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Critical entanglement of XXZ Heisenberg chains with defects
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We study the entanglement properties of anisotropic open spin one-half Heisenberg chains with a
modified central bond. The entanglement entropy between the two half-chains is calculated with the
density-matrix renormalization method (DMRG). We find a logarithmic behaviour with an effective
central charge c′ varying with the length of the system. It flows to one in the ferromagnetic region
and to zero in the antiferromagnetic region of the model. In the XX case it has a non-universal
limit and we recover previous results.

The consideration of entanglement properties has brought a new element into the study of many-
particle quantum states. Entanglement is related to a division of the system into two parts and can be
quantified via the reduced density matrix ρ and the entropy S = −tr(ρ ln ρ) connected with it. This
quantity is particularly interesting for the ground state of critical one-dimensional systems. For example,
if one cuts an open chain into two halves of length L, conformal invariance predicts the universal form
[1, 2]

S =
c

6
lnL + k (1)

where c is the central charge in the conformal classification. An analogous formula with c/6 replaced
by c/3 holds for a segment of length L in an infinite chain. The logarithmic divergence is a particular
signature of the criticality and can be related to analogous universal contributions to the free energy
of critical two-dimensional systems with conical shape [2, 3, 4]. It has been verified numerically for a
number of quantum chains [5, 6] and derived analytically for free fermions hopping on a chain [7]. For
this system it can also be proven by putting proper bounds on S [8, 9].

Since the entanglement entropy measures the mutual coupling of the two parts of a system in the
wave function, a defect at their boundary should have a strong influence. In one dimension, defects show
particularly interesting features in Luttinger liquids, i.e. in strongly correlated fermionic systems. Their
effective strength then depends on the sign of the interaction [10, 11] and goes to zero for attraction
while it diverges for repulsion, as the system size increases. This has been checked in various further
studies, see e.g. [12, 13, 14, 15, 16, 17]. One then wonders how the entanglement behaves in such a
case and how the logarithmic law (1) is affected. This question was first raised by Levine [4] who used
bosonization and found results to lowest order in the impurity strength which are consistent with the
general picture. The simpler case of a free-fermion hopping model, corresponding to the XX spin chain,
was treated numerically in Ref. [18]. In this case, the logarithmic behaviour was found to persist, but
with a prefactor ceff which depends continuously on the defect strength.

In the present paper we present a numerical study of this problem for the case of a planar XXZ spin
chain, which has c = 1 and is the lattice version of a Luttinger model. We treat open chains with one
modified bond in the middle and use density-matrix renormalization (DMRG) [19, 20]. This method
is ideally suited for such a study since the calculation of ρ and its spectrum is an intrinsic part of the
algorithm. We find that the effective central charge, which will be called c′, tends asymptotically to one
for ∆ < 0 (ferromagnetic region, resp. attraction) and to zero for ∆ > 0 (antiferromagnetic region, resp.
repulsion). How fast this happens depends, however, on the defect strength, and for weak perturbations
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and interactions the asymptotic region is still far away, although we treated chains up to 800 sites. We
also compared to Levine’s formulae but could not obtain a quantitative agreement, although we verify
his general picture. In the following we first present the model and the method of calculation. Then we
show some density-matrix spectra and their typical features. After that we present the calculations of S
and the results for the quantity c′ for a number of defect strengths Jimp and anisotropic parameters ∆.
Finally we compare with Ref.[4] and draw our conclusions.

I. MODEL AND METHOD

We studied the XXZ model for an open chain of 2L − 1 sites, which is divided into a left part with L
sites and a right part with L− 1 sites. Both are connected by a bond of strength Jimp while for the rest
of the chain we take J = 1. The Hamiltonian then has the form

H =

L−1
∑

i=1

hi + Jimp hL +

2L−2
∑

i=L+1

hi (2)

where

hi =
1

2

(

S+

i S−
i+1 + S−

i S+

i+1

)

+ ∆Sz
i Sz

i+1 (3)

and the anisotropy ∆ lies between −1 and +1. Written in terms of spinless fermions, the SzSz-term
corresponds to a nearest-neighbour interaction which is repulsive (attractive) for ∆ > 0 (∆ < 0). The
system was studied in its ground state which in the present case corresponds to total spin Sz = ±1/2,
and we took Sz = +1/2. In the fermionic formulation, the filling is L/(2L − 1) and thus slightly above
1/2. We chose the odd total length in order to avoid relatively large oscillations between even and odd
L-values which are present in even-length chains. These are connected with the different dimerization
patterns in the spin correlation functions which are induced by the open ends. Although this is an
interesting topic, we preferred to avoid it for the present purpose.

To determine the effect of the impurity bond on the entanglement entropy S between left side and
right side, we performed extensive DMRG calculations. As usual in such calculations, we first determined
the ground state wavefunction of (2) and then traced out the spin degrees of freedom of the right side
to obtain the reduced density matrix ρ. The defect was inserted only at the last step of the procedure.
We worked with m = 500 states and used no sweeps. The values of L varied between 3 and 401,
corresponding to a total length of up to 801 sites. The computations were performed on the HPSC45 of
ICTS, CAS.

