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In this paper a mean-field theory for the spin-liquid paramagnetic non-superconducting phase of
the p- and n-type High-Tc cuprates is developed. This theory applied to the effective t− t

′
− t

′′
−J

∗

model with the ab initio calculated parameters and with the three-site correlated hoppings. The
static spin-spin and kinematic correlation functions beyond Hubbard-I approximation are calculated
self-consistently. The evolution of the Fermi surface and band dispersion is obtained for the wide
range of doping concentrations x. For p-type systems the three different types of behavior are
found and the transitions between these types are accompanied by the changes in the Fermi surface
topology. Thus a quantum phase transitions take place at x = 0.15 and at x = 0.23. Due to the
different Fermi surface topology we found for n-type cuprates only one quantum critical concentra-
tion, x = 0.2. The calculated doping dependence of the nodal Fermi velocity and the effective mass
are in good agreement with the experimental data.

PACS numbers: 74.72.-h; 74.25.Jb; 73.43.Nq; 71.18.+y

I. INTRODUCTION

Discovered almost 20 years ago, High-Tc copper oxides
still remain a challenge of the modern condensed matter
physics. It is not only due to unconventional supercon-
ducting state with a highest superconducting transition
temperature Tc ever observed. Also they reveal evolution
from an undoped antiferromagnetic (AFM) insulator to
an almost conventional, though highly correlated1, Fermi
liquid system at the overdoped side of the phase diagram.
Between these two regimes the system exhibits strongly
correlated, or so-called “pseudogap” metallic behavior up
to an optimal doping concentration xopt ≈ 0.16.

Recent significant improvements of experimental tech-
niques, especially of the Angle-Resolved Photoemission
Spectroscopy (ARPES) and the Scanning Tunneling Mi-
croscopy (STM), revealed many exciting features of this
doping dependent evolution. First of all, the Fermi
surface (FS) at low doping concentrations x has been
measured2. Together with the previous measurements
on optimally and overdoped samples (see e.g. review3

and references therein), these observations provide a uni-
fied picture of the doping dependent FS, which changes
from the “Fermi arcs”4 in the underdoped compounds
to the “large” Fermi surface in the overdoped systems.
Though this change is smooth, it occurs around the opti-
mal doping concentration. Also, the observed evolution
is consistent with the Hall coefficient RH measurements5.

The pseudogap behavior observed in ARPES is also
tracked in the transport measurements. In particular,
the resistivity curvature mapping over T − x phase dia-
gram clearly demonstrates crossover between underdoped
and overdoped regimes6. And the in-plane resistivity ρab

shows T -linear dependence only around xopt.

The drastic change of the quasiparticle dynamics
around the optimal doping was found by the time-
resolved measurements of the photoinduced change

in reflectivity for Bi2Sr2Ca1−yDyyCu2O8+δ (BSCCO)7.
Namely, the spectral weight shifts expected for a BCS su-
perconductor can account for the photoinduced response
in overdoped, but not underdoped BSCCO. This agrees
with the observed difference of the low-frequency spectral
weight transfer in normal and superconducting states on
under- and over-doped samples8,9.

Meanwhile, the integral characteristics of the system
demonstrate more smooth behavior upon increase of
the doping x. The dependence of the chemical poten-
tial shift ∆µ on x shows pinning at x < xopt, and
evolves smoothly at higher doping concentrations10. The
measured nodal Fermi velocity vF is almost doping-
independent within experimental error of 20%11,12. The
experiments involving combination of dc transport and
infrared spectroscopy revealed an almost constant ef-
fective electron mass m∗/m = 3.8 ± 2 in the under-
doped and slightly overdoped La2−xSrxCuO4 (LSCO)
and YBa2Cu6Oy (YBCO)13. Low-x effective mass de-
pendence contradicts predictions of the Brinkman-Rice
metal-insulator transition theory14, predicting diver-
gence of the m∗ at the point of transition. One of the
main drawbacks in this theory is that the magnetic cor-
relations were neglected. Thus the discrepancy with the
experiment emphasizes the importance of these correla-
tions in High-Tc copper oxides.

