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Abstract

The electron-correlation effects on the ground-state properties of CeO2 are studied by ab initio

quantum-chemical methods. For this purpose the method of increments, that combines the Hartree-

Fock calculations for periodic systems with correlation calculations requiring only information of

the corresponding finite-cluster calculations, is applied for the studied crystal. Using the coupled-

cluster approach for the evaluation of the individual increments, we recover 93 % of the experimental

cohesive energy. The obtained lattice constant and bulk modulus are found in good agreement

with experimental values. For comparison the results obtained with density functional methods

are presented.
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I. INTRODUCTION

Ceria (CeO2) is a technologically important material with remarkable properties used in

a number of applications [1–4]. The cerium dioxide is known to exist in the cubic fluo-

rite structure (Fig. 1), which is the stable polymorph at all temperatures [5]. CeO2 is an

electrically insulating oxide. It has a band gap of 3.4 eV and becomes conducting after cre-

ating oxygen vacancies [6]. It is possible to accommodate a large concentration of mobile

oxygen vacancies by reduction or doping giving rise to high ionic conductivity and a large

oxygen storage capacity. As a result, ceria plays an important role as a component in the

active noble metal support in automotive three-way catalytic converters, where NOx, CO,

and hydro-carbons are simultaneously removed [1, 7]. Due to other important properties of

CeO2, such as a high dielectric constant and good epitaxy on Si, it is also viewed as a per-

spective material for future microelectronic applications. In particular, CeO2 is considered

as a candidate for replacing silicon dioxide in electronic appliances [8].

Although several theoretical and experimental works devoted to cerium dioxide have been

already published [9–13], owing to the importance of this material further examination of

its structure and properties including electron correlations explicitly is still necessary. Here

we present the results obtained by the method of increments [14]. Hartree-Fock (HF) self-

consistent field (SCF) calculations performed for the periodic solid are used as a starting

point for the systematic inclusion of electron-correlation effects, which are considered by

using an expansion of the total correlation energy in terms of one-body, two-body, and higher

contributions, the so-called “local increments”. This method has been successfully applied to

covalently bound solids such as diamond, graphite and many typical semiconductors [14–19],

and to ionic solids, including several oxides (MgO, CaO, NiO) [20–24]. Since ceria contains

heavy elements its ab initio quantum-chemical study requires the inclusion of relativistic

effects. To a great extent, the treatment of such effects can be achieved through the use of

effective core potentials (ecp) (also called pseudopotentials). In this approach the valence

as well as outermost core-electrons are considered explicitly. Inclusion of the outermost

core-electrons has a crucial importance for an adequate description of the chemical bond in

the systems with rare-earth elements. The relativistic effects are usually treated implicitly.

The paper is organized as follows. The computational methods are outlined in the next
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section (Sec. II). Section III is devoted to discussion of the obtained results. In this sec-

tion thermodynamic, mechanical, and electronic properties of CeO2 obtained at the HF

(Sec. IIIA) as well as the DFT level of theory (Sec. III B) are shown. Details of the ap-

plication of the method of increments, individual correlation-energy increments and the

influence of correlations on the thermodynamic and mechanical properties of cerium dioxide

are discussed in section IIIC. Our conclusions are summarized in the last section (Sec. IV).

II. METHODS OF CALCULATIONS

For finite systems various ab initio program packages based on Gaussian type atomic

orbitals (GTOs) are nowadays available for accurate calculation of their properties using a

many-body wavefunction ansatz. For solids wavefunction-based HF calculations have be-

come possible with the advent of the program package CRYSTAL [25]. The HF Hamiltonian

a priori does not include the effects of electron correlation. This leads to an overestimation

of the electron-electron repulsion energy and, as a consequence, to a too high total energy.

The most widely used method to include correlations in solids is density functional theory

(DFT). In principle, DFT models are able to capture the full correlation energy. In practice,

present generation methods exhibit a number of serious deficiencies, and wavefunction-based

approaches for calculating the correlation energy yield, in contrast, an opportunity of sys-

tematically improvable methods. Moreover, for a proper microscopic treatment of electron

correlations it is necessary to go beyond the one-particle framework and to deal with many-

body wavefunction. Unfortunately, quantum-chemical correlation models are not directly

applicable to periodic systems. However, the recently developed method of increments [14]

allows an expansion of the bulk correlation energy using information from quantum-chemical

calculations on finite clusters. The main ideas of the method are:

• Starting from SCF calculations localized orbitals are generated which are assumed to

be similar in the clusters and in the solid (for a detailed study of the validity of this

assumption see [26]).

• One-body correlation-energy increments ǫA and ǫB are calculated, applying any size-

extensive correlation method. For that only the electrons of the local orbitals group

A and B, respectively, are correlated, whereas the rest is frozen at the HF level.
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• Two-body increments are defined as nonadditivity corrections:

∆ǫAB = ǫAB − [ǫA + ǫB],

where ǫAB is the correlation energy of the joint orbital system of AB.