To judge the accuracy of these calculations, we used the XX case, ∆ = 0, where the system becomes a
simple free-fermion hopping model. Then one can determine ρ from the one-particle correlation function

Cij =< c†i cj > by diagonalizing the matrix C in the subsystem [21]. Such calculations were done recently
for segments in homogeneous chains with interface defects [18] and in random chains [22]. For the present
geometry with open ends, this correlation function can be determined analytically for the pure system
(Jimp = 1). Then one finds

Cij =
1

4L

[

sin(π
2

2L+1

2L
(i − j))

sin( π
4L

(i − j))
−

sin(π
2

2L+1

2L
(i + j))

sin( π
4L

(i + j))

]

(4)

With a defect, Cij has to be calculated numerically using the single-particle eigenfunctions of H and
the filling. The corresponding results were considered as benchmarks. In Fig.1 we show the difference
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FIG. 1: Comparison between DMRG and correlation function results for the XX case and Jimp = 0.2, 0.5 and
1.0/1.1 = 0.9091. Upper panel: Difference in the entanglement entropy S. Lower panel: Difference in the effective
central charge c′.

between the DMRG results and the correlation function results for three defect strengths. Both ∆S and
∆c′ increase with the chain length, as one would expect. From the upper panel one sees that the error in
the entropy becomes about 10−4 for L = 400. The error in the effective central charge shown in the lower
panel is larger and shows more noise. This is due to the numerical derivative by which one calculates c′

c′(L) = 6

[

S(L + 2) − S(L − 2)

ln(L + 2) − ln(L − 2)

]

(5)

and in which small differences enter. Thus ∆c′ reaches about 10−3 at L = 400, which is still sufficient
for our purposes. We expect the same accuracy also for the interacting system with ∆ non-zero. Note
that in (5) steps of 2 are used, because there still is a small even-odd oscillation in S. The two resulting
values for c′ approach each other for increasing L. In the following we always give results obtained for
odd L.

II. SPECTRA

Before we present the results for the entanglement entropy we show some density-matrix spectra, since
they determine the value of S. In Fig.2 spectra of the pure chain for fixed length and five different values
of ∆ are shown on the left. Plotted are the 100 largest eigenvalues wn of ρ, ordered according to their
magnitude. One sees the typical initial exponential decrease which then flattens out. A variation of ∆
leads only to relatively small changes in the curves and S will also not be affected much. Note, however,
that S is mainly determined by the first few large eigenvalues. On the right, the analogous spectrum is
plotted for a defect with strength Jimp = 0.5. Here one can see a marked variation with ∆. The decay
is fastest for ∆ = −0.9 and slowest for ∆ = +0.9. Because of the sum rule

∑

wn = 1, a slower decay is
coupled with a smaller value for the first or first few eigenvalues [23]. This can be seen in the inset of the
figure.
The size dependence of the spectra is shown in Fig.3 for two values of ∆. In both cases the curves
become flatter as L increases, which is well-known from other DMRG calculations. The behaviour of
the first eigenvalues, however, is different. For ∆ = −0.9 one has a region of relatively slow initial decay
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FIG. 2: Spectrum of the reduced density matrix for XXZ chains with various anisotropies. Left: pure chains.
Right: defect strength Jimp = 0.5. Please note the logarithmic scale. The insets show the first three eigenvalues.
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FIG. 3: Spectrum of the reduced density matrix for Jimp = 0.5 and various sizes L. Left: ∆ = −0.9. Right:
∆ = +0.9. The insets show the first three eigenvalues.

which becomes even slower as L increases. The first two eigenvalues decrease in accord with the remark
made above. For S one therefore expects a relatively large value, because several wn are of order 1,
and a marked size dependence. For ∆ = +0.9, on the other hand, there is a gap between the first and
the second eigenvalue and no visible change with L. Because of the rather fast decay of the complete
spectrum, the sum rule is not effective here. Moreover, the largest eigenvalue w0 is close to 1 and thus
gives only a small contribution to S. Thus one expects a small absolute value and a weak size dependence
of S here.

III. ENTANGLEMENT ENTROPY

Results for the entropy S(L) are shown in Fig.4 for Jimp = 0.5 and sizes up to L = 401. One can see a
monotonic increase with L for all values of ∆. The absolute value of S and the dependence on L are large
for negative ∆ and small for positive ∆, confirming the expectations based upon the spectra. The plot
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FIG. 4: Entanglement entropy as function of the system size for Jimp = 0.5 and seven values of the anisotropy.
The data correspond to ∆ = −0.9;−0.5;−0.1; 0; 0.1; 0.5; 0.9, from top to bottom.

against lnL on the right hand side shows relatively straight curves with similar slopes in the first case
but rather bent curves which seem to become horizontal in the second one. Thus there are characteristic
differences between repulsive and attractive interactions. A determination of the slope and the effective
central charge via (5) leads to the results shown in Fig. 5. The quantity c′ clearly tends to the value 1
of the pure system for large negative ∆ and to zero for large positive ones. The data for ∆ = ±0.1 also
seem to fit into the pattern, while for ∆ = 0 the limit obviously differs from 1. This corresponds to the
results in [18] where a continuous variation of the effective central charge with the defect strength was
found in this case. For a detailed comparison, one has to take into account that the quantity ceff used
there referred to a subsystem coupled to the rest with e.g one modified and one unmodified bond. The
contributions of these two bonds add up and the relation to c′ is therefore

ceff/3 = c′/6 + 1/6 (6)

In [18] the asymptotic value of ceff was determined by an extrapolation in 1/L. The same procedure
also works here and the results agree to 3-4 decimal places. In view of the rather different geometries in
the two cases, this is a non-trivial consistency check of the calculations.

The right part of Fig.5 gives c′ as a function of ∆ and shows the different behaviour for positive and
negative values very clearly. To show how these effects vary with the impurity strength, we present
results for two other values of Jimp. In Fig. 6 this is done for a weaker bond, corresponding to a stronger
perturbation. Then c′ for the non-interacting case is only about 0.25 and even smaller for repulsion. For
weak attraction, the values rise only slowly but for strong attraction they exceed 1 and approach it from
above.

In Fig.7, on the other hand, the results for an only slightly weakened bond, Jimp = 1/1.1 = 0.9090..,
are shown. In this case, not only the c′ values for negative ∆ lie rather close to 1, but also those for
∆ = 0, 0.1. Only for the larger ∆ one has a reduction below 1, but the values are still rather high. From
the left figure one sees that the curves for these ∆ bend downwards and presumably approach zero for
longer chains. However, the asymptotic region is beyond the range of our system sizes.
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FIG. 5: Effective central charge for Jimp = 0.5. Left: as function of the system size for ∆ =
−0.5;−0.9;−0.1; 0; 0.1; 0.5; 0.9, from top to bottom. Right: as function of the anisotropy.
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FIG. 6: The same as Fig. 5, but for Jimp = 0.2.

IV. DISCUSSION

These results show a clear distinction between attractive and repulsive interactions and a crossover
between the two which is determined by the strength of the perturbation. This strength fixes the value
of c′ in the non-interacting system. Because this value depends only weakly on the size, it serves as a
reference point through which the c′vs.∆ curves for different sizes go. The curves, which we determined
only at a number of points, will be continuous in all finite systems. These findings are in line with the
general predictions on the influence of an impurity in a Luttinger liquid, namely that for attraction
the perturbation heals with increasing system size, while for repulsion it becomes stronger. For the
weakened bonds which we have considered, the latter case means a scaling towards zero and a cutting
of the chain. The vanishing of c′ is in agreement with this picture, but the cutting should not be taken
too literally since it only refers to processes near the Fermi energy. As Fig.4 shows, there remains
a residual entanglement corresponding to the constant k in (1) which depends on the interaction strength.
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FIG. 7: The same as Fig. 5, but for Jimp = 1/1.1 = 0.9091. Please note the different vertical scale in the left
figure.

There is no general expression for S in a finite system, not even for the XX case, but in [4] a formula
was given for a weak impurity in a Luttiger liquid. The contribution to S is then

δS = −y2ǫ2
g

1 − g2
(
L

ǫ
)1−g ln(

L

ǫ
) − b(g) (7)

where y is the strength of the impurity potential, ǫ a small-distance cutoff, b(g) a positive constant and g
the Luttinger liquid parameter measuring the interaction. For the XXZ lattice model, it can be expressed
as

1

g
= 2 (1 −

1

π
arccos ∆) (8)

For attraction (∆ < 0) one has g > 1 and for repulsion g < 1. In the latter case, δS is always negative
and diverges with L. The numerical results for δS on the left of Fig.8 actually show this behaviour.
One can also fit the data to equ.(7) as is shown on the right for ∆ = 0.5. The value of g is then 0.75
and the fit gives ǫ = 13 and b = 0.06. However, similar fits for ∆ = 0.1 and 0.9 lead to very different
results for ǫ and if one interprets it as an effective length determined by the scaling equations there are
still inconsistencies. For attraction the L-dependent term in (7) is positive and decreases with L but the
data for δS are more or less L-independent and cannot be fitted with reasonable parameters. Thus we
cannot verify Levine’s formula in detail. One should mention that he also predicts a ln2 L term in δS
for the non-interacting system which one does not see in the numerics. It could be that he used a too
simple geometry for the two-dimensional bosonic field theory in his approach.

Summing up, we have shown by numerical calculations that the general effects of an impurity in
a Luttinger liquid also show up in the entanglement entropy. Its logarithmic behaviour remains for
attraction but is suppressed for repulsion. A more detailed analytical treatment is, however, still desirable.

Acknowledgement : I.P. thanks the Interdisciplinary Center for Theoretical Studies, CAS, Beijing, for
its hospitality. He also acknowlegdes discussions with N. Shannon and V. Meden and correspondence
with N. Laflorencie.
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FIG. 8: Defect contribution δS to the entanglement entropy for Jimp = 1/1.1. Left: δS as function of L for
∆ = −0.9;−0.5;−0.1; 0; 0.1; 0.5; 0.9, from top to bottom. Right: Fit of the data (circles) for ∆ = 0.5 according
to eqn.(7), see text.
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