From the theoretical point of view, the description of
the crossover between almost localized picture and the
Fermi liquid regime is very difficult. Starting from the
Fermi liquid approach one may discuss the overdoped
and, partly, optimally doped region, while for under-
doped and undoped samples this approach is not appli-
cable. The strong-coupling Gutzwiller approximation15

for the Hubbard model provides a good description for
the correlated metallic system. This approximation is
equivalent16,17 to the mean-field saddle-point solution
within a slave-boson approach18. At the same time, as
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shown within 1/d expansion16, with d being the dimen-
sionality of the lattice, the Gutzwiller approximation is
equivalent to the case of d = ∞. Obviously, for the quasi-
two-dimensional systems such as High-Tc copper oxides
this is not a proper limit. The same applies to the Dy-
namical Mean-Field Theory (DMFT)19,20, which is exact
only for d = ∞. In this limit the short-range magnetic
fluctuations are excluded. It is not a good starting point
for the system with long-range AFM order at low x and
short-range AFM correlations in the underdoped region.

To describe the doping dependent evolution of the low-
energy excitations we develop a strong-coupling mean-
field theory for the paramagnetic non-superconductive
phase of High-Tc copper oxides starting from the local
limit. To go beyond the usual Hubbard-I approxima-
tion a self-consistently calculated static spin-spin and
kinematic correlation functions are taken into account.
Within this approximation in the framework of the effec-
tive t−t′−t′′−J∗ model with ab initio calculated param-
eters we obtain a doping-dependent evolution of the FS,
effective mass and nodal Fermi velocity. The analysis of
the low-energy excitations behavior for p-type cuprates
yields two quantum phase transitions associated with the
change of the FS topology. For n-type cuprates we ob-
serve only single quantum critical concentration. The key
aspect in these findings is an adequate description of the
electron scattering by the short range magnetic fluctua-
tions accompanied by the three-site correlated hoppings.

The paper is organized as follows. In Section II the
effective model and the approximations are described.
The results of the calculations for p-type cuprates are
presented in Section III. Also, the critical comparison of
the t − t′ − t′′ − J∗ and t − t′ − t′′ − J models is made,
and the role of short range magnetic order is discussed.
Section IV contains results for n-type cuprates. The last
Section summarize this study, and the main points are
discussed.

II. MODEL AND APPROXIMATIONS

High-Tc cuprates belong to a class of strongly corre-
lated systems where the standard local density approxi-
mation (LDA) schemes and the weak-coupling perturba-
tion theories yield an inappropriate results. To overcome
this difficulty recently we have developed an LDA+GTB
method21. In this method the ab initio LDA calcula-
tion is used to construct the Wannier functions and to
obtain the single electron and Coulomb parameters of
the multiband Hubbard-type model. Within this model
the electronic structure in the strong correlation regime
is calculated by the Generalized Tight-Binding (GTB)
method22,23. The latter combines the exact diagonaliza-
tion of the model Hamiltonian for a small cluster (unit
cell) with perturbative treatment of the intercluster hop-
ping and interactions. For undoped and weakly doped
LSCO and Nd2−xCexCuO4 (NCCO) this scheme results
in a charge transfer insulator with a correct value of the

gap and the dispersion of bands in agreement with the
experimental ARPES data (see Ref.21 for details).

Then this multiband Hubbard-type Hamiltonian was
mapped onto an effective low-energy model21. Parame-
ters of this effective model were obtained directly from
the ab initio parameters of the multiband model. The
low-energy model appears to be the t − t′ − t′′ − J∗

model (t − t′ − t′′ − J model with the three-site corre-
lated hoppings) for n-type cuprates and the singlet-triplet

t − t′ − t′′ − J∗ model for p-type systems. However, for
x < 0.7 in a phase without a long-range magnetic or-
der the role of the triplet state and the singlet-triplet
hybridization is negligible24. Therefore, the triplet state
could be omitted and in the present paper we will de-
scribe the low-energy excitations in the single-layer p-
and n-type cuprates within the t − t′ − t′′ − J∗ model.