• Three-body increments are defined as

∆ǫABC = ǫABC − [ǫA + ǫB + ǫC ] − [∆ǫAB + ∆ǫBC + ∆ǫAC ].

where ǫABC is the correlation energy of the joint orbital system of ABC. A similar

definition can be applied to higher-body increments.

• The correlation energy of the solid can now be expressed as the sum of all possible

increments:

ǫbulk =
∑

A

ǫA +
1

2!

∑

AB

∆ǫAB +
1

3!

∑

ABC

∆ǫABC + . . .

Of course, this only makes sense if the incremental expansion is well convergent, i.e. if

∆ǫAB rapidly decreases with increasing distance between the ions at position A and B and

if the three-body terms are significantly smaller than the two-body ones.

III. RESULTS AND DISCUSSION

A. Hartree-Fock calculations

A starting point for the treatment of the many-body correlation effects in solids is a

reliable HF SCF result for the infinite system. We performed HF ground-state calculations

for cerium dioxide, using the program package CRYSTAL98.

The CRYSTAL-code does not allow the inclusion of f -type atomic orbitals into the basis

set. The 4f -levels of Ce in CeO2 were assumed unoccupied. Experimental studies on the

bulk and surfaces of nearly pure CeO2 suggest that this approximation is valid for the

stoichiometric CeO2 [27] (but not for systems containing Ce3+, in which the extra electron

would be localized on the Ce 4f level). Thus, in CRYSTAL-calculations we have used for Ce

a pseudopotential derived by Dolg et al. for tetravalent cerium (4f 0-subconfiguration, ecp46)

and the corresponding basis set [28]. For application in the CRYSTAL calculations the basis

set has to be modified: very diffuse exponents which are necessary to properly describe
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the tails of the free-atom wavefunctions cause numerical problems in CRYSTAL, because

of the large overlap with the basis functions of the neighboring atoms in a dense-packed

crystal. Therefore, the most diffuse orbitals were optimized by changing the exponents of

the Gaussian. The optimization was done in order to minimize the total energy per unit cell

while maintaining SCF stability. The resulting exponents (corresponding to the e−αr2

of the

GTO) are αs=0.10, αp= 0.10, αd = 0.30 and 0.19 for s−, p−, and d−functions, respectively.

The oxygen basis set employed was 6-31G* [29]. Since the question of Ce 4f -occupation in

CeO2 is still under discussion [10, 11, 30, 31], similar calculations have been performed for

4f 1-subconfiguration (ecp47) of Ce-atom [32] (the corresponding optimized exponents are

αs=0.10, αp= 0.10, αd = 0.19) to find the configuration with the lowest energy.

The experimental value of the cohesive energy (Eexp
coh ) can be derived by appropriate

Born-Haber thermodynamical cycle analysis:

Eexp
coh = ∆Hf − ∆Hs − D,

where ∆Hf is the heat of formation of solid CeO2 at 298K (-1089.4 kJ/mol [33]); ∆Hs

stands for the heat of sublimation of the metal at 298K (111.6 kcal/mol [34]); and D =

493.5 kJ/mol [35] is the dissociation energy of the oxygen molecule. Thus, Eexp
coh is equal to

-0.7807 a.u.

On the other hand, the cohesive energy is defined as

Ecoh = Etotal −

N
∑

Ea

where Ea is the atomic energy for each atom belonging to the crystal unit cell and N

is the number of atoms in the unit cell. The choice of an atomic reference energy is a

fundamental point in the evaluation of the cohesive energy. As the basis set is not complete,

two different basis sets must be used for isolated atoms and for bulk: the same basis set is

used for inner electrons, whereas extra functions must be added to the bulk basis set for

an accurate description of the valence electron of the isolated atoms. Another possibility to

correct the basis set superposition error is to apply the counterpoise method [36]. In our

calculations all bulk basis functions of the first as well as the second next neighbors were

taken into account via “dummy” atoms, i.e. the corresponding basis set was placed at the

position of these atoms, but no nuclear charge or electrons were supplied. The quantum-

chemical ab initio program system MOLPRO 2002 [37] was used in these calculations.
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In Table I the cohesive energies obtained at HF level for f 0- and f 1-subconfigurations are

presented. It is necessary to note, that for the f 0 case (ecp46) we have to consider d2s2-

subconfiguration as ground state for the free atom. At the same time, in the case of ecp47

4f 1 state is already included by the pseudopotential. In order to take into account this

difference for comparison of cohesive energies obtained in both cases, we performed the

atomic calculations for s2d2 as well as for s2d1f 1 configurations of Ce, using the small-core

pseudopotential (ecp28) [38] and the corresponding basis set [39], increased by even tempered

basis functions [40]. As it can be expected the s2d1f 1 configuration is lower in energy as

compared with s2d2. The corresponding energy difference consists of approximately 0.11

a.u. at HF as well as CCSD level. Therefore, for proper comparison with experiment the

value of cohesive energy obtained for f 0-case has to be corrected by this energy difference:

Ecoh = −0.5718 + 0.1128 = −0.4590 a.u. Thus, the HF result obtained for 4f 0-Ce is lower

in energy that the one obtained for 4f 1-Ce.

