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We have studied the interplay of a local phonon mode embedded in a metallic host using Abelian
bosonization. The phonon frequency softens, which takes place in two steps: first, their frequency
starts softening, and acquires finite lifetime. Then oscillations disappear from the response, and two
distinct, finite dampings characterize them. Due to phonons, the electrons experience an attractive,
dynamic interaction. As a result, the electronic charge response enhances similarly to the spin
response in the Kondo model. Thus the chance of charge-Kondo effect emerges.
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Single impurity models have a long history1, and our
understanding has profited a lot from different reliable
techniques. Numerical renormalization group, conformal
field theory, Nozières’ Fermi liquid description, Bethe
ansatz solution and bosonization completed each other,
and highlighted different aspects of the same problem. In
many cases, the latter, being nonperturbative and ana-
lytic, was able to provide us with a transparent picture of
the underlying physics2. Its appeal is due the elegance of
analytic solution, being able to treat dynamic quantities
as well (correlation functions), and the simplicity of the
picture emerging from it.

Beyond electron-electron interaction, which is a basic
ingredient in Kondo type models, another source of corre-
lation is represented by phonons3–8. They play a promi-
nent role in explaining the conventional s-wave BCS su-
perconductivity and the charge density wave formation
in low dimensional systems. Their general feature is
the generated dynamic interaction between the electrons,
which, in essence, is attractive for small energy transfers.

In many strongly correlated systems, such as heavy
fermions or valence fluctuation systems, lattice vibrations
are known to couple strongly to electrons. Quantum dots,
especially the ones based on single molecules (C60 for
example9), also possess vibrational degrees of freedom,
which will react to the electron transfer through them10.
Therefore the properties of impurity models dominated
by phonons are challenging. The applied methods should
be able to treat dynamical properties, which rules out
techniques as the Bethe ansatz.

Several theoretical investigation focused on electron
transport in the presence of electron-phonon interacion
based on the numerical renormalization group4,5 and the
non-equilibrium Keldysh formalism7,8. These works re-
ported about the softening of the local phonon mode,
and the enhancement of the charge susceptibility. These
phenomena point toward the realization of the charge-
Kondo effect, caused by the degeneracy of zero and dou-
bly occupied electron states. In the present work, using
abelian bosonization, for the first time to our knowledge
to attack the local electron-phonon problem, we can not
only confirm the prediction of previous works, but also
study analytically the specific heat, the phonon Green’s

function, the charge susceptibility and especially the lo-
cal density of states. We follow the softening of phonons
from weak to strong coupling, and connect the present
problem with the underscreened Kondo model in mag-
netic field.

We consider spinless fermions interacting with a sin-
gle, dispersionless Einstein phonon mode, mainly at zero
temperature. Coupling to acoustic phonons would also
be a fruitful proposition, but the essence of physics is
readily captured by the simplest model. When the cou-
pling of the electron density to the phonon displacement
field is isotropic, the model can be mapped onto a single
branch of chiral fermion interacting with a single Einstein
phonon only at the origin, and is suitable for Abelian
bosonization.

In the Hamiltonian language, the model is given by:

H = −iv

L/2
∫

−L/2

dxΨ+(x)∂xΨ(x) + gQρ(0) +
P 2

2m
+

mω2
0

2
Q2,

(1)

and only the radial motion of the particles is accounted
for by chiral (right moving) fermion field11, ρ(x) =:
Ψ+(x)Ψ(x) : is the electron density, L is the length of
the system, v is the Fermi velocity, g describes the local
electron-phonon coupling, m and ω0 are the phononic
mass and frequency, respectively, Q and P are the
phonon displacement field and momentum conjugate to
it. In spirit, this model is similar to the underscreened
Kondo model in a magnetic field (which quenches the
remaining degrees of freedom) with phonons replacing
the impurity spin, since the phonon displacement field
(Q) can take any real values, while the electron den-
sity trying to compensate it, is bounded. The under-
screened Kondo model in a magnetic field is governed
by a Fermi liquid fixed point. We speculate that the
model under study produces similar behaviour. When
the magnetic field is switched off, the underscreened
Kondo model shows singular Fermi liquid behaviour12,
whose analogue in the present case occurs at g → ∞.
Since the charge degrees of freedom are coupled to the
local bosons, the possibility of observing the ”under-
screened” charge-Kondo effect opens3. The model can
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be bosonized via13,14 Ψ(x) = exp (i
√

4πΦ(x))/
√

2πα to
lead

H = v

L/2
∫

−L/2

dx(∂xΦ(x))2− g√
π

Q∂xΦ(0)+
P 2

2m
+

1

2
mω2

0Q
2.