To write down the model Hamiltonian we use the Hub-
bard X-operators25: Xα

f ↔ Xn,n′

f ≡ |n〉 〈n′|. Here in-

dex α ↔ (n, n′) enumerates quasiparticle with energy
ωα = εn(N + 1) − εn′(N), where εn is the n-th energy
level of the N -electron system. The commutation rela-
tions between X-operators are quite complicated, i.e. two
operators commute on another operator, not a c-number.
Nevertheless, depending on the difference of the number
of fermions in states n and n′ it is possible to define
quasi-Fermi and quasi-Bose type operators in terms of
obeyed statistics. In this notations the Hamiltonian of
the t− t′ − t′′−J∗ model in the hole representation have
the form:

H =
∑

f,σ

(ε0 − µ)Xσ,σ
f +

∑

f 6=g,σ

tfgX
σ,0
f X0,σ

g

+
∑

f 6=g

Jfg

(

~Sf
~Sg −

1

4
nfng

)

+ H3. (1)

Here µ is the chemical potential, ~Sf is the spin opera-

tor, S+
f = Xσ,σ̄

f , S−
f = X σ̄,σ

f , Sz
f = 1

2

(

Xσ,σ
f − X σ̄,σ̄

f

)

,

nf =
∑

σ

Xσ,σ
f is the number of particles operator, Jfg =

2t̃2fg/Ect is the exchange parameter, Ect is the charge-

transfer gap. In the notations of Ref.21 the hopping ma-
trix elements tfg corresponds to tSS

fg and −t00fg for p- and

n-type cuprates, respectively, and t̃fg = t0S
fg . Hamilto-

nian H3 contains the three-site interaction terms:

H3 =
∑

f 6=g 6=m,σ

t̃fmt̃mg

Ect

(

Xσ0
f X σ̄σ

m X0σ̄
g − Xσ0

f X σ̄σ̄
m X0σ

g

)

.

(2)
There is a simple correspondence between X-operators

and single-electron annihilation operators: afλσ =
∑

α

γλσ(α)Xα
f , where the coefficients γλσ(α) determines

the partial weight of the quasiparticle α with spin σ
and orbital index λ. These coefficients are calculated
straightforwardly within the GTB scheme. In the con-
sidered case there is only one quasi-Fermi-type quasipar-
ticle, α = (0, σ), with γλσ(α) = 1, and the Hamiltonian
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in the generalized form in momentum representation is
given by:

H =
∑

~k,σ

(ε0 − µ) Xσ,σ
~k

+
∑

~k

∑

α,β

tαβ
~k

Xα
~k

†Xβ
~k

+
∑

~p,~q

∑

α,β,σ,σ′

V αβ,σσ′

~p~q Xα
~p
†Xσ,σ′

~p−~q Xβ
~q . (3)

The Fourier transform of the two-time retarded Green
function in the energy representation, Gλ(~k, E) =
〈〈

a~kλσ

∣

∣

∣
a†

~kλσ

〉〉

E
, can be rewritten in terms of the ma-

trix Green function
[

D̂(~k, E)
]

αβ
=
〈〈

Xα
~k

∣

∣

∣
Xβ

~k

†
〉〉

E
:

Gλ(~k, E) =
∑

α,β

γλσ(α)γ∗
λσ(β)Dαβ(~k, E). (4)

The diagram technique for Hubbard X-operators
has been developed26,27 and the generalized Dyson
equation28 in the paramagnetic phase (〈Xσ,σ

0 〉 =
〈

X σ̄,σ̄
0

〉

)
reads:

