

approach previously employed in relating the small-rs non-analyticities of tc and vc to

the peculiarities of nc(k) and the static structure factor Sc(q) at the limit of rs → 0 [5] is used.

The small-rs behavior of the rhs of Eq. (3.1) is determined by the behavior of nc(k) near

the Fermi surface. As shown by Daniel, Vosko, and Kulik [11], and reiterated in later works

[4, 5], two functions are needed to describe this behavior, namely F (k) with the properties

F (k → 0) = 4.11234+O(k2) , F (k →∞) =
8π2

9

1

k8
+O

(
1

k10

)
, F (k → 1) =

π2

3

1 − ln 2

k2(1− k)2
.

(3.4)

and G(x) with the asymptotics

G(0) = 3.35334, G(x� 1) =
π

6

1 − ln 2

x2
+O

(
1

x4

)
. (3.5)

Near k = 1, the function nc(k) is given by

nc(k) =

(
q2

c

4π

)2

·





−F (k) , 0 < k < 1− ξ

−2π

q2
c

1

k2
G

(
1 − k
qc

)
, 1 − ξ < k < 1

+
2π

q2
c

1

k2
G

(
k − 1

qc

)
, 1 < k < 1 + ξ

+F (k) , 1 + ξ < k

(3.6)

where 1� ξ � qc [5]. The function F (k) contributes to I = IF + IG through the expression

IF = I>F + I<F ,

I>F =

(
q2
c

4π

)2 ∫ ∞

1+ξ

dk F (k)f(k) , I<F = −
(
q2
c

4π

)2 ∫ 1−ξ

0

dk F (k)f(k) . (3.7)

With a fixed positive number A sufficiently small to assure that F (k) can be replaced by its

asymptotics (3.4), one obtains

I>F ≈
(
q2
c

4π

)2 [∫ ∞

1+A

dk F (k)f(k) +
π2

3
(1− ln 2)

∫ 1+A

1+ξ

dk
f(k)

k2(1 − k)2

]

= O(r2
s ) + q4

c

1 − ln 2

48

∫ A

ξ

dk
f(1 + k)

(1 + k)2k2
. (3.8)
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The result for I<F is similar, the above integrand being replaced by − f(1−k)
(1−k)2k2 . Therefore

IF ≈ O(r2
s ) + q4

c

1− ln 2

48

∫ A

ξ

dk

k2
w(k), w(k) =

f(1 + k)

(1 + k)2
− f(1 − k)

(1− k)2
. (3.9)

The contribution of G(x) to I = IF + IG is treated analogously,

IG = I>G + I<G , (3.10)

I>G =
q2
c

8π

∫ 1+ξ

1

dk
1

k2
G

( |k − 1|
qc

)
f(k) , I<G = − q

2
c

8π

∫ 1

1−ξ
dk

1

k2
G

( |k − 1|
qc

)
f(k) .

With a fixed positive number B sufficiently large to assure that G(x) can be replaced by its

asymptotics (3.5), it follows that

I>G =
q2
c

8π

[∫ 1+qcB

1

+

∫ 1+ξ

1+qcB

]
dk

k2
G

( |k − 1|
qc

)
f(k)

≈ q3
c

8π

∫ B

0

dx G(x)
f(1 + qcx)

(1 + qcx)2
+ q4

c

1 − ln 2

48

∫ ξ

qcB

dk

k2

f(1 + k)

(1 + k)2
. (3.11)

The result for I<G is similar, the respective parts of the first and second integrands being

replaced by − f(1−qcx)
(1−qcx)2 and − f(1−k)

(1−k)2 . Therefore,

IG ≈
q3
c

8π

∫ B

0

dx G(x) w(qcx) + q4
c

1− ln 2

48

∫ ξ

qcB

dk

k2
w(k). (3.12)

Combining the above estimates, one obtains

I ≈ O(r2
s ) +

q3
c

8π

∫ B

0

dx G(x) w(qcx) + q4
c

1− ln 2

48

∫ A

qcB

dk

k2
w(k). (3.13)

Since for a sufficiently small positive k

w(k) =
1

1 + k
ln | k

2 + k
| − 1

1 − k ln | k

1− k | ≈ −2k lnk, (3.14)

the integrals of Eq. (3.13) yield the leading terms of

q3
c

8π

∫ B

0

dx G(x) (−2qcx) ln(qcx) = −q4
c

1− ln 2

24
[ln qc lnB + C0 ln qc +

1

2
(lnB)2], (3.15)

where the constant C0 does not depend on B, and

q4
c

1 − ln 2

48

∫ A

qcB

dk

k2
(−2k) ln k = q4

c

1− ln 2

48
[(ln qc + lnB)2 − (lnA)2] (3.16)

(note that cancellation of the terms dependent on B in the combined integrals). Thus

ΣHF
c (1) = (αrs

π
)3 1−ln 2

12
[(ln rs)2− 2C0 ln rs] + · · · , which clearly demonstrates that for rs → 0

the non-HF term ΣnHF
c (1, 1/2) = Σr

c(1, 1/2) + · · · has to be used in the rhs of Eq. (1.9).

In summary, the terms that correctly describe the small−rs behavior are contained in

ΣnHF
c (k, ω) = Σr

c(k, ω) + · · · [22]. However, ΣHF
c (1), together with vF − vx, can serve as

measures of the correlation strength, see refs. [12] and [23].
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IV. CONCLUSIONS

The correct small−rs behavior of the correlation contribution Σc(k, ω) to the self-energy

is given by the ring-diagram-summed Σr
c(k, ω). The summation eliminates the divergence

of Σ2d(1, 1/2) ∼ r2
s

∫
0

dq/q and of n2d(k) at the Fermi surface. Upon application of the

Galitskii-Midgal formula, the correct potential energy vc = 2a(αrs)2 ln rs + · · · results. The

derivative ∂Σr
c(1, ω)/∂ω|ω=1/2 used in conjunction with the Luttinger-Ward formula affords

the correct zF = 1−0.18 rs+· · · for rs → 0. Finally, Σr
c(1, 1/2) = (αrs)2(a ln rs+const+· · · )

is in full agreement with the Hugenholtz-van Hove formula µc = Σc(1, µ) with µ → 1/2 at

the limit of rs → 0.
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APPENDIX A: THE POLARIZATION PROPAGATOR

The polarization propagator (in the lowest order) is given by

Q(q, η) =

∫
d3k

4π

[
1

q(k + 1
2
q)− η − iδ

+
1

q(k + 1
2
q) + η − iδ

]
Θ(1− k)Θ(|k + q| − 1).

(A.1)
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For η = iqu, a real function of q and u arises [11],

R(q, u) = Q(q, iqu) =
1

2

[
1 +

1 + u2 − q2

4

2q
ln

( q
2

+ 1)2 + u2

( q
2
− 1)2 + u2

−u
(

arctan
1 + q

2

u
+ arctan

1− q
2

u

)]
, (A.2)

which is even in u. The function R(q, u) has the small-q expansion R(q, u) = R0(u) +O(q2)

with

R0(u) = 1 − u arctan
1

u
. (A.3)

The integrals

∞∫

0

du
R0(u)

1 + u2
=
π

2
(1 − ln 2) ≈ 0.482003 and

∫ ∞

0

du
R′0(u)

R0(u)
arctan

1

u
≈ −3.353337 (A.4)

appear in section II of this paper. The integrals

1∫

0

dk′ k′ ln

∣∣∣∣
k + k′

k − k′
∣∣∣∣ = 1 +

1− k2

2k
ln

∣∣∣∣
1 + k

1 − k

∣∣∣∣ and

1∫

0

dk

1∫

0

dk′ kk′ ln

∣∣∣∣
k + k′

k − k′
∣∣∣∣ =

1

2
(A.5)

appear in sections I and III.