(2)
To determine the dynamics of our system, we start with
the evaluation of the Green’s function of the phonon
displacement field, defined by DQ(τ) = 〈TτQ(τ)Q(0)〉,
whose Matsubara form can easily be calculated using the
standard diagrammatic technique as

DQ(iωm) =
1

m

1

ω2
m + ω2

0 − 2ρg2χ(ωm)/m
, (3)

where ρ = 1/2πv, ωm is the bosonic Matsubara frequency
and

χ(ωm) =
∑

q>0

(vq)2

ω2
m + (vq)2

(4)

is the local susceptibility of the fermions without the
phonons. After analytic continuation to real frequencies,
it is given by χ(ω ≪ W ) ≈ ρ(W + iπω/2) for small fre-
quencies, W is the cutoff or bandwidth, and the obtained
formula holds regardless to the chosen cutoff procedure.
The dynamics of the phonons can be inferred by inves-
tigating the pole structure of Eq. (3). The excitations
energies become complex (i.e. finite lifetime or damping
of phonon excitations) in the presence of finite coupling
to the electrons, and are given by

ωp± = −iΓ±
√

ω2
0 − Γ2 − 4ΓW/π (5)

with Γ = π(gρ)2/2m. Below Γ < Γ1 = −2W/π +
√

4W 2/π2 + ω2
0 , the square root in Eq. (5) is real, hence

the displacements reach their equilibrium in an oscilla-
tory fashion within a time characterized by −1/Imωp.
For higher frequencies, the phonon mode is completely
softened, Reωp = 0 (the square root becomes imaginary),
the excitations have two different finite lifetimes or damp-
ings determined from Eq. (5) between Γ1 < Γ < Γ2 =
πω2

0/4W . In this range, phonons can be excited with zero
energy, and all the displacements are relaxed to equilib-
rium without oscillations. This relaxation slows down
close to Γ2. This region is very narrow, because for re-
alistic values, ω0 ≪ W , it shrinks as ∼ ω4

0/W 3. For
higher values of Γ, our approach breaks down, it signals
lattice distortion with 〈Q〉 6= 0, as is indicated by the
complete softening of the phonon mode. However, such
a phenomenon is impossible in zero dimensional systems,
and we ascribe it to bosonization. The explicit functional
form of physical quantities on model parameters obtained
by bosonization can deviate from the exact one. The
phase shifts in impurity problems15, the correlation ex-
ponents in Luttinger liquids determined via bosonization
are only correct in the weak coupling limit2. This and

the previous argumentation suggests, that in reality, Γ2

should only be reached for g → ∞, but the complete soft-
ening predicted at Γ1 would take place at a finite value
of g, and Γ ∼ g2 only at small g. The general behaviour
of the eigenfrequencies is sketched in Fig. 1. The phonon
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FIG. 1: (Color online) The real (blue solid line) and imaginary
(red dashed line) part of the phonon excitation energies, and
the inverse of the mean square value of the displacement field
(black dashed-dotted line) are visualized as a function of the
electron-phonon coupling for W/ω0 = 2.

density of states contains two Lorentzians with resonance
widths -Imωp±, located at Reωp±. With increasing Γ,
they become centered around the origin, and close to Γ2,
the one determined by ωp+ tends to δ(ω). This is remi-
niscent to what happens in the channel anisotropic two
channel Kondo model16.

The mean value of the displacement field is zero. The
mean square value of the displacement field is calculated
from Eq. (3) at T = 0 as

〈Q2〉 = lim
T→0

T
∑

m

DQ(ωm) = Q2
0

2iω0

π(ωp+ − ωp−)
ln

ωp−

ωp+

,

(6)
where Q2

0 = 1/2mω0 is the value for g = 0. It is plotted
in Fig. 1. As Γ passes through Γ2, it diverges, indicating
the change in the 〈Q〉 = 0 relation. This is traced back
to the transition to the phonon distorted state at g = ∞,
as discussed below Eq. (5).

In a linear harmonic oscillator, the ground state wave
function is a gaussian. It is natural to ask, to what extent
this picture holds in the case of finite electron-phonon
coupling. The probability distribution of the oscillator
coordinator or displacement reads as

|Ψosc(x)|2 = 〈δ(Q−x)〉 = lim
a→0

∞
∫

−∞

dk

2π
〈exp(ik(Q−x)−ak)〉.

(7)
In the second step, a useful representation of the Dirac-
delta function was inserted. Since the Hamiltonian is
quadratic, or the corresponding action is gaussian for the
phonons after integrating out the fermions, the expecta-
tion value of the exponent can be calculated following
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Ref. 14, which leads to

|Ψosc(x)|2 =
1

√

2π〈Q2〉
exp

(

− x2

2〈Q2〉

)

. (8)

The ground state wave function remains gaussian, but
the variance (〈Q2〉) increases monotonically with g. The
region where the phonons are mainly restricted to, is
wider than without electron-phonon coupling. This fur-
ther corroborates the picture emerging from the previous
studies.

The phonon contribution to the free energy can be cal-
culated by using Pauli’s trick of integrating over the cou-
pling constant. After some algebra, one arrives at

Ω = Ω0+

∫

dx

2π
b(x) tan−1

(

2Γx

x2 − ω2
0(1 − (Γ/Γ2))

)

, (9)

where Ω0 is the free energy in the absence of coupling
between the electrons and phonon, b(x) is the Bose dis-
tribution function, and the integral should be limited to
the bandwidth, but this can be sent to infinity when
obtaining quantities by differentiating Ω16. One has
to carefully chose the appropriate phase angle of the
tan−1 function. This expression is similar to the free
energy of the two channel Kondo model in a magnetic
field (∼ ω0

√

1 − (Γ/Γ2) here) along the Emery-Kivelson
line17, after replacing the Bose distribution function with
the Fermi one. However, our ”magnetic field” cannot be
switched off, hence the entropy is zero at T = 0, similarly
to the underscreened Kondo model18. The specific heat
can be calculated by C(T ) = −1/T (∂2Ω/∂T 2). Its low
temperature behaviour due to phonons reads as

Cp(T ) =
πT

6v

Γ

Γ2 − Γ
, (10)

which sharpens when Γ2 is approached. The exponential
freezing-out of the Einstein phonon changes to a linear
T dependence, and adds to the Sommerfeld coefficient of
the conduction electrons, and enhances it. Had we cho-
sen acoustic phonons, their T 3 specific heat would also
be overwhelmed at low temperatures. At higher temper-
atures, a broad bump shows up in the specific heat as a
function of temperature due to the presence of g. This
can serve as an identifier of the local electron-phonon
interaction, and is shown in Fig. 2.

The phonons are expected to have a profound impact
on the electronic properties. Had we integrated them
out, we would have arrived to a local dynamic electron-
electron interaction, attractive at low energies and repul-
sive for higher ones. Static interactions already modify
significantly the electronic response, as was demonstrated
in the Wolff model19–21. In the followings we are going
to see the effect of dynamic one explicitly on the electron
system.

The electric charge is defined through ρ(x) =
∂xΦ(x)/

√
π. The local charge correlation function is eval-

uated from Eq. (2) using the diagrammatic technique,
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FIG. 2: (Color online) The total (blue solid line) phonon spe-
cific heat contribution for different values of the coupling con-
stant Γ/Γ2 = 0.1, 0.3, 0.5, 0.7 and 0.9, W/ω0 = 10 from
bottom to top. The red dashed dotted line shows the pure
phononic Γ = 0 specific heat, while the black dashed curves
stands for their difference due to the finite coupling g. Note
the sharpening of the broad bump at low T as Γ increases.

and along the real frequency axis it reads as

χcharge(ω) =
2ρχ(ω)

1 +
2g2ρ

m(ω2 − ω2
0)

χ(ω)

. (11)

This is the standard result in the random-phase-
approximation, which turns out to be the exact one in
the present case. Most of the many body contributions
are canceled by the Ward identity, which relates the ver-
tex function and the electron propagator. This could
be expected from the fact that the model is solvable by
bosonization. The very same phenomenon revealed it-
self during the study of the Wolff impurity model20,22.
The dynamic nature of the phonons is observable in the
denominator of Eq. (11). In the static limit, the effec-
tive interaction between the electrons is attractive, and
changes to repulsive for frequencies exceeding the phonon
energy ω0. The static limit of the charge susceptibility
simplifies to χcharge(0) = 2ρ2W/(1 − (Γ/Γ2)). In accor-
dance with Eq. (5), this also predicts the transition to
the distorted phase, which would be accompanied by the
rearrangement of the charges as well. This signals that
our model is on the brink of charge Kondo effect.

Since we work with spinless electrons, the single
particle Green’s function can be evaluated, unlike in
the SU(N) Wolff model19,21 or the two channel Kondo
model17. There, such a calculation would involve for-
mally

√

Ψ(x), which is difficult to work with. The local
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retarded Green’s function is defined as

GR(t) = −iΘ(t)〈{Ψ(t), Ψ+(0)}〉 = −iΘ(t)
exp(−4π〈Φ2〉)

2πα
×

× [exp(4π〈Φ(t)Φ(0)〉) + exp(4π〈Φ(0)Φ(t)〉)] , (12)

where in the second step we made use of the gaussian na-
ture of the action and used the usual tricks of operator
manipulation13,14. The task is to evaluate the correlator
C(t) = 〈Φ(t)Φ(0)〉, its counterpart follows from time re-
versal symmetry as 〈Φ(0)Φ(t)〉 = C(−t). Given the fact
that the bosonized Hamiltonian (Eq. (2)) is quadratic,
we can evaluate this expectation value at bosonic Mat-
subara frequencies, then by transforming it to imaginary
times, finally we can read off C(t) after careful analytic
continuation to real times. First we find for the Matsub-
ara form that