D̂(~k, E) =
[

Ĝ−1
0 (E) − P̂ (~k, E)t̂~k − P̂ (~k, E)V̂ σ,σ

~k~k
〈Xσ,σ

0 〉

+ Σ̂(~k, E)
]−1

P̂ (~k, E). (5)

Here, Ĝ−1
0 (E) is the exact local Green function,

Gαβ
0 (E) = δαβ/ [E − (εn − εn′)], Σ̂(~k, E) and P̂ (~k, E) are

the self-energy and the strength operators, respectively.
The presence of the strength operator is due to the re-
distribution of the spectral weight between the Hubbard
subbands, that is an intrinsic feature of the strongly cor-
related electron systems. It also should be stressed that

Σ̂(~k, E) in Eq. (5) is the self-energy in X-operators rep-
resentation and therefore it differs from the self-energy
entering Dyson equation for the weak coupling perturba-

tion theory for Gλ(~k, E).
Within Hubbard-I approximation29 the self-energy

Σ̂(~k, E) is equal to zero and the strength operator

P̂ (~k, E) is replaced by Pαβ(~k, E) → Pαβ = δαβFα, where

Fα(n,n′) =
〈

Xn,n
f

〉

+
〈

Xn′,n′

f

〉

is the occupation factor.

Taking into account that in the considered paramag-

netic phase
〈

Xσ,σ
f

〉

= 1−x
2 ,

〈

X0,0
f

〉

= x, with x be-

ing the doping concentration, after all substitutions and

treating all ~k-independent terms as the chemical poten-
tial renormalization, the generalized Dyson equation for
the Hamiltonian (1) becomes:

D(~k, E) =

[

E − (ε0 − µ) −
1 + x

2
t~k

−
1 + x

2

t̃2~k
Ect

1 − x

2
+ Σ(~k, E)

]−1
1 + x

2
. (6)

To go beyond the Hubbard-I approximation we have

to calculate Σ(~k, E). For this purpose we use an equa-
tions of motion method for the X-operators30. The exact
equation of motion for Xα

k is:

iẊα
~k

=
[

Xα
~k

, H
]

= (ε0 − µ)Xα
~k

+ Lα
~k

= (ε0 − µ)Xα
~k

+ Lα
~k

(0) + (Lα
~k
− Lα

~k

(0)). (7)

Here Lα
~k

(0) is the linearized and decoupled in Hubbard-I

approximation operator Lα
~k
,

Lα
~k

(0) =
1 + x

2
t~k +

1 + x

2

t̃2~k
Ect

1 − x

2
. (8)

Let us define L̃α
~k

= Lα
~k
− Lα

~k

(0) and linearize it with re-

spect to Xα
~k

:

L̃α
~k

=
∑

β

T αβ
~k

Xβ
~k

+ L̃
α(irr)
~k

, (9)

where T αβ
~k

=

Dn

L̃α
~k

,X
β

~k

†
oE

Dn

X
β

~k
,X

β

~k

†
oE are the coefficients of the lin-

earization. All effects of the finite quasiparticle lifetime

are contained in the irreducible part L̃
α(irr)
~k

. In this pa-

per we neglect it, L̃
α(irr)
~k

→ 0.

Since the exact equation for the Green function

is given by E
〈〈

Xα
~k

∣

∣

∣
Xβ

~k

†
〉〉

E
=

〈{

Xα
~k

, Xβ
~k

†
}〉

+
〈〈

iẊα
~k

∣

∣

∣
Xβ

~k

†
〉〉

E
, it is straightforward to find that in our

approximation T αβ
~k

corresponds to the self-energy:

Σ̂(~k, E) = −T̂~k
. (10)

Introducing notations for the static spin-spin correla-
tion functions

C~q =
∑

f,g

e−i(f−g)~q
〈

Xσσ̄
f X σ̄σ

g

〉

= 2
∑

~r

e−i~r~q 〈Sz
~r Sz

0 〉 ,

(11)
and for the kinematic correlation functions

K~q =
∑

f,g

e−i(f−g)~q
〈

Xσ0
f X0σ

g

〉

, (12)

the expression for the quasiparticle self-energy becomes:
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Σ(~k, E) =
2

1 + x

1

N

∑

~q

[

t~q −
1 − x

2
J~k−~q

− x
t̃2~q
Ect

−
1 + x

2

2t̃~k t̃~q

Ect

]

K~q

−
2

1 + x

1

N

∑

~q

[

t~k−~q
−

1 − x

2

(

J~q −
t̃2~k−~q

Ect

)

−
1 + x

2

2t̃k t̃~k−~q

Ect

]

3

2
C~q. (13)

Here N is the number of vectors in momentum space.
Until now we have made two major approximations.

First, we neglected irreducible part of the self-energy,

L̃
α(irr)
~k

, thus allowing quasiparticles to have infinite life-

time. Second, and this is not so obvious, in Eq. (6) for

the strength operator P̂ (~k, E) we drop out corrections
beyond Hubbard-I approximation. These dropped cor-
rections also lead to the finite quasiparticle lifetime. The
consequence of these approximations will be discussed
later.

Kinematic correlation functions (12) are calculated
straightforwardly with the help of Green function (6).
The spin-spin correlation functions for the t − J model
with three-site correlated hoppings H3 were calculated
in Ref.31. In this paper the equations of motion for the

spin-spin Green function
〈〈

Xσσ̄
f

∣

∣X σ̄σ
g

〉〉

ω
were decou-

pled in the rotationally invariant quantum spin liquid
phase, similar to Refs.32,33. The results of this approach
for a static magnetic susceptibility for the t−J model are
similar to those obtained by other methods34,35. Higher-
order correlation functions appearing due to the H3 term
are decoupled in the following way:
〈〈

X σ̄σ̄
m Xσ0

n X0σ̄
l | X σ̄σ

j

〉〉

ω
→
〈

X σ̄σ̄
m

〉 〈〈

Xσ0
n X0σ̄

l | X σ̄σ
j

〉〉

ω
〈〈

Xσσ̄
m Xσ0

l X0σ
n | X σ̄σ

j

〉〉

ω
→
〈

Xσ0
l X0σ

n

〉 〈〈

Xσσ̄
m | X σ̄σ

j

〉〉

ω

Thus, higher-order kinematic and spin-spin scattering
channels are decoupled.

After the terms proportional to x
(

2t̃01/Ect

)2
being ne-

glected, the expression for Fourier transform of the spin-
spin Green function becomes:

〈〈

Xσσ̄
~q | X σ̄σ

~q

〉〉

ω
=

A~q(ω)

ω2 − ω2
~q

, (14)

where

A~q(ω) =
1

N

∑

~k

[(

−2t~k +
1 − x

2

t̃2k
Ect

)

(

K~k
− K

~q−~k

)

+ 4J~k

(

C
~q−~k

− C~k

)]

, (15)

and magnetic excitations spectrum ω~q represented by the
Eq. (26) of paper31.

The following results were obtained by self-consistent
calculation of the chemical potential µ, the spin-spin cor-
relation functions (11) using Green function (14), and the
kinematic correlation functions (12) using Green func-
tion (6) with the self-energy (13).

FIG. 1: (color online) The quasiparticle dispersion (on the
left) and the density of states (DOS, on the right) in the
paramagnetic phase of p-type cuprate with x = 0.16. The
position of the chemical potential is denoted by the horizontal
(green) line. Results within the Hubbard-I approximation are
shown by dashed (red) and dash-dotted (cyan) curves for the
model with (t−t

′
−t

′′
−J

∗ model) and without (t−t
′
−t

′′
−J

model) three-site correlated hoppings, respectively. Bold solid
(blue) curves represent the results for the t−t

′
−t

′′
−J

∗ model
with the short range magnetic order.

III. RESULTS FOR p-TYPE CUPRATES

For LSCO the LDA+GTB calculated parameters are
(in eV): t = 0.93, t′ = −0.12, t′′ = 0.15, J = 0.295, J ′ =
0.003, J ′′ = 0.007. All figures below are in electron rep-
resentation.

First of all we would like to stress the important effects
caused by the three-site correlated hoppings H3 and the
renormalizations due to the short range magnetic order.
Previously, the importance of the three-site correlated
hoppings in the normal and superconducting phases has
been demonstrated in Refs.31,36,37. In Fig. 1 we present
our results for 16% hole doping within different approxi-
mations. Evidently, introduction of three-site interaction
terms results in the change of the position of the top of
the valence band. Therefore, this will become important
at small x. In AFM phase of the t − J model there is
a symmetry around (π/2, π/2) point. In the paramag-
netic phase this symmetry is absent. Due to the scatter-
ing on the short range magnetic fluctuations with AFM

wave vector ~Q = (π, π) the states near the (π, π) point
are pushed below the Fermi level (see Fig.1), thus to-
tally changing the shape of the FS. In other words, the
short range magnetic order “tries” to restore the sym-
metry around (π/2, π/2) point. In our calculations the
short range magnetic fluctuations are taken into account
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FIG. 2: (color online) Doping dependent evolution of the kine-
matic (a) and spin-spin (b) correlation functions within the
t − t

′
− t

′′
− J

∗ model for p-type cuprates. Index n enumer-
ates real space vectors connecting neighboring sites: n = 1
for nearest-neighbors, n = 2 for the next nearest neighbors,
and so on. In (c) and (d) the doping dependence of the nodal
Fermi velocity (in units of eV·a with a being a lattice con-
stant) and the effective mass are shown.

via the spin-spin correlation functions (11).
Our results for the doping dependence of the kinematic

and spin-spin correlation functions are shown in Fig. 2.
Note, the kinematic correlation functions Kn possess a
very nontrivial doping dependence. For low concentra-
tions, x < 0.15, due to the strong magnetic correla-
tions the hoppings to the nearest and to the next-nearest
neighbors are suppressed leading to the small values of
K1 and K2, while K3 is not suppressed. Upon increase
of the doping concentration above x ≈ 0.15, magnetic
correlations decrease considerably and nearest-neighbor
kinematic correlation function K1 increase. Next major
change sets at x ≈ 0.23 when the system possesses al-
most Fermi liquid behavior: K1 becomes largest of all
Kn’s, while the magnetic correlation functions Cn and
the kinematic correlation function K3 are strongly sup-
pressed.

So, we can clearly define two points of the crossover,
namely x ≈ 0.15 and x ≈ 0.23. The system behavior is
quite different on the different sides of these points, al-
though there is no phase transition with symmetry break-
ing occurs. To understand the nature of these crossovers
we consider the FS evolution with doping concentration,
presented in Fig.3. At low x the FS has the form of the
hole pockets centered around (±π/2,±π/2) point. Then
these pockets enlarge and at x = 0.15 all of them merge
together, forming the two FS contours. Up to x = 0.23
the FS topologically equivalent to the two concentric cir-
cles with the central one shrinking toward (0, 0) point.
For x = 0.23 the central FS contour shrinks to the single
point and vanishes, leaving one large hole-type FS.

Apparently, the topology of the FS changes drastically

FIG. 3: (color online) Band structure (on the left), density
of states (in the middle), and Fermi surface (on the right)
evolution with doping concentration x within the t−t

′
−t

′′
−J

∗

model for p-type cuprates.

upon doping. In particular, it happens at x = 0.15 and
at x = 0.23. For the first time the “electronic transition”
accompanying the change in the FS topology, or the so-
called Lifshitz transition, was described in Ref.38. Now
such transitions referred as a quantum phase transitions
with a co-dimension= 1 (see e.g. paper39). Note, when
the FS topology changes at quantum critical concentra-
tions x1 = 0.15 and at x2 = 0.23 the density of states
at the Fermi level also exhibit significant modifications.
This results in the different behavior of the kinematic
and magnetic correlation functions on the different sides
of these crossover points. And the changes in the density
of states at the Fermi level will also result in the signif-
icant changes of such observable physical quantities as
the resistivity and the specific heat.

