
Fluctuations due to the nonlocal character of collisions

K. Morawetz1,2

1Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany and
2Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany

It is shown that the collision integral describing the nonlocal character of collisions leads to
the same mean-field fluctuations as proposed by Boltzmann-Langevin pictures. It is argued that
this appropriate collision integral contains the fluctuation-dissipation theorems in equilibrium itself
and therefore there is no need to assume additionally stochasticity. This leads to tremendous
simplifications in numerical simulation schemes.
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The question how to describe sufficiently the fluctua-
tions in dynamical systems of many interacting particles
is as old as the discovery of the Brownian motion. Dif-
ferent schemes have been developed in different branches
of physics. Mostly additional stochasticity is assumed to
account for such fluctuations. The goal of this paper is
to show how the correct fluctuations can be described by
a realistic collision scenario within the deterministic ki-
netic theory without ad-hoc assumptions about stochas-
ticity. Here we will briefly outline the attempts in nuclear
physics having its counterparts in other fields, of course.

It has been noticed in the beginning of the 80th that
the time-dependent mean-field description (TDHF) of
nuclear collisions cannot describe the experimental fluc-
tuations of observables Q like mass, charge and momenta
of emitted particles [1] if the naive expectation

∆Q2(t) = Tr[Q2ρ̂n(t)] − [TrQρ̂n(t)]2 (1)

with the TDHF density matrix ρ̂n is applied. This de-
ficiency has been cured by a variational approach [2–6]
which leads to the propagation of fluctuations from t0

∆Q2(t1) = lim
η→0

1

2η2
Tr[ρ̂n(t0, 0) − ρ̂n(t0, η)]2 (2)

where ρ̂n(t, η) evolves with the TDHF equa-
tion but with the boundary condition ρ̂n(t, η) =
exp (−iηQ)ρ̂n(t) exp (iηQ). In this way the fluctuations
are obtained by propagating back in time but they
become explicitly dependent on the observables Q. It
has been shown that the expression (2) leads besides the
TDHF fluctuation (1) to an additional part which can be
described by higher order diagrams in the interaction [4].
The application of this procedure leads to a significant
enhancement of the fluctuations [1, 7, 8]. The fact that
higher order diagrams are necessary to describe more
appropriate fluctuations shows that the collisions are
not described appropriately in usual Boltzmann (BUU)
simulations.

Alternatively there has been developed the time de-
pendent generator coordinator method (TDGCM) [9, 10]
which expands the wave function Ψ in a set of TDHF

wave functions φN

|Ψ(t)〉 =
∑

N

|φN (t)〉fN (t) (3)

where the coefficients fN are determined from minimizing
the action. The TDGCM wave function leads to optimal
fluctuations if the TDHF basic set φN (0) is chosen such
that the variable Q becomes a generator of the path at
finite time t. This TDGCM schema is equivalent to the
above described Balian-Veneroni variational approach [2]
in the random phase approximation (RPA) limit. The
advantage of the TDGCM schema is that it provides for
optimal paths. However, both schemes are too limited
for practical applications since one can handle only small
sets of collective correlation channels.

This practical limitation has led to the development
of stochastic TDHF [10] which approximates the time
evolution of the N-particle density operator ρ̂ at a small
time steps ti by the diagonal elements of the expansion
in TDHF density operators ρ̂n

ρ̂(ti) =
∑

n

Wnρ̂n(ti) +
∑

nn′

WnPn′nti[ρ̂n′(ti) − ρ̂n(ti)].(4)

The transition probability is given by the matrix element
of TDHF Slater states at time ti

Pnn′ =
2π

~
|〈n|V |n′〉|2δ(En − E′

n) (5)

which leads to a Monte Carlo method of evolving an ini-
tial state into an ensemble of Slater states with the prob-
ability Wm = 1 −

∑

n′

Pn′nti for m = n and Wm = Pmn

for m 6= n.
The usually used Boltzmann collision terms with the

inclusion of Pauli-blocking (BUU) cannot account for
these fluctuations since the collisions are treated as ideal,
i.e. local in space and time. Therefore there has been pro-
posed another method of including more realistic fluctua-
tions in the Boltzmann equation for the one-particle dis-
tribution f by adding a stochastic term δI to the collision
integral, called Boltzmann - Langevin picture [11–17]

df

dt
= (1 − f)Win − fWout + δI (6)
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where schematically the scattering - out and -in proba-
bility of a phase space cell is Wout/in. This Boltzmann-
Langevin equation can be formally derived from the
stochastic TDHF equation (4) if the one-particle reduced
density is traced out. This equation has been applied for
simulation of heavy-ion collisions quite frequently [18–
25]. In these treatments the Langevin term in (6) is
mostly assumed to be Markovian

〈δI〉 = 0, 〈δI(t)δI(t′)〉 = 2Dδ(t − t′) (7)

which leads with (6) to the equation of motion for the
variance σ2 = 〈f2〉 − 〈f〉2

dσ2

dt
= −

2

τ
σ2 + 2D (8)

with 1/τ = Wout+Win. From the stochastic TDHF equa-
tion (4) the form (7) follows precisely neglecting fluctu-
ations in the potential i.e. higher order diagrams [10].
Again this is a hint that the collisions have to be treated
more appropriately. Before suggesting a way to describe
fluctuations more realistically, let us discuss some princi-
ple problems of Boltzmann-Langevin approaches.

We have in principle no reason to see the time evolu-
tion of the density operator stochastically since the basic
van-Neumann equation is deterministic and subsequent
derived equations should be so as well. The ad-hoc as-
sumption about stochasticity can mimic the numerical
noise unavoidable in solving such equations and to a cer-
tain extent higher-order correlations. Theoretically it is
a problem since the collision integral emerges itself from
averaging about small scale fluctuations [26]. Therefore
it is ambiguous to divide correlations into an averaged
collision integral and a stochastic term miming higher-
order correlations. This has been sometimes motivated
by the need of the fluctuation-dissipation theorem asso-
ciating the collision integral with dissipation. In con-
trast one should observe that the fluctuation-dissipation
theorem emerges itself from appropriate collision inte-
grals alone since they vanish in equilibrium. This can
be seen best from ring summation approximation (RPA,
GW, bubble...) leading to the Lenard-Balescu collision
integral [27, 28]. The latter one vanishes exactly if the
quantum fluctuation-dissipation theorem is fulfilled. In
other words if the collision integral is derived appropri-
ately it leads to an equilibrium with correct fluctuation-
dissipation theorem and there is no need for additional
stochastic terms.

Introducing fluctuations the determination of f and
the stochastic process δI remains phenomenological in
the sense that they account partially for such an appro-
priate collision integral. This is a practical need if the
appropriate collision integral is not solvable and one is
restricted to Born (Boltzmann) approximation. Here in
this letter we will show that the same mean fluctuations
are generated from the deterministic but more realistic

nonlocal extension of the Boltzmann collision integral
[29–32]. The advantage is that besides the microscopic
foundation the latter one has already established a prac-
tical and fast numerical method.

Let us return to the Boltzmann-Langevin equation.
The fluctuation term derived from stochastic TDHF
leads to the educated guess [20]

2D = (1 − 〈f〉)Win + 〈f〉Wout (9)

which has suggested an interesting procedure to include
fluctuations dynamically in BUU codes. From (8) one
sees that the choice (9) reproduce the equilibrium vari-
ance σ2 = f0(1 − f0) and that the deviation between
the actual variance and the statistical value δσ2 = σ2 −
〈f〉(1 − 〈f〉) obeys

dδσ2

dt
= −

2

τ
δσ2. (10)

Since δσ2 = 0 is a solution of (10), the averaged value 〈f〉
can be parametrized as local equilibrium value such that
at a given phase-space cell and time a small propagation
will not deviate the variance from this result [20]. Nu-
merically the authors in [20] used instead of the variance
in distribution the density projection

σ2
n(r, t) =

4

V

∫

dp

~3
〈f〉(1 − 〈f〉) (11)

which has been realized in each phase-space point of col-
lisions.

Besides the practical success of such descriptions in nu-
merical solutions it remains the more principle question
of the validity of the ad-hoc stochastic assumption. As
we have pointed out this assumption partially cures the
ideal collision scenario of space and time point-like parti-
cles. We will follow now the other point of view and claim
that if the collisions are described more realistically by
nonlocal events then the fluctuations should be correctly
induced by itself.

The nonlocal extension of the Boltzmann equation has
been given in [29, 30] and the finite duration and dy-
namical size of nucleons are calculated in [31]. The im-
plementation in BUU codes has allowed to describe ex-
perimentally noticeable effects [32–34]. The prediction of
a change in the reaction mechanisms [35] has been nicely
confirmed by proper scaling of experimental data [36].
The correlations by the nonlocal character of collisions
are capable to describe long range order as typical for
phase transitions [33].

These nonlocal extensions are more realistic than the
Boltzmann equation since they lead to the inclusion of
two-particle correlations while in the Boltzmann equation
these correlations are absent. We will show now that this
more realistic description of the individual collision event
induces also more realistic fluctuations which should be
compared to the above described treatments. Especially
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we will find that the nonlocal corrections lead to induced
mean-field fluctuations of the form (11).

The nonlocal quasiparticle kinetic equation for the dis-
tribution function of particle a, f1 ≡ fa(k, r, t), derived
within the non-equilibrium Green’s function technique
[29, 30] has the form of a Boltzmann equation with the
quasiparticle energy ε1 = ε(k, r, t)

∂f1

∂t
+

∂ε1

∂k

∂f1

∂r
−

∂ε1

∂r

∂f1

∂k
= s

∑

b

∫

dpdq

(2π)5~7
P±

×
[

(

1−f1

)(

1−f−
2

)

f−
3 f−

4 − f1f
±
2

(

1−f±
3

)(

1−f±
4

)

]

(12)

and the spin-isospin etc degeneracy s. The superscripts
± denote the signs of non-local corrections: f±

2 ≡
fb(p, r±∆2, t), f±

3 ≡ fa(k−q±∆K , r±∆3, t±∆t), and
f±
4 ≡ fb(p+q±∆K , r±∆4, t±∆t). For the out-scattering

part of (12) both signs can be given equivalently [37]. The
scattering measure is given by the modulus of the scatter-
ing T-matrix P± = |T R

± |2δ(ε1 + ε2 − ε3 − ε4 ± 2∆E). All
corrections, the ∆’s, describing the non-local and non-
instant collision are given by derivatives of the scattering
phase shift φ = Im lnT R(Ω, k, p, q, t, r)

∆t =
∂φ

∂Ω

∣

∣

∣

∣

ε1+ε2

∆2 =

(

∂φ

∂p
−

∂φ

∂q
−

∂φ

∂k

)

ε1+ε2

∆E = −
1

2

∂φ

∂t

∣

∣

∣

∣

ε1+ε2

∆3 = −
∂φ

∂k

∣

∣

∣

∣

ε1+ε2

∆K =
1

2

∂φ

∂r

∣

∣

∣

∣

ε1+ε2

∆4 = −

(

∂φ

∂k
+

∂φ

∂q

)

ε1+ε2

.

(13)
The nonlocal kinetic equation (12) covers all quantum
virial corrections on the binary level and conserves den-
sity, momentum and energy including the corresponding
two-particle correlated parts [30]. It requires no more
computational power than solving the Boltzmann equa-
tion [32, 34].

We will now derive the fluctuation contribution to the
mean-field from this collision integral. Therefore we use
the fact that the mean-field can be considered as zero-
angle collisions, a collision which does not change mo-
menta of particles but changes its phase. Summing up
all these changes in phase gives just the mean-field po-
tential due to the surrounding media. When deriving col-
lision integrals one tries to share correlations in such a
way that all mean-field like contributions are collected in
the quasiparticle energies on the left side and all true col-
lisions with finite transferred momenta are on the right
side. In addition we will observe now that due to the
nonlocal character of the collision there is a finite zero
transfer momenta channel hidden in the nonlocal colli-
sion integral which can be rewritten into the drift side of
the kinetic equation and which gives exactly the fluctua-
tions (11).

To show this we rewrite the energy-conserving δ-
function in (12) as

δ

(

k2

2ma
+

p2

2mb
−

(k − q)2

2ma
−

(p + q)2

2mb

)

= δ

(

|q|(
k

ma
−

p

mb
) ·

q

|q|
−

q2

2
(

1

ma
+

1

mb
)

)

=
δ(|q|)

(

k
ma

− p
mb

)

· q
|q|

+ δ(q 6= 0) (14)

where the channel q 6= 0 represents the usually collision
integral of (12). The q = 0 channel leads now to an
additional part absent in usual local kinetic equations like
the Boltzmann equation. To convince the reader about
this novel observation let us rewrite the Pauli-blocking
factors of (12) for the q = 0 channel according to (14)

[

(

1−f1

)(

1−f−
2

)

f−
3 f−

4 − f1f
±
2

(

1−f±
3

)(

1−f±
4

)

]

q=0

= f−
2 (1 − f−

2 )
[

f−
1 − f1

]

. (15)

We see that in the case of local kinetic equations without
delays this specific channel disappears since f−

1 = f1.
Therefore in contrast to the usual local kinetic equa-
tions the nonlocal equation possesses a finite zero-angle
channel in the collision integral which is of mean-field
type since no energy or momenta is exchanged. The fact
that retardation leads to an additional correction to the
Bogoliubov–Hartree-Fock mean-field has been observed
first within linear response in [38].

From (12) we obtain now

∂f1

∂t
+

∂ε1

∂k

∂f1

∂r
−

∂ε1

∂r

∂f1

∂k
=

〈f−
1 −f1〉

τ̃
+s

∫

q 6=0

dpdq

(2π)5~7
P±

×
[

(

1−f1

)(

1−f−
2

)

f−
3 f−

4 − f1f
±
2

(

1−f±
3

)(

1−f±
4

)

]

(16)

where

1

τ̃
=
〈2πs

~

∫

dpdq

(2π~)6
|T r|2δ

(

k · q

ma
−

p · q

mb

)

fp(1 − fp)
〉

. (17)

Here we use the approximation of thermal averaged de-
lays, 〈...〉, which allows us to pull out the f−

1 term which
contains the p-dependent shift under the integration of
the 1/τ̃ term. This serves here for legibility and can
be rendered exactly if one keeps the corresponding shift
terms under the (p, q) integral of (17).

The resulting equation (16) is a delay-differential equa-
tion and has lead already to an interesting interplay be-
tween stochastic bifurcations and relaxation due to iner-
tia [39]. We see from (16) and (17) that terms 1/τ̃ ∝ σ2

of (11) appears. In order to see that this additional term
represents mean-field fluctuations let us expand

〈f1−f−
1 〉=〈∆t

∂f

∂t
+∆3

∂f

∂r
+∆K

∂f

∂k
〉≈∆̃3

∂f

∂r
+∆̃K

∂f

∂k
(18)



4

where in the last step we have replace the time derivative
of f by the free drift motion ∂f1

∂t ≈ −∂ε1

∂k
∂f1

∂r + ∂ε1

∂r
∂f1

∂k
leading to the on-shell shifts

∆̃3 = 〈∆3 − ∆t
∂εk

∂k
〉 = −〈

∂φon

∂k
〉

∆̃K = 〈∆K + ∆t
∂εk

∂r
〉 = 〈

∂φon

∂r
〉. (19)

Now we can shift (18) from the right to the left (drift)
side of (16) to obtain finally

∂f1

∂t
+

(

∂ε1

∂k
+

∆̃3

τ̃

)

∂f1

∂r
−

(

∂ε1

∂r
−

∆̃K

τ̃

)

∂f1

∂k

= s
∑

b

∫

q 6=0

dpdq

(2π)5
P±

×
[

(

1−f1

)(

1−f−
2

)

f−
3 f−

4 − f1f
±
2

(

1−f±
3

)(

1−f±
4

)

]

.(20)

We see that an explicit fluctuating term ∼ 1/τ̃ ∼ σ2
n(r, t)

emerges to the mean field which has the form of (11).
Therefore we conclude that the variance of fluctuations

from the Langevin–Boltzmann equation can be repro-
duced in a deterministic way from the nonlocal extension
of the Boltzmann equation. The stochastic treatment
in numerical realizations can be considered therefore as
a numerical trick to reproduce the correct determinis-
tic fluctuations. The nonlocal collision scheme instead
provides a first principle theory of such fluctuations. It
gives probably the same practical results but with much
less numerical effort since the collision scenario of the
usual BUU code is modified only slightly with no ad-
ditional computational time required [32, 34]. Therefore
we have demonstrated that the ad-hoc assumption about
Langevin sources to the Boltzmann equation is unneces-
sary if the collisions are treated non-locally.

The clarifying discussions with P.G. Reinhard are
gratefully acknowledged.
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[29] V. Špička, P. Lipavský, and K. Morawetz, Phys. Lett. A

240, 160 (1998).
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