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We apply ab initio quantum-chemical methods to calculate correlation effects on cohesive proper-
ties of Mg, thereby extending the method of increments to metallic systems. Metals require special
treatment because of two distinct features. Since the conduction bands are only partially filled, we
cannot construct well localized orbitals from them. Furthermore we must deal properly with charge
screening which obviously is a correlation effect. A starting point for treatment of the many-body
correlation effects in solids is a reliable Hartree-Fock self-consistent-field (HF SCF) result for the
infinite system. In the case of Mg the HF cohesive energy of the solid is significantly underesti-
mated with respect to the experimental value. Summing up all correlation contributions, we obtain
nearly 100 % of the difference between the experimental and HF cohesive energies. Ignoring the
correlations, HF model gives rather good agreement with experiment of one lattice parameter (c),
but incorrect value for c/a ratio because of too large lattice constant a. Application of the method
of increments allows us not only to improve the HF values, giving deviation by about 1% from
experimental values, but also to explain the reason for these changes.

PACS numbers: 71.15.-m, 71.15.Nc, 31.15.Ar, 31.25.-v, 71.20.Dg

I. INTRODUCTION

The field of many-body theory has been developing
at high speed in recent years. A significant amount of
effort is directed toward affordable descriptions of elec-
tronic correlation in infinite periodic systems. The most
widely used approach here is density-functional theory
(DFT) [1, 2]. Within a DFT-based formalism one avoids
constructing the many-body wavefunction of the system
and instead computes directly ground-state properties
from its charge density. However, the exact form of the
functional embodied in the Hohenberg-Kohn theorem is
unknown and, therefore, approximations are required.
One of the most important, local-density approximation
(LDA), developed by Kohn and Sham [2], works success-
fully for the ground-state properties of weakly correlated
systems. At the same time, for strongly correlated sys-
tems it is far from satisfactory. There have been many
improvements proposed to the LDA (e.g. taking into ac-
count the on-site Coulomb interaction U (LDA+U ) [3] or
random phase approximation (RPA-LDA) [4]), but their
applicability depends on the system involved. Generally,
the present DFT-based approaches are not amenable to
systematic improvements, although they have seen more
and more refinements [5–9].

The alternative approach to the problem of electron
correlations tries to obtain the many particle wavefunc-
tion of the system by approximately solving the corre-
sponding Schrödinger equation. One can systematically
improve this approach by enlarging the basis set and by
including more terms in the expansion of the wavefunc-
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tion of the system. However such wavefunction-based
approaches scale quite unfavorably with the size of the
system. Therefore in their ab initio form they have
been applied mainly in the quantum chemistry of small
molecules. In condensed-matter physics, wavefunction-
based many-body approaches are generally used in con-
jugation with model Hamiltonians. Usually various ap-
proximations have to be made, and the extension of ab

initio quantum-chemistry-type methods to infinite sys-
tems did not seem feasible for a long time. Recently, us-
ing the idea of local excitations in the electronic structure
theory of solids, Stoll developed the so-called “method of
increments” [10]. This method combines Hartree-Fock
(HF) calculations for periodic systems with correlation
calculations on the corresponding finite embedded clus-
ter, where the total correlation energy per unit cell of
a solid is written in terms of interactions of increasing
complexity among the electrons assigned to localized or-
bitals comprising the solid under consideration. Calcu-
lations based upon the method of increments have been
performed on a variety of solids [11]. Among them are in-
sulators and semiconductors, rare-gas crystals, polymers,
and graphite.

Metals require special treatment because of two dis-
tinct features. Since the conduction bands are only
partially filled, we cannot construct well localized or-
bitals from them. Furthermore we must deal properly
with charge screening which obviously is a correlation ef-
fect. One would expect that the metallic solid should
be well described within DFT. Unfortunately, this seems
to be not the case. For instance, in the case of solid
mercury the method of increments was successfully ap-
plied, whereas various DFT-functionals fail. The ob-
tained ground-state properties agree well with the ex-
perimental values [12].

Here we present the results for magnesium. It is an
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important alkaline-earth element. Mg has the hcp struc-
ture with a c/a ratio equal to 1.624, which is very close to

the ideal one (c/a =
√

8/3 ≃ 1.633). It is a typical metal
and characterized by closed a 3s2 shell. We select mag-
nesium because there are no occupied d-shells present,
whose correlation contributes about half to the cohesion
of mercury, and the calculation can be expected to de-
mand less computing time. From another side, there is
a big contribution of 3p partial density of states (DOS)
to a total DOS at the Fermi level (Fig. 1), that can lead
to strong influence of correlation on 3p orbitals. Ground-
state properties of Mg have been previously studied by
means of HF as well as DFT calculations [13, 14]. The
HF model, ignoring correlations, yields a too small value
for the cohesive energy (−0.27 eV [13] vs. experimental
−1.51 eV). It gives rather good agreement with experi-
ment for one lattice constant (c = 5.13 Å vs. measured
5.21 Å), but underestimated value of c/a ratio (1.553)
because of a too long value of a. As was shown in
Refs. [15–17], where band structures calculated with the
LDA-functional for simple metals were compared with
measurements made with angle-resolved photoemission
spectroscopy, LDA can obviously not account properly
for the correlation effects in such systems. This can also
be confirmed by LDA-calculated ground-state properties
of magnesium: strong underestimation of both lattice
constants, that gives by accident rather good agreement
with the ideal c/a ratio, but a too high cohesive en-
ergy [13, 14]. The choice of functional leads to sometimes
good or sometimes bad agreement with experiment, giv-
ing in the case of the gradient generalized approximation
(GGA: the Perdew-Wang form [18]) excellent coincidence
with the measurements for a, c/a, bulk modulus, and co-
hesive energy [14]. However, it is well known, that a
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FIG. 1: (Color online) The calculated (FPLO [19]) total and
partial density of states of Mg.

systematic improvement towards the exact results is cur-
rently not possible with DFT. Wavefunction-based meth-
ods are more suitable for this purpose. Application of
the method of increments allows us not only to improve
the HF values, but also to explain the reason for these
changes.

The paper is organized as follows: Next section
(Sec. II) is devoted to presentation of the obtained re-
sults and their discussion. There the main ideas con-
cerning the application of the method of increments to
metals are presented (Sec. II A). The embedding pro-
cedure as well as some important features of correlation
calculations are outlined in Sec. II B using magnesium as
an example. Thermodynamic (Sec. II C) and mechanical
(Sec. II D) properties of Mg are discussed in the next two
subsections. Conclusion follows in Sec. III.

II. RESULTS AND DISCUSSION

A. Method of increments for metals

Quantum-chemical correlation methods, developed for
finite systems, can be applied to periodic systems using
the method of increments. In this approach, the total
energy is written as E = EHF + Ecorr, where EHF is the
HF energy of the system, and Ecorr is the contribution of
correlation effects to the total energy per unit cell. The
correlation contribution is computed using the aforesaid
incremental expansion:

Ecorr =
∑

A

εA+
1

2!

∑

A 6=B

∆εAB+
1

3!

∑

A 6=B 6=C

∆εABC+. . . ,

where the summation over A involves orbitals located
in the reference cell, while those over B and C include
all the centers of the crystal. The εA (one-body in-
crement) is computed by considering excitations only
from the A-orbitals, freezing the rest of the solid at
the HF level. The two-body increment is defined as
∆εAB = εAB − [εA + εB], where εAB is the correlation
energy of the joint orbital system AB. Higher-order in-
crements are defined in an analogous way. So, for three-
body term we get: ∆εABC = εABC − [εA + εB + εC ] −
[∆εAB + ∆εBC + ∆εAC ]. Finally, summing up all incre-
ments, with the proper weight factors (according to their
occurrence in the solid), one obtains the exact correlation
energy per unit cell of the infinite system. In order to get
reliable results a size-extensive correlation method must
be used. Of course, the expansion only makes sense if the
incremental expansion is well convergent, i.e., if ∆εAB

rapidly decreases with increasing distance between the
positions A and B and if the three-body terms are signif-
icantly smaller than the two-body ones. This means that
only a few increments need to be calculated, yet a full
account of the short range correlations is achieved this
way.
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A direct transfer of this approach to metallic systems
is not possible since localized orbitals become very long-
range entities. Therefore, a many-body expansion in
terms of such orbitals cannot be expected to have useful
convergence characteristics. In this case we suggest [20]
to start from a system where long-range orbital tails are
absent, and to allow for delocalization only successively
in the course of the incremental expansion. More specif-
ically, when calculating pair contribution for a given or-
bital group combination (A,B), we allow for delocaliza-
tion A → B and B → A, and similarly with the higher-
order terms we allow for delocalization over the triples,
tetraples, etc. It is clear, that the final result is not af-
fected, only the convergence properties of the many-body
expansion are changed. As an additional advantage, we
can calculate individual terms of the expansion from suit-
able embedded finite clusters of reasonable size (for de-
tails see Ref. [21]). In the next section (Sec. II B) we pro-
vide the results of a more extensive study of the method
for magnesium.

B. Incremental expansion

Within the incremental scheme the energy increments
are obtained from finite cluster calculations. Mg-clusters
can be built on the basis of the hcp structure where
the central atom is surrounded by various-size shells of
atoms. There the first shell contains 12 atoms, which
have nearly the same distance (3.197 Å and 3.209 Å) from
the central one (ideal structure). The next group of
atoms (second shell) is at 4.529 Å (about 1.4a) from the
center. Further away the shells have very small changes
in distance, so we can not speak anymore of real shells.
We have tested the convergence of the 1-body incre-
ment and the nearest-neighbor 2-body increment with
respect to the size of the embedding cluster for group II
metals [21]. For magnesium it was found out that the
correlation-energy changes with the number of embed-
ding atoms are small and monotonic: all calculated one-
body and two-body increments differ by at most 0.2÷0.3
mHartree. Therefore, in order to avoid excessive compu-
tational effort, for the embedding we selected a reason-
able size of two shells (18 atoms) (Fig. 2).

The generatin of an embedding for metallic systems is
a difficult task. Clusters of metal atoms have not the
same electronic structure as the three-dimensional bulk
metal. In the cluster the delocalized electrons move to
the surface of the cluster and the central atoms remain
positively charged. In our case the embedding must simu-
late the bulk metal (where each atom is neutral) and not
a finite metallic cluster. In order to achieve neutrality
of the central (correlated) atoms, the embedding atoms
are described with Mg2+-pseudopotential (PP) [22] and
minimal ([1s]) basis set (Basis E1), that was shown to
be both adequate and computationally efficient [21]. This
small basis set prevents the electrons from moving onto
the surface of the cluster (see [21]), but still mimics the

Pauli repulsion of the neighbors sufficiently well. More-
over, this type of embedding (without virtual orbitals in
the embedding region) enables an easy localization of the
central part of the cluster.

Another important characteristic of the bulk metal
is the vanishing gap at the Fermi level, that means in
the language of finite systems, that the HOMO-LUMO
gap has to approach zero. LDA-calculations of HOMO-
LUMO gap of the Mg atom as well as Mg dimer, both
with and without embedding, show that the metallic
character can be much better described with the embed-
ding than in free clusters [21].

Within the initial description of only valence s-basis
functions also for the central atoms we perform a HF
calculation [23] of the cluster and due to the neglect of
any metallic character we can use the standard Foster-
Boys criterion [24] to localize the orbitals. This set of
localized orbitals contains both the embedding orbitals
which are centered at the embedding atoms and also the
orbitals located at the atoms, which are to be correlated.

In the next step, we improve the description of the
atoms to be correlated while keeping frozen the local-
ized orbitals attributed to the atoms of the embedding
region. At the same time, the basis set of the atom to
be correlated has to be enlarged to a reasonable quality
(Basis C1: cc-pVTZ basis set [25]). Using this basis set
in a HF calculation, we recalculate the integrals and re-
optimize the orbitals of the atoms to be correlated. This
provides us with orbitals which are still fairly local, but
are more or less delocalized (metallic) over the atoms
A, B, etc. to be correlated. On top of this HF cal-
culations, we perform a coupled-cluster calculations with
single and double excitations and perturbative treatment
of the triples [CCSD(T)] [23, 26, 27].

FIG. 2: (Color online) Crystallographic structure of hcp Mg.
Dark balls show the studied one-body cluster: Large dark ball
is the central atom and small dark balls are 18 embedding
atoms. Light atoms are shown in order to complete the hcp

cells of Mg.
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The two-body [(∆εAB = εAB − (εA + εB)] and higher
order increments are calculated as follows: while calcu-
lating εA atom B is described equivalently to the atom to
be correlated (A), but only the orbitals on the atom A are
reoptimized, the orbitals on the atom B are kept frozen.
The additional basis functions on the second atom can be
used for reoptimizing the orbitals on the atom to be cor-
related. Thus, the calculation of the one-body increment
that we subtract is made in an environment as close as
possible to the one used for the two-body energy εAB.

Contributions of the one-, two-, and three-body incre-
ments to the total correlation energy are shown in Tab. I.

As was already mentioned above, there is a rather big
contribution of 3p-PDOS to a total DOS at the Fermi
level (Fig. 1), that can lead to strong influence of correla-
tion on the 3p orbitals. It can seem, therefore, reasonable
to discuss the influence of [p] basis on the embedding for
reoptimization of the central orbitals. So, we have per-
formed correlation calculations using Basis E2 (E1 where
polarization p-exponent was added) at the positions of
embedding atoms. The derived changes have only in-
significant differences from the C1/E1-combination.

As might be expected, using a 2-valence-electron PP
for correlated Mg yields also nearly no changes in energy
(see Tab. I): The cohesive part of the correlation con-
tribution is almost uneffected by the core-valence corre-
lations. Therefore, Mg2+-PP together with a sufficient
basis set (Basis C2: E1 augmented by set [2s2p2d1f ]
of polarization functions) can be applied for the further
more time-consuming calculations, such as the optimiza-
tion of the lattice constants and the calculation of 4-body
terms.

To test the influence of the quality of basis set on
the correlated atoms on the computed cohesive energy
we compared the sums of the relative contributions to
the total correlation energy of the 1-body and nearest
neighbor as well as second next neighbor 2-body in-
crements obtained with different basis sets. Ecorr

coh =
∆ε1 +∆ε12×3+∆ε13×3 are equal to −0.034438Ha and
−0.036312Ha (i. e. differ by about 5 %) for cc-pVTZ
and cc-pVQZ [25] basis sets, respectively.

(a) (b)

FIG. 3: (Color online) Structures of the two 2-atom clusters
with schematic view of p-orbitals at central atoms. (a) Cor-
responds to the correlation-energy increment for rMg−Mg =
3.197 Å, while the structure (b) was used for the calculation
of ∆εMg−Mg with rMg−Mg = 3.209 Å.

Looking at the results concerning the two-body
correlation-energy increments presented in Tab. I, one
can be surprised by the fact that sometimes the cor-
relation energy between atoms located at larger dis-
tance between each other (e.g. r13 = 3.209 Å),
than previous (r12 = 3.197 Å), is higher in magnitude
(∆ε13 = −0.006428Ha), than in previous case (∆ε12 =
−0.006381Ha). It can be easily explained when looking
at depicted orbitals involved in the calculation of incre-
ments under discussion (Fig. 3). While in the case of
r12 = 3.197 Å [Fig. 3 (a)] electrons finding themselves
in the 3p-levels can avoid each other, the structure of
the cluster with r13 = 3.209 Å [Fig. 3 (b)] provides for
better interaction of 3p-orbitals. This makes correlation
effects in the last case stronger. The effect might be seen
more clearly if one were to consider Mg with an ideal
hcp structure (with a = 3.2089 Å and c = 5.2401 Å, then
r12 = r13). For such a case ∆εAB are −0.006298Ha and
−0.006772Ha for structures in Fig. 3 (a) and (b), re-
spectively (i.e. ∆ε13 is by 7% higher in magnitude than
∆ε12). The same situation can be observed when rAB is
equal to 5.551 Å and 5.558 Å. For all other cases ∆εAB

rapidly decreases with increasing interatomic distance.

We have calculated all three-body increments where
at least two distances are within the first-neighbor shell.
It is interesting that the three-site cluster forming acute
triangle yield positive correlation energy, whereas those
with obtuse angles correspond to attractive ∆ǫABC .
Since the largest contributions arise for the compact ge-
ometries, the total sum of three-body terms is repulsive
and consists about 4 % of

∑

∆εAB. The largest three-
body correlation-energy increment is 7 times smaller than
∆εAB first in the row.

There are rather a large number of tetramers where
all four distances are within the first-neighbor shell to be
found in hexagonal structure. We have calculated corre-
lation energies for 47 four-body embedded clusters. The

(a) (b)

(c)

FIG. 4: (Color online) The four-body structures making the
largest [(a) and (b)] and the smallest (c) contributions to the
cohesion of magnesium. The embedding atoms are not pre-
sented.
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TABLE I: Local increments in Hartree obtained for Mg with
CCSD(T) method.

Correlation energy (Ha) Weight Distances
Basis: C1/E1 C2/E1 factor Å
One-body increments (εA)

εA −0.030038 −0.029959 1

∆εA
a +0.003743 +0.004740

Two-body increments (∆εAB)
−0.006342 −0.006381 3 3.197

−0.006385 −0.006428 3 3.209

−0.000929 −0.001089 3 4.529

−0.000776 −0.000820 1 5.210

−0.000544 −0.000561 6 5.551

−0.000543 −0.000571 3 5.558

−0.000296 −0.000305 6 6.119

−0.000234 −0.000239 3 6.418
P

∆εAB −0.050140 −0.049115

Three-body increments (∆εABC)
+0.000571 +0.000356 6 3.197 3.197 3.209

+0.001050 +0.000846 2 3.209 3.209 3.209

+0.000055 +0.000037 8 3.197 3.209 4.529

−0.000139 −0.000113 3 3.197 3.197 5.210

−0.000129 −0.000078 8 3.197 3.209 5.551

−0.000111 −0.000074 6 3.209 3.209 5.558

−0.000183 −0.000097 6 3.197 3.197 6.119

−0.000207 −0.000104 3 3.209 3.209 6.418
P

∆εABC +0.002132 +0.001823

Ecorr
total −0.073278 −0.073536

Ecorr
coh −0.043240 −0.043577

aThe cohesive contribution of the one-body increment is defined
as the difference between the correlation energy of the embedded
atom (εA) and the free atom E

corr
free

: ∆εA = εA − E
corr
free

.

general trend is similar with that of the 3-body case:
the largest contributions arise for the compact geome-
tries, whereas the longer the distance is between the first
and the fourth atom, the smaller is the contribution of
the corresponding cluster. So, the largest contribution
is from the pyramidal [Fig. 4 (a)] and square-like [Fig. 4
(b)] tetramers. They are opposite in sign, but similar in
magnitude and consist ∼ 0.2 mHa (5 times smaller than
the largest ∆εABC). The smallest contribution belongs
to the one of the zig-zag clusters [Fig. 4 (c)], which is 45
times smaller than the largest ∆εABCD. The total sum of
the four-body terms is attractive and consists 0.564mHa,
that is about 30% of

∑

∆εABC .

TABLE II: Experimental and calculated lattice constant (a),
c/a ratio, bulk modulus (B), and cohesive energy (Ecoh) of
Mg.

a (Å) c/a B (GPa) Ecoh (Ha)
expt. [29] 3.209 1.624 36.90 −0.0552

HF 3.310a 1.550a 36.99a
−0.0099a

−0.0134b

HF+corr. 3.205 1.604 35.13 −0.0529 −0.0564

aRef. [13]
bRef. [28]

C. Contribution to the cohesion

A starting point for treatment of the many-body cor-
relation effects in solids is a reliable HF SCF result for
the infinite system. Such data for Mg can be found
in the literature [13, 28] and are presented in Tab. II.
The HF cohesive energy of solid Mg is −0.01345Ha [28]
(another basis set yields −0.00992Ha [13]), significantly
underestimated with respect to the experimental value
−0.05549Ha [29], which indicates the importance of tak-
ing into account electron correlations.

The cohesive contribution of the one-body increment
is defined as the difference between the correlation en-
ergy of the embedded atom (εA) and the free atom Ecorr

free :
∆εA = εA −Ecorr

free . The basis set superposition error was
corrected applying the counterpoise method [30]: the free
atom, described with Basis C1 (or C2) was surrounded
by two shells of ghost atoms (i.e., E1 was placed at the
position of these atoms, but no nuclear charge or elec-
trons were supplied). As can be seen from Tab. I the
one-body contribution is small and repulsive.

In Fig. 5 the various contribution to the cohesive en-
ergy of magnesium are presented. One can clearly see the
good convergence behavior of the incremental scheme:
whereas two-body correlation energy increments have
large importance, three-body increments are significantly
smaller, and the four-body terms give nearly nothing to
the total correlation energy.

Summing up all correlation contributions we ob-
tain −0.0430Ha. Therefore, after improving HF-value
(−0.0134Ha or −0.0099Ha) by the obtained correlation-
energy increments the calculated cohesive energy is
−0.0564Ha or −0.0529Ha depending on which reference
HF energy we used (Tab. II). Both obtained values are
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FIG. 5: (Color online) Cohesive energy of Mg: contribution
to the cohesive energy of 1-,2-,3-,and 4-body increments and
calculated cohesive energy as compared with ”experimental”
value. The shading of the final result (HF + correlations)
indicates the uncertainty in the HF value.
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very close to the experimental one (−0.0552Ha).

D. Lattice constant and bulk modulus

As was already mentioned in Sec. I the HF lattice con-
stant a is by about 4% too large compared with the
experimental value. Another lattice constant, c, is in
rather good agreement with experiment (cHF = 5.13 Å
vs. cexpt. = 5.21 Å). That leads to the underestimation
of c/a ratio by about 5 %. It is interesting, therefore,
to study the influence of electron correlation effects on
mechanical properties.

Looking at Fig. 6 one can realize that correlations re-
duce a giving excellent agreement with the experimental
value (aexpt. = 3.209 Å vs. aHF+corr. = 3.205 Å). An-
other lattice constant, c, remains nearly unchanged after
inclusion of correlations (aHF = 5.13 Å vs. aHF+corr. =
5.14 Å), but tends towards for a larger value.

From the first view it may seem that this fact has
a very simple qualitative explanation: As was already
mentioned above, Mg-Mg with r13 = 3.209 Å in the
basal plane provides for a strong correlation between 3px-
orbitals. Looking for such a structure allowing good in-
teraction between pz-orbitals, that will contain the prin-
cipal axis, leads to Mg-dimer with r14 = 5.210 Å. This is
a rather long distance and the related correlation energy
is expected to be relatively low. Thus, the equilibrium
lattice constant a should be strongly influenced by the
correlations, whereas the effect on equilibrium c could be
very small (if any). An asset of the incremental scheme
is the possibility to get a quantitative confirmation or
refutation of this idea, since various contributions to the
correlation energy can be analyzed.

The one-body terms of the correlation energy influence
the lattice constants only slightly (Fig. 7). Two-body in-
crements make both lattice constants smaller. Among
them the largest effects on mechanical properties are due
to the nearest- and second-nearest-neighbor increments
(∆ε12 and ∆ε13, respectively). ∆ε12 yield smaller a and
c: The less the distance between Mg-atoms, the more dif-
ficult for electrons to avoid each other and, therefore, the
higher the correlation energy. likewise, c is more affected
by this increment than a (Fig. 7) due to the smaller dis-
tance between the layers in z-direction containing c. ∆ε13

has nearly no influence on c, but significantly changes a
(Fig. 7), that is determined by the structure [Fig. 3 (b):
both atoms are in basal plane]. To study the importance
of 3-body terms, they have been divided into two groups:
I includes all 3-body terms, where A, B, and C are in
basal plane; II consists the rest of ∆εABC . As in the
case of 2-body increment with rAB = 3.209 Å [Fig. 3 (b)]
∆εI

ABC
affects only a, keeping c nearly constant (Fig. 7).

Group II has influence of a comparable strength and in-
creases both lattice constants in equal degree (Fig. 7).

Summing up all mentioned above, one can note, that at
equilibrium a is mainly effected by ∆ε13, which addition
to EHF makes a = 3.15 Å. The 3-body terms overcome
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FIG. 6: (Color online) The total energy per unit cell as a func-
tion of lattice constants a and c. Isoelectronic lines show ev-
ery 2mHa energy change. White cross shows the experimen-
tal a and c. Black circle (EHF = −399.234 Ha) corresponds
to the HF equilibrium lattice constants, while the white one
(EHF = −399.312 Ha) is the value obtained accounting corre-
lation effects.

this significant underestimation giving a = 3.205 Å. The
nearly unchanged (as compared with HF-data) c is the
result of competition between two effects, coming from
the interaction between planes: ∆ε12 and ∆εII

ABC
which

work in opposite directions. Note, however, that since c is
less affected by correlations than a in this case also small
contributions from εA and ∆ε13 can not be completely
neglected.

The bulk modulus, B, is a material property that re-
lates the change in volume with a change in pressure:
B = −V (∂P/∂V )T . It can be calculated by distorting
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FIG. 7: (Color online) Different type of correlation-energy in-
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Closed circles are one-body results; triangles correspond to 2-
body terms (the closed ones are ∆ε12 whereas the opened
ones are ∆ε13); closed rombii represent the 3-body data of
the group I and the opened ones correspond to ∆εII

ABC . The
energies are weighted for the total contribution to the lattice
of each increment. The scale is the same in each subplot.
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all of the dimensions of the unit cell and calculating the
energy as a function of the change in volume. This proce-
dure uses the fact that the pressure is P = −(∂E/∂V )T

and so: B = V (∂2E/∂2V )T , where V = a2
·c ·sin(π/3) is

the volume of the unit cell. The Mg bulk modulus calcu-
lated at the HF level agrees very well with experimental
results and differs slightly from the one calculated taking
into account correlation effects (see Tab. II). It does not
mean that correlations have no influence on this prop-
erty. The obtained value is the outcome of two different
effects: On one hand, as correlations yield smaller unit
cell volume one may expect enlarging of bulk modulus.
On another hand, the decrease of unit cell volume yields
higher correlation energy (then electrons can easier avoid
each other).

III. CONCLUSION

We have shown that the incremental scheme us-
ing quantum-chemical methods is capable of accurately
treating metallic systems with closed shell atoms. We

obtained approximately 100% of the cohesive energy for
magnesium. Our calculated values for the lattice con-
stants slightly (by about 1%) underestimate the exper-
imental parameters. Although it is possible to select a
DFT-functional that will yield good agreement of exper-
imental and calculated properties, it is well known, that
the present DFT-based approaches are not amenable to
systematic improvements. Application of the method of
increments allow us not only to obtain values closed to
experimntal data, but also to understand influence of in-
dividual correlation-energy increments on the cohesive
properties of magnesium.
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