Also, from the obtained quasiparticle dispersion we cal-
culated the doping dependence of the nodal Fermi veloc-
ity vF and the effective mass m∗/m (see Fig. 2(c) and
(d)). Nodal Fermi velocity does not show steep variations
with increase of the doping concentration in agreement
with the ARPES experiments11,12. Effective mass m∗

increase with decreasing x and reveals tendency to the
localization in the vicinity of the metal-insulator tran-
sition. But this increase is not very large and overall
m∗/m doping dependence agrees quite well with the ex-
perimentally observed one13. Note, the non-monotonic
doping dependence of both these quantities reflects the
presence of the critical concentrations x1 and x2.
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FIG. 4: (color online) The same as in Fig.2, but within the
model for p-type cuprates without three-site correlated hop-
pings (t − t

′
− t

′′
− J model).

FIG. 5: (color online) The same as in Fig.3, but within the
model for p-type cuprates without three-site correlated hop-
pings (t − t

′
− t

′′
− J model).

To analyze the effect of the three-site hopping term H3

we also calculated the doping dependence of the band
structure and FS within the t − t′ − t′′ − J model. The
behavior of the kinematic and the spin-spin correlation
functions, presented in Fig. 4, is quite different from that
of the t− t′ − t′′ − J∗ model. There is only one quantum
critical point at x ≈ 0.08 and the effective mass becomes
very large for x approaching zero. For x > 0.1 the evolu-
tion of the FS and density of states near the Fermi level
is smooth, without significant changes (see Fig.5). Most
part of the difference to the t− t′ − t′′ − J∗ model stems
from the role of H3 in the energy of states near the (π, π)
point, thus determining the topology of the FS and the
physics at low doping concentrations (see Fig.1).

FIG. 6: (color online) The same as in Fig.2, but within the
t − t

′
− t

′′
− J

∗ model for n-type cuprates.

FIG. 7: (color online) The same as in Fig.3, but within the
t − t

′
− t

′′
− J

∗ model for n-type cuprates.

IV. RESULTS FOR n-TYPE CUPRATES

Now let us consider n-type cuprates within the t −
t′ − t′′ − J∗ model. For NCCO the LDA+GTB calcu-
lated parameters are (in eV): t = −0.50, t′ = 0.02, t′′ =
−0.07, J = 0.195, J ′ = 0.001, J ′′ = 0.004.

The obtained doping dependence of the kinematic and
magnetic correlation functions presented in Fig. 6. There
is only one crossover point at x ≈ 0.2. Also, in contrast
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to the p-type results, the most important kinematic cor-
relation function on the left of this point is K2, rather
than K3. For x > 0.2 the system demonstrates Fermi
liquid-like behavior with magnitude of kinematic corre-
lation function decreasing with the distance, and small
values of the magnetic correlations.

The role of the short range magnetic order and three-
site hopping terms in n-type cuprates is similar to that of
p-type. In particular, due to the scattering on the mag-
netic excitations the states near the (π, π) point pushed
above the Fermi level, and the local symmetry around
the (π/2, π/2) points is restored, reminding of the short-
range AFM fluctuations (see Fig. 7).

Instead of hole pockets around the (±π/2,±π/2) point
in p-type, here at low x the electron pockets around
(±π, 0) and (0,±π) points are present. Upon increase
of the doping concentration these pockets become larger
and merge together at x = 0.2. For higher concentrations
the FS appear to be a large hole-like one, shrinking to-
ward (π, π) point. Therefore, no other changes in the FS
topology other than at x = 0.2 are present. Referring to
the same arguments as in previous section, we claim that
in our approach there is only one quantum critical point
at xn = 0.2 in the n-type cuprates. Th non-monotonic
change of the effective mass and the nodal Fermi veloc-
ity is also present at this concentration, as evident from
Fig. 6(c) and (d).

V. DISCUSSION AND SUMMARY

To summarize, we have investigated the doping-
dependent evolution of the low-energy excitations for p-
and n-type High-Tc cuprates in the regime of strong elec-
tron correlations within the sequentially derived effective
model with the ab initio parameters. We show that due
to the changes of the Fermi surface topology with dop-
ing the system exhibits drastic change of the low-energy
physics. Namely, for p-type cuprates there exist two crit-
ical concentrations, x1 ≈ 0.15 and x2 ≈ 0.23. Along
the different sides of these concentrations the behavior
of the density of states near the Fermi level, of the kine-
matic and magnetic correlation functions, of the effective
mass and the nodal Fermi velocity, is drastically differ-
ent. This let us speak about crossover, or, taking into
account the accompanying FS topology changes, about
quantum phase transitions at these quantum critical con-
centrations.

For n-type cuprates due to the specific FS topology we
obtain only one quantum critical concentration, xn ≈ 0.2.

First of all, we would like to comment on the approxi-
mations made in this work. Since we use the perturbation
theory with hopping t and exchange J as small parame-
ters, appropriate for the strongly correlated regime, the
real part of the corrections to the results obtained will
be small to the extent of smallness of the higher powers
of t/Ect and J/Ect. This will result in the small changes
of the band dispersion and in the fine details of the FS,

not changing anything qualitatively.
More concerns give the imaginary part of the neglected

corrections to the strength operator P̂ (~k, E) and to the

self-energy Σ̂(~k, E) through L̃
α(irr)
~k

. Application of the

equation of motion decoupling method to the Hubbard
model with finite quasiparticle lifetime40 reveals that the
results of the mean-field-like approximation is qualita-
tively correct. Quantitatively, at low doping the imag-
inary part of the self-energy leads to the hiding of the
FS portions above the antiferromagnetic Brillouin zone
((π, 0) − (0, π) line). This results in Fermi arc rather
than hole pockets at x < xopt (see Fig. 3). Also, we can
compare our results to the numerical methods, namely,
to the exact diagonalization studies41. The quasiparticle
dispersion of the t− t′−J model in Ref.41 can be consid-
ered as consisting of two bands. For p-type cuprates in-
tensities of the spectral peaks corresponding to the band
situated mostly above the Fermi level (in electron rep-
resentation) are very low. This band is often called a
“shadow” band and appears due to the scattering on the
short range AFM fluctuations. Notably, our band dis-
persion from Figs. 3 and 7 reproduce very well the shape
of the other, “non-shadow”, band. It is this band where
the most part of the spectral weight is residing, thus de-
termining most of the low-energy properties, except for
such subtle effects as a so-called “kink” in dispersion11.

Also, all renormalizations not included in considera-
tion will change the values of the critical concentrations
x1, x2, and xn. Comparing with the results of a more
rigorous theory in paper40, we expect these values to de-
crease.

Thus we conclude that our theory captures the most
important part of the low-energy physics within the con-
sidered (and justified for cuprates) model. This claim
is supported by the qualitative agreement with the crit-
ical concentrations of crossover observed in the trans-
port experiments5,6 and in the optical experiment7–9,
and even quantitative agreement of the doping depen-
dence of the nodal Fermi velocity and of the effective
mass11–13. Although we use a simple mean-field theory,
though strong-coupled, the agreement with the experi-
ments is not surprising since we included all necessary
for High-Tc copper oxides ingredients. Namely, the short
range magnetic order and three-site correlated hoppings.
Former is the intrinsic property of the cuprates exhibit-
ing long range AFM order at low x, while latter results
from the sequential derivation of the low-energy effective
model.
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