C(ωm) =
1

4|ωm| −
m

2
ΓDQ(ωm). (13)

Here the first term is responsible for the 1/τ decay of
fermionic correlations. Fortunately, the second expres-
sion, accounting for the phonon contribution, is sepa-
rated from the first one, and does not require ultraviolet
regularization unlike the first one, where the large ωm

part need to be cut off to avoid divergences. Its Fourier
transform with respect to ωm yields to the imaginary
time ordered expression for the correlator, from which
the desired relation can be obtained as

C(t) − C(0) =
1

4π
ln

(

α

α + ivt

)

− m

2
Γ(DQ(t) − 〈Q2〉),

(14)
where the equal time correlator need to be subtracted to
regularize the first term on the right hand side and

DQ(t) =
2i

mπ(ωp+ − ωp−)
(f(ωp+t) − f(ωp−t)) (15)

with

f(x) = − sin(x)Si(x) − π

2
sin(x) − cos(x)Ci(−x), (16)

where Si(x) and Ci(x) are the sine and cosine integrals.
At large times, its decay is characterized by the damp-
ing, Imωp±, and the frequency of oscillations by Reωp±.
By plugging this formula to GR(t), we evaluate the re-
tarded single particle Green’s function. The local density
of states follows as

ρ(ω) = − 1

π
Im

∞
∫

−∞

dt exp(iωt)GR(t), (17)

and its change is denoted by ∆ρ(ω) = ρ(ω) − ρ0, ρ0 is
the dispersionless density of states in the pure system. It
is shown in Fig. 3. The change in the residual density of
states, ∆ρ(0) is positive for all values of Γ, and diverges
at Γ2 in agreement with other quantities4. Similar phe-
nomenon occurs in the underscreened Kondo model with

the offset of magnetic field12. The significant increase in
∆ρ(0) should be detected in point contact spectroscopy
or by scanning tunneling microscopy experiments in bulk
materials. For small values of Γ, a steplike drop occurs
with increasing frequency close to ω =Reωp±0, which
smoothens as the electron-phonon coupling increases. As
a function of increasing frequency, damped oscillations
are exhibited in the density of states. First it even ”un-
dershoots” its pure value around ω = −ωp+ωp−, and can
severely suppress the density of states, but never pro-
duces negative values (ρ(ω) > 0 always). Then ”over-
shooting” occurs before reaching zero, similarly to Friedel
oscillations, but as a function of energy and not of spa-
tial coordinate. These features are different from that
induced by a non-magnetic impurity or by a magnetic
one, and the reason is the effective, dynamically attrac-
tive interaction generated by the phonons.
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FIG. 3: The change of the local electron density of states
at the impurity site is shown for W/ω0 = 2 for Γ/Γ2=0.1,
0.3, 0.5, 0.7 and 0.9 from right to left. At the last value, the
resonance frequency of the phonon is purely imaginary. The
inset visualizes the change in the residual density of states,
which diverges at Γ = Γ2.

In conclusion, we have studied a model of spin-
less fermions interacting with an Einstein phonon us-
ing Abelian bosonization. With increasing coupling, the
phonon mode softens, and at g → ∞, distortion occurs.
The present model resembles closely to the underscreened
Kondo model in magnetic field. Especially, the singu-
lar Fermi liquid behaviour12 of the latter in zero mag-
netic field corresponds to the g → ∞ limit of the former.
Closed expression is derived for the local electronic den-
sity of states, which diverges at the critical coupling, in
accordance with the singular Fermi liquid picture. This
should be observable in point contact spectroscopy, or on
a molecule trapped near a tunnel junction, and influence
the current-voltage characteristic as well.
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12 P. Coleman and C. Pépin, Phys. Rev. B 68, 220405 (2003).
13 R. Shankar, Acta Phys. Pol. B 26, 1835 (1995).
14 J. von Delft and H. Schoeller, Ann. Phys. (Leipzig) 7, 225

(1998).
15 G. Zaránd and J. von Delft, Phys. Rev. B 61, 6918 (2000).
16 M. Fabrizio, A. O. Gogolin, and P. Nozieres, Phys. Rev.

Lett. 74, 4503 (1995).
17 V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812

(1992).
18 P. Schlottmann and P. D. Sacramento, Adv. Phys. 42, 641

(1993).
19 P. A. Wolff, Phys. Rev. 124, 1030 (1961).
20 P. Schlottmann, Phys. Rev. B 17, 2497 (1978).
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