To calculate the lattice constant and bulk modulus we performed a 4th order polynomial

fit to the SCF ground-state energy evaluated from -1% to +8% of the experimental lattice

parameter (Fig. 2). It is necessary to note here, that the experimental lattice constant avail-

able in the literature (5.41 Å [5]) was obtained at room temperature. For better comparison

of the calculated lattice parameter with the measured one, experimental lattice constant has

to be extrapolated to low temperatures [41]: aT=0K ≈ 5.40 Å. The ground-state equilibrium

lattice constant a was found to be 5.55 Å at the HF level with f 0-occupation, that is about

2.5% higher than the experimental value. This corresponds to a unit cell volume error of

∼ 8%.

The bulk modulus of the cubic structure can be determined according to the formula

B =

(

4

9a

∂2

∂a2
−

8

9a2

∂

∂a

)

E(a)

where a is the lattice constant. We calculated the bulk moduli at a = 5.55 Å and at the

experimental one. The bulk modulus at the HF lattice constant is in a good agreement with

experimental value. The HF bulk modulus calculated at the experimental lattice constant

(307GPa) is by 30% higher than the measured one (236GPa [42]) (Tab. I).

The lattice constant obtained from the minimum of the polynomial fit in the case of f 1-

Ce is much too large (by 8.2%) compared with the experimental value. The bulk modulus,

calculated at the experimental lattice constant, is much too small, only 58% of the measured

6



one. It is only slightly changing with increasing lattice constant up to the calculated value.

So, we can conclude, that ecp47 can probably not describe the bulk modulus of CeO2. The

result supports the tetravalent Ce in cerium dioxide.

The HF-calculated electronic band structures of CeO2 with cerium in f 0- as well as f 1-

configuration are presented in Fig. 3a,b. Since CRYSTAL-code does not allow the inclusion

of f -type atomic orbitals into the basis set, the Ce 4f bands, which are the lowest unoccupied

levels in the solid, are not presented in the calculated band structures. Nevertheless, one can

see the electronic density unequal to zero in the case of f 1-Ce as opposite to the insulating

f 0-case.

The energy gap between the occupied 2p band of O and unoccupied band of 5d states of

Ce is about 11.4 eV and 13.8 eV for CeO2 with f 1- and f 0-subconfiguration of cerium atom,

respectively, i.e. there is an overestimation of this energy difference (∆Eexp=6 eV [27, 43]),

that is typical for the HF Hamiltonian.

B. DFT calculations

In order to estimate the influence of correlations the so-called a posteriori -HF correlation

DFT method was applied to calculate the ground-state properties of cerium dioxide. In this

scheme the total energies of cerium dioxide (with CRYSTAL98) as well as atomic energies

(with MOLPRO2002) are expressed by the summation of the HF energy and the corre-

sponding correlation energy which was evaluated for PW-LSD [44] and PW-GGA [45] corre-

lation functionals in conjugation with exact Hartree-Fock exchange. The obtained values are

summed in Tab. I. For the correlation contribution to the cohesive energy (Eexp
coh −EHF

coh) we

recover 22% and 37% with the PW-LSD and the PW-GGA functionals, respectively. The

trends are in the right direction, but the magnitude obtained with post-HF DFT treatments

is too small. The lattice constant is shifted to smaller values, for PW-GGA it agrees well

with experiment.

Further, a full potential nonorthogonal local-orbital scheme (FPLO) [46] within the local

density approximation (LDA) was used to obtain the total energies and accurate band

structure. In the full relativistic calculations we used the exchange and correlation potentials

of Perdew and Wang [44]. Ce 5s, 5p, 6s, 5d, 4f, 6p and O 2s, 2p, 3d states were chosen as the

basis set. The lower-lying Ce and O 1s states were treated as core states. The O 3d and
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Ce 6p states were taken into account to get a more complete basis set. The inclusion of the

Ce 5s and 5p in the valence states was necessary in order to handle non-negligible core-core

overlaps. The spatial extension of the basis orbitals, controlled by a confining potential

(r/r0)
4 [47], was optimized to minimize the total energy. A k mesh of 24 × 24 × 24 in the

Brillouin zone was used. The atomic energies used in the calculation of cohesive energy

presented in Tab. I were obtained with DIRAC-code [48]. One can see (Tab. I) that the

lattice parameter and the bulk modulus as well as the cohesive energy obtained within this

approach are in good agreement with the experiment.

Performing a DFT-LDA calculation with CRYSTAL-code (PW-LSD for correlation and

Dirac-Slater exchange functional (LDA) [49]) we obtain a cohesive energy of −0.81037 a.u.,

that is in good agreement with the FPLO-LDA as well as with experiment. At the same

time it becomes clear after comparison of this value with the one obtained with post-HF

LDA, that the good agreement with the experiment is due to an error cