Bound states in the continuum in quantum dot pairs
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It is shown that for two open quantum dots connected by a wire, “bound states in the contin-
uum” of a single electron are formed at nearly periodic distances between the dots. This is due to
Fabry-Pérot interference between quasi-bound states in each dot. The bound states are non-local,
describing the electron trapped in both dots at the same time. Theoretical and numerical results
show that trapped states exist even if the wire connecting the dots is relatively long.

PACS numbers: 03.65.-w, 73.23.-b, 73.63.-b

Ever since von Neumann and Wigner [1] proposed that
certain type of oscillating attractive potentials could pro-
duce isolated bound states with energies within the con-
tinuum [2], a number of studies have reported the exis-
tence of “bound states in the continuum” (BIC) that can
exist above the continuum minimum. Fonda and Newton
discussed BIC in a system of two coupled square-well po-
tentials using resonance scattering theory [3]. Friedrich
and Wintgen found BIC in systems of coupled Coulom-
bic channels, such as the hydrogen atom in a uniform
magnetic field [4]. Positive energy bound states in super-
lattice structures with a single impurity potential [5] or
a single defect stub [6] have been reported.

Existence of BIC has been theoretically demonstrated
as well in a pair of quantum dots coupled to reservoirs
[7, 8]. The pair of dots is regarded as a “molecule” with
discrete energy levels. As far as we know, until now there
is no experimental realization of BIC in quantum dots.

Here we present a quantum dot system where BIC are
formed due to Fabry-Pérot interference between quasi-
bound states of each dot. In our system, the dots are
two-dimensional square cavities connected to a lead as
shown in Fig. 1. In contrast to Refs. [7, 8], instead of
one “molecule” we have two separate dots that can be
far apart. Therefore we study quite a different regime of
electron transport between dots.

The dots and the lead make a two dimensional elec-
tron waveguide. Such waveguides can be formed at a
GaAs/AlGaAs interface [9]. Electron wave guides may
also be formed using carbon nanotubes, where Fabry-
Pérot interference for electron wave functions has been
demonstrated experimentally [10]. In this paper we will
focus on semiconductor wave guides.

The lead in Fig. 1 is an infinite quasi-one-dimensional
wire, where electrons have a continuous spectrum of en-
ergy. Due to the lateral confinement in the wire, the
spectrum has a minimum energy that allows propaga-
tion along the wire. If there is a single dot, an electron
inside the dot with energy below the minimum will form
bound states. In contrast, an electron with energy above
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FIG. 1: Quantum dot pair

the minimum will form quasi-bound states with finite
life-time, where the electron escapes the dot through the
leads. Bound states and quasi-bound states are associ-
ated with real and complex poles of the S-matrix [11].
For the double-dot, the electron states are much more
varied. In this study, we focus on the interplay between
the quasi-bound states formed in each dot. We find BIC
appear at nearly periodic distances between the dots.

Theoretical model. We use the single-electron Hamil-
tonian
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with vanishing wavefunctions at the boundaries. The ef-
fective mass is m} = 0.05m,, where m. is the mass of the
free electron. We assume the two dots are identical. To
analyze this Hamiltonian, we decompose the system into
two independent closed dots and the lead [14]. The wave-
functions inside the dots are denoted by |m,n);, where
i = 1,2 labels the dots and m, n are positive integers rep-
resenting the horizontal and vertical wave numbers. The
wavefunctions in the leads are denoted by |k, j) where
k is the horizontal wave number (real) and j the verti-
cal wave number (positive integer). The energies of the
wavefunctions in either dot and the lead are respectively
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The minimum energy for propagation along the lead is
E;(0,1). We consider an electron with low energy nar-
rowly centered around, E = FE4(mg,ng). We assume
that £;(0,1) < EY < E;(0,2). The electron may propa-
gate through the first mode of the lead, but not through
the higher (j > 1) modes. In our theoretical model, we
neglect the j > 1 modes, which are evanescent, and keep
only the j = 1 mode. Henceforth we omit the j = 1
index, e.g., Ej(k) = Ei(k,1).

We will rewrite the Hamiltonian using the dot and lead
basis states. With |¢) = |mq, no);, we define the dot and
lead projectors
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To make the basis states orthogonal, we introduce the
modified lead states
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that satisfy (i|vg) = 0 and (Vi |H|vk) = Ei(k)o(k — k).
The following approximate Hamiltonian is obtained
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The terms V;(k) = (i|H|¢y) represent the amplitude of
a transition of the electron from the lead to the dots or
vice versa. For dots centered at x = 1 and & = z9, they
have the form

VLQ(]C) — vkeikm1,2 + ukeikz2’1 (6)

In Ref. [12] the appearance of BIC for a one-
dimensional two-atom system was considered (see also
[13]). That system has a Hamiltonian similar to (5).
Hence to analyze theoretically the double-dot waveguide
we follow an approach similar to the approach described
in Ref. [12].

To construct eigenstates of the Hamiltonian (5) we
start with the symmetric and anti-symmetric states
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From Eq. (7) we obtain symmetric and anti-symmetric
eigenstates with complex energy eigenvalues z1 respec-
tively [12], which are poles of the S-matrix. For ¢t > 0 we
take the eigenvalues with negative imaginary part. They
are solutions of the integral equation
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FIG. 2: Transmission probability, |T'|?, versus energy, E, for
the double-dot waveguide with Wy = 2, Lg = 2, W; = 1,
and (a) d = 5.25, (b) d = 5.5, (¢) d = 5.60, (d) d = 5.70,
and (e) d = 5.90. The dashed line in (c) is the transmission
probability for the single-dot waveguide.

closest to the real axis. Here d = |zo — 21| is the distance
between the dots. The + superscript means analytic con-
tinuation from the upper to the lower half-plane of z..
As the distance d is varied, the poles z+ move in the com-
plex plane. At certain distances d4 the imaginary part
of zy vanishes [12]. This happens when 1 £ coskdy =0
for Ej(k) = z+. These conditions give
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with n integer. Replacing d = d4 in Eq. (8) we obtain
real solutions for z4, which implies the existence of BIC.
This effect is essentially due to Fabry-Pérot interference
between the wave functions escaping from each dot. As
shown in Ref. [12], BIC appear even for large d+. Thus,
in principle, the wire connecting the dots can be relatively
long and still allow BIC. Note that d4 is a nonlinear
function of n. Strictly speaking the distances dt are not
regularly spaced.

In the following we verify the existence of BIC using a
more accurate description of the system.
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Computational results. We have computed the en-
ergy eigenstates for the lowest propagating mode in the
double-dot waveguide as a function of energy and the dis-
tance between the two dots using the boundary integral
method [11, 15]. The eigenstates are built out of local
propagating and evanescent modes in the leads and dots
and are composed of incoming, ¥~ (z,y), and outgoing,
YT (x,y), states
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where the scattering amplitude, S(F), is composed of re-
flection and transmission coefficients. The unit of length
is the width of the lead, W; = 1, which corresponds to
100A. The width and length of each dot are Wy = 2 and
Ly = 2, respectively. These parameters satisfy the con-
ditions of validity of the theoretical model, and we will
use them as an example.

We have computed the transmission probability, |T'|2,
for the lowest propagating mode as a function of energy
for the double-dot waveguide in Fig. 2. As we vary the
distance between the two dots, the transmission profiles
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FIG. 3: Transmission amplitude, T'(E), in the complex energy
plane, £ = Er+iFEj, for the double-dot waveguide with W, =
2, Lqg=2,W;=1,and (a) d =5.25, (b) d = 5.5, (c) d = 5.60,
(d) d = 5.70, and (e) d = 5.90. The transmission amplitude
in the complex energy plane for the single-dot waveguide is in
(f). The dark regions indicate the positions of the poles and
the bright region indicates the position of the transmission
Z€ro.

change near the resonance energy region EJ = 0.25¢V.
There are sharp peaks in the transmission profiles on
either side of the resonance energy regions in Figs. 2
(b) and (d). There is a broad transmission profile with
d = 5.60 in Fig. 2 (c). For comparison, the transmis-
sion probability for the single-dot waveguide is shown in
Fig. 2 (¢) as a dotted line. The transmission zero profile
shows a wider dip for the double-dot waveguide as com-
pared with that of the single-dot waveguide. We will see
later that the BIC is formed when the distance between
the two dots is d = 5.60, as well as at other distances
nearly regularly spaced. These features are associated
with the presence of two poles in the complex energy
plane, which affect the dynamics of the electron in the
double-dot waveguide.

The transmission zeros in Fig. 2 are associated with
the poles of T(FE) in the complex energy plane. The
transmission amplitude in the complex energy plane has
a branch cut starting from the lower edge of the contin-
uum and extending along the positive energy axis and
has poles at energies z = w — iy. These poles give rise to
the transmission zeros on the positive real axis [11, 16].

The locations of the poles in the complex energy plane
for the double-dot waveguide are shown in Figure 3. As
we increase the distance between the two dots, the pole
located on the right-hand side in Fig. 3 (a) approaches
the real axis. The pole disappears into the real axis and
produces a zero value of v at the distance, d = 5.60, in
Fig. 3 (c¢). This implies the formation of a BIC with
infinite life-time. The pole on the left-hand side in Fig. 3
(a) moves away from the real axis and attains large decay
rate 7, accordingly. As the distance between the dots is

47.9 48.5 49.2
48.0 48.7 49.3

d (c)[2.30 2.96 3.61 4.28 4.95 5.60 6.28 ..
d (t)]2.67 3.33 4.00 4.67 5.33 6.00 6.67 ..

TABLE I: Computational (c) and theoretical (t) values of
inter-dot distance at which BIC appear.

further increased, the pole on the real axis in Fig. 3 (c)
emerges out of the transmission zero and recedes from the
real axis (Fig. 3 (d)). If we continue to increase d, the
pole on the right-hand side in Fig. 3 (e) approaches the
real axis and makes a transit through the transmission
zero at d = 6.28 (not shown).

