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Abstract. – We study the conduction of heat across a narrow solid strip trapped by an external
potential and in contact with its own liquid. It is possible to produce structural changes in the
trapped solid by altering the depth of the confining potential. We find, using nonequilibrium
molecular dynamics simulations, supported wherever possible by simple analytical calculations,
the thermal resistance in the liquid, solid and interfacial regions (Kapitza resistance) as the
solid undergoes such transitions.

Introduction. – The transport of heat through small and low dimensional systems has
enormous significance in the context of designing useful nano-structures [1]. Recently, it was
shown [2] that a narrow solid strip trapped by an external potential [3–6] and surrounded by
its own fluid relieves mechanical stress via the ejection or absorption of single solid layers [7–9]
to and from the fluid. The trapping potential introduces large energy barriers for interfacial
capillary fluctuations thereby forcing the solid-liquid interfaces on either side of the solid
region to remain flat. The small size of the solid also inhibits the creation of defects since
the associated inhomogeneous elastic displacement fields need to relax to zero quickly at the
boundaries, making the elastic energy cost for producing equilibrium defects prohibitively
large. Therefore the only energetically favourable fluctuations are those that involve transfer
of complete layers which cause at most a homogeneous strain in the solid [2]. Such layering
transitions were shown to affect the sound absorption properties of the trapped solid in rather
interesting ways [2]. What effect, if any, do such layering transitions have for the transfer of
heat?

Heat transport across model liquid-solid interfaces has been studied in three dimensions for
particles with Lennard Jones interactions in Ref. [10] along the liquid-solid coexistence line.
The dependence of the Kapitza (interfacial) resistance [11,12] on the wetting properties of the
equilibrum interface was the focus of this study. It was shown that a larger density jump at the
interface causes higher interfacial thermal resistance. In this Letter, we use a nonequilibrium
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molecular dynamics simulation to investigate heat conduction through a trapped solid (in
two dimensions) as it undergoes layering transitions as a response to changes in the depth
of the trapping potential. Apart from the layering transition reported in Ref. [2] we find
another mode of structural readjustment viz. increase in the number of atoms in the lattice
planes parallel to the interface by the spontaneous generation and annihilation of dislocation
pairs. The heat conductance, in our study, shows strong signatures of both of these structural
transformations of the trapped solid.

System and simulations. – We consider a two dimensional (2d) system of N atoms of
average density ρ = N/A within a rectangular box of area A = Lx×Ly (Fig.1(a)). The applied
potential, φ(~r) = −µ for ~r ∈ S which goes to zero with a hyperbolic tangent profile of width
δφ elsewhere, enhances the density (ρs > ρ) in the central region S of area As = Lx × Ls,
ultimately leading it to a solid like phase. TL and TR > TL are the temperatures of the two
heat reservoirs in contact with the liquid regions at either end.

A large number of recent studies in lower dimensions has shown that heat conductivity is, in
fact, divergent as a function of system size [13–15]. Thus it is more sensible to directly calculate
the heat current jE (> 0 ) flowing from the high to low temperature, or the conductance of
the system G = jE/∆T (or resistance R = 1/G), ∆T (> 0 ) being the temperature difference,
rather than the heat conductivity.

We report results for 1200 particles interacting via the soft disk potential u(rij) = 1/r12
ij

taken within an area of 24×60. In absence of any external potential, a 2d system of soft disks
at this density ρ ≈ 0.83 remains in the fluid phase. The length and the energy scales are set
by the soft disk diameter d = 1, and temperature kBT respectively while the time scale is set
by τs =

√

md2/kBT . The unit of energy flux jE is thus (kBT/τsd). The unit of resistance and
conductance are τsd and (τsd)−1 respectively. Periodic boundary conditions are applied in the
x-direction. We use the standard velocity Verlet scheme of molecular dynamics (MD) [16] with
equal time update of time-step δt, except when the particles collide with the ‘hard walled’ heat
reservoirs at y = 0 and y = Ly. We treat the collision between the particles and the reservoir
as that between a hard disk of unit diameter colliding against a hard, structure-less wall. If
the time, τc, of the next collision with any of the two reservoirs at either end is smaller than
δt, the usual update time step of the MD simulation, we update the system with τc. During
collisions with the walls Maxwell boundary conditions are imposed to simulate the velocity of
an atom emerging out of a reservoir at temperatures TL (at y = 0) or TR (at y = Ly) [14]:

f(~v) =
1√
2π

(

m

kBTW

)3/2

|vy| exp

(

− m~v2

2kBTW

)

(1)

where TW is the temperature (TL or TR) of the wall on which the collision occurs. During
each collision, energy is exchanged between the system and the bath. In the steady state, the
average heat current flowing through the system can, therefore, be found easily by computing
the net heat loss from the system to the two baths (say QL and QR respectively) during
a large time interval τ . The steady state heat current is given by 〈J〉 = limτ→∞ QL/τ =
− limτ→∞ QR/τ . In the steady state the heat current (the heat flux density integrated over
x) is independent of y. This is a requirement coming from current conservation. For a
homogeneous system jE = 〈J〉/Lx. However if the system has inhomogeneities then the flux
density itself can have a spatial dependence and in general we can have jE = jE(x, y). In our
simulations we have looked at jE(x, 0) and jE(x, Ly).

Results. – The system is first allowed to reach the steady state in a temperature gradient
with the two walls at right and left being maintained at temperatures of kBTR = 1.5 and
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Fig. 1 – (Color online) (a) A schematic diagram of the system showing the liquid and solid regions
produced by the external chemical potential of depth −µ. The various dimensions mentioned in the
text are also marked in the figure. (b) Plot of temperature profile kBT (y) and fourth moment of

velocity m
√

〈v4(y)〉/8 at µ = 13. (c) The local density profile along y-direction at µ = 13. (d) The
isothermal compressibility κT as a function of y at µ = 13. Compressibility shows strong peaks near
the interfaces. Due to small size, interfacial enhancement of compressibility permeates right through
the whole of solid region. In (c) and (d) lines are guides to eye.

kBTL = 0.5 such that the current density integrated over the whole x-range is the same at
all y. The local temperature can be defined as kBT (y) = 〈1/2 mv2(y)〉, where the averaging
is done locally over strips of width d = 1 and length Lx. If local thermal equilibrium (LTE)
is maintained we should have, 〈v4(y)〉 = 8(kBT (y)/m)2. We find kBT (y) and 〈v4(y)〉 as a
function of distance y from cold to hot reservoir (Fig. 1(b)). From Fig. 1(b) it is evident that
the temperature profile is almost linear in the single phase regions, with sharp increase near the
interfaces and LTE is approximately valid in all regions. With increased µ, the temperature
difference between the edges of the solid region decreases indicating an enhancement of heat
conductance within the solid. The temparature jumps at the interfaces is a measure of the
Kapitza or contact resistance (RK) [12] defined as,

RK =
∆T

jE
(2)

where ∆T is the difference in temperature across the interface. The Kapitza resistance in-
creases with increasing trapping potential. It is evident that the interfaces are the regions of
the highest resistance in the system. This large resitance can be traced back to large density
mismatch at the contact of two phases. In Fig.1(c) we plot the local density profile ρ(y)d2.
The trapping region shows large density corresponding to the solid. Also the colder liquid
near the reservoir on the left shows a larger density than the hotter liquid near the one on
the right. In Fig.1(d) we plot the local compressibility κT (y) defined via κT = ρ−2(∂ρ/∂µ)T .
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Fig. 2 – Plot of the Kapitza resistance, RK , expressed in units of τsd as a function of the potential
depth µ, shows a jump at the layering transition.

Surprisingly, the compressibility of the interfaces is very large making the narrow solid region
also unusually compressible pointing to the presence of large local number fluctuation.

In Fig. 2 we have plotted the Kapitza resistance Rk across the solid liquid interface,
averaged over the two interfaces, as a function of the strength of the external potential µ. The
inset of Fig. 2 shows the heat flux through the system as a function of µ. As µ increases, the
atoms from the surrounding liquid get attracted into the potential well and the density of the
liquid becomes lower. The density mismatch at the solid-liquid interface therefore increases
progressively. This figure shows fairly sharp increase in Rk as well as sharp decrease in current
density jE near µ = 8 and 12. As we will see later, these are the µ values at which the solid
undergoes two types of layering transitions.

In Fig.3 we show the heat conductance in the solid region Gs as a function of strength
of the trapping potential µ. The inset in Fig.3 shows the change in the averaged density of
the solid region ρsd

2. The thick solid line in Fig.3 is an analytical estimate obtained from
a free volume type calculation [17] to be discussed in the next section. The ρsd

2 − µ plot
shows clear staircase-like sharp increases near the same values of µ (≈ 8 and 12) where sharp
changes in thermal conductance occur (Fig.3). With increase in the strength of the trapping
potential, we observe two modes of density enhancement: (A) A whole layer of particles enter
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Fig. 3 – Plot of the thermal conductance of the solid region, Gs [in units of (τsd)−1] as a function
of µ. The points denote simulation data and the solid line a free volume type calculation of heat
conductance [Gs]fv. The inset shows the corresponding change in solid density ρsd

2.
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Fig. 4 – (Color online) Overlapped density plot of 500 configurations in the region trapped by external
potential µ: (a) A 23 × 23 triangular lattice solid formed from a 23 × 22 triangular lattice as the
potential is increased from µ = 7 to µ = 8. (b) Local density peaks hop in x-direction to incorporate
> 23 particles in lattice planes in response to increased potential µ = 11. (c) A 24 × 23 triangular
lattice solid at µ = 12. Notice the increase in particle numbers in the lattice planes. (d) Configuration
obtained after 1.5×104δt as a 24×23 steady state solid at µ = 16 is quenched to µ = 24. This shows
a dislocation pair – a 23-layered region trapped in between a 24-layered solid. At steady state (after
a time 105δt) dislocations annihilate to produce a 24 × 24 triangular lattice solid. Color code: blue
(dark): low density and red (light): high density.

to increase the number of lattice planes in y-direction. This happens, e.g., as µ is increased
from 7 to 8. Thus in this mode the separation of lattice planes parallel to the liquid-solid
interface decreases (see Fig.4(a)). (B) Each of the lattice planes parallel to the interface grow
by an atom thereby decreasing the interatomic separation within each lattice plane. This
happens, e.g., as one increases µ from 10 to 12 (see Fig.4(c)). These two modes of density
fluctuations leave their signatures by enhancing the heat conductance Gs - the effect of A
being more pronounced than that of B.

With increase in µ, these two modes alternate one after another, allowing the system
to release extra stress developed due to particle inclusion in one direction in one cycle, by
inclusion of particles in the perpendicular direction in the next cycle. Finally, at large enough
µ the density of the solid region saturates ending the cycles. It is also interesting to observe,
how the particles accomodate themselves going from Fig.4(a)-(d). We find strained triangular
solids with 23 × 23, 24 × 23 and 24 × 24 unit cells at µ = 8, 12 and 24 respectively (See
Fig.4). In the intermediate configurations one observes metastable dislocation pairs (Fig4(d))
and peaks in the local particle density which corresponds to a few particles rapidly oscillating
between two neighbouring positions (Fig4(b)) in order to maintain commensurability. Such
rapid, localized, particle fluctuations may be observable in experiments.

The layering transition in the solid by process (A) occurs via metastable dislocation for-
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mation and annihilation by incorporating particles from the liquid region. The kinematics
of dislocation generation, transport and decay is controlled by diffusion which is a very slow
process [7] in a solid compared to particle collision and kinetic energy transfer times. Thus it
is possible for a system with metastable dislocation pairs to reach an effective thermal steady
state. Fig.4.(d) shows overlapped configurations of the solid region containing a dislocation-
antidislocation pair, as the system is quenched from µ = 16 to µ = 24. The overlapped
configurations are separated by time 100 δt and collected after a time of 1.5 × 104 δt after
the quench. At this stage the system is in a metastable state though, at the same time,
maintaining LTE that we check by computing 〈v4(y)〉 and kBT (y) locally. This gives a heat
conductance Gs = 2.29 (τsd)−1. After a further wait for 105 δt the dislocations get annihi-
lated. At this stage the whole solid region is transformed into an equilibrium 24×24-triangula
lattice. On measuring the heat conductance now, we obtain Gs = 3.53 (τsd)−1. Thus with
the annihilation of a single dislocation pair the conductance of the solid rises by about 54%!
Metastable configurations with dislocation pairs, therefore, have strikingly different thermal
properties in this small system. Note that in the present system, configurations containing
dislocations are always metastable since dislocations are either annihilated or are lost at the
interface [2].

Free volume heat conductance. – Finally, we provide a brief sketch of an approximate
theoretical approach for calculating heat conductance within the solid region. A detailed
treatment of this approach is available in Ref. [17]. The continuity of the energy density can
be utilized to obtain an exact expression for α-th component of the heat flux density

jα(r) = jK
α (r) + jU

α (r)

=
∑

i

δ(r − ri)hiv
α
i +

1

2

∑

i,j 6=i

θ(xα
i − xα)

∏

ν 6=α

δ(xν − xν
i )fβ

ij(v
β
i + vβ

j ). (3)

Here θ(x) is the Heaviside step function, δ(. . .) is a Dirac delta function, hi = mv
2
i /2+φ(ri)+

∑

i>j u(rij), φ(ri) is an onsite potential and u(rij) is inter-particle interaction. The first term

in Eq.3, jK
α (r), denotes the amount of energy carried by particle flux (convection) and jU

α (r)
denotes the net rate at which work is done by particles on the left of xα on the particles on
the right (conduction). The α-th component of the integrated heat current density over the
solid region is,

〈Iα〉 =
∑

i

〈 hiv
α
i 〉 −

1

4

∑

i,j 6=i

〈

∂u(rij)

∂rij

xα
ijx

β
ij

rij
(vβ

i + vβ
j )

〉

. (4)

In this study we focus on the average heat current density along y-direction, jE = 〈Iy〉/LxLs.
We assume LTE and ignore conductance inside solid [17]. Then assuming the conductance of
our present system to be simply proportional to that of a hard disk system with an effective
diameter σ, the heat conductance in units of (τsd)−1 can be expressed as,

Gs =
jE

∆T
=

[

3
ρs

Ls

y2
c

τc

] (

d

σ

)2

(5)

where ρs is the average density of the solid, yc is the average separation between the colliding
particles in y-direction and τc is the mean collision time. The extra factor of (d/σ)2 is due to
the mapping of the soft disks of diameter d to effective hard disks of diameter σ.

We estimate y2
c and τc from the fixed neighbor free volume theory as in Ref. [17]. Briefly,

we assume that a (hard) test particle moves in the fixed cage formed by the average positions
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of its neighbors and obtain the average values [y2
c ]fv from geometry and the timescale [τc]fv =

c
√

Vfv/kBT where Vfv is the available free volume of the test particle moving with a velocity
derived from the temperature kBT . The effective hard disk diameter σ and the constant c of
O(1) are both treated as fitting parameters. Using kBT = 1, d/σ = 1.13 and c = 0.4 we obtain
a fit to the Gs −µ curve with a layering transition from 22 to 23 layers near µ = 8. The fitted
result, depicted as the solid line in Fig3, is seen to reproduce most of the qualitative features
of the simulation results, especially the jump in conductance due to the layering transition.

Conclusion. – We have shown that details of the structure have a measurable effect on
the thermal properties of the trapped solid lying in contact with its liquid. In this study, we
were particularly interested in exploring the impact of structural changes, viz. the layering
transitions, on heat transport. One must, however, remember that, the layering transition is a
finite size effect [2] and gets progressively less sharp as one goes to very large channel widths.
An important consequence of this study is the possibility that the thermal resistance of in-
terfaces may be altered using external potential which cause layering transitions in a trapped
nano solid. We have shown that metastable dislocations drastically reduce the conductance of
an otherwise defect free nano sized solid. Recently, electrical [18] and thermal [17] transport
studies on confined solid strips have also revealed strong signatures of such structural transi-
tions due to imposed external strain. We believe that these phenomena have the potential for
useful applications e.g. as tunable thermal switches or in other nano engineered devices.
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