The wavefunctions inside the two dots for the real en-
ergy states associated with the right-hand side and left-
hand side poles in Fig. 3 (a) show symmetric and anti-
symmetric structures, respectively. These wavefunctions
are similar to the symmetric and anti-symmetric combi-
nations of the eigenstates of the two closed dots,

ile,y) = % (sin(2r(x — 21)/La)cos(3my/Wa)xa

+ sin(2n(z — x2)/Lq)cos(3ny/Wyq)xz2) (11)

where x; = 1 inside dot ¢ and y; = 0 outside. Eq. (11)
corresponds to Eq. (7). Each complex pole keeps its sym-
metric or anti-symmetric feature as it migrates through-
out the complex energy plane, as we vary the distance
between the two dots. The BIC appearing at d = 5.6 is
symmetric and at d = 6.28, anti-symmetric.

BIC reappear in a nearly periodic fashion as the dis-
tance between the two dots is varied (see Table I) . This
agrees with the existence of real solutions of Eq. (8)
with Eq. (9) for different values of n. For example, so-
lutions of Eq. (8) for n = 4 and n = 5 give d4 = 6
and d_ = 6.67, respectively. The difference between the
theoretical and computational values of d in Table I is
likely due to the cutoff of 7 > 1 modes in the theoreti-
cal model [14]. However the theoretical spacing between
consecutive distances is in good agreement with the com-
putational results. We have found BIC for distances of
up to d ~ 50, which means that these states may be quite
de-localized.

In Fig. 3 each of the poles with either symmetric or
anti-symmetric identity makes a counter-clockwise circu-
lation that passes through the transmission zero on the
real axis as vary the distance between dots. It has been
known that the double or multiple poles induced by a
laser in an atom coalesce to form an exceptional point or
repel each other to form an avoided crossing [17-19]. In
contrast, the poles of the double-dot waveguide make a
circular motion and do not approach or repel each other.

One of the important features of an electron waveg-
uide is that the energy spectrum of the electrons is con-
tinuous. This means that the electron waveguides fall
in the class of unstable systems. An electron in the dot
with wavelength smaller than the critical wavelength for
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FIG. 4: The survival probability, P(t) = |A(t)|?, versus time,
t, for the states prepared symmetrically or anti-symmetrically
inside the two dots at ¢ = 0. The distances between the
two dots are (a) d = 5.60 and (b) d = 6.28. The dotted
line shows the survival probability of a state in the single-dot
waveguide in (a) and (b). The solid line displays the survival
probability of a state prepared symmetrically and the dashed
line displays the survival probability of a state prepared anti-
symmetrically.

propagation along the lead, will ultimately decay (escape
through the leads). However, in our study, we have shown
that for special distances d the electron in the double-dot
waveguide can be trapped in a non-decaying state with
infinite life-time, forming BIC.

The survival probabilities of an electron placed in the
waveguide dots can be calculated using the scattering
states of the double-dot waveguide. The survival proba-
bility can be written as Py (t) = |Ay(t)|?, where Ay (t) is
the survival amplitude,

Aglt) = (wle~ ) = | " dB| @l E)Pe R, (12)

We choose as initial state |¢), the symmetric or anti-
symmetric combinations of the eigenstates of the two
closed dots in Eq. (11), with no probability amplitude
outside the dots. In order to solve Eq. (12) numerically,
we discretize the energy eigenstates, |E), residing in the
continuum.

In Fig. 4, we plot the survival probability, P(t) =
|A(t)|?, versus time, t for the states prepared symmetri-
cally or anti-symmetrically inside the two dots at t = 0.
The distances between the two dots are d = 5.60 and
d = 6.28 for Figs. 4 (a) and (b), respectively.

With this arrangement, one of the complex poles has
a vanishing imaginary part, v — 0, and gives rise to an
infinite life-time. The results show that the symmetri-
cally (anti-symmetrically) arranged state does not decay
over time for the cases with d = 5.60 (6.28). On the
other hand, the anti-symmetric (symmetric) state decays
quickly. The dotted line in Fig. 4 shows the survival
probability of the state, ¢ = sin(2wx/Lg)cos(3wy/Dy),
in the single-dot waveguide.

In conclusion, we have proved that there can be BIC in
double-dot electron waveguides with specially arranged
geometry. These can be used as a quantum informa-
tion storing device. Pairs of electrons with opposite spins
may form de-localized, entangled states. Also, we could
make the electron flow or get trapped inside the dots
by controlling the size of the one of the dots. This fea-
ture might be useful in a circuit device. The existence of
BIC may be verified experimentally using actual electron
waveguides. Alternative experimental setups are elec-
tromagnetic waveguides, which are described by a sim-
ilar model, and super lattices with two impurities [20].
Three-dimensional electron wave guides analogous to Fig.
1 may be constructed using nanotubes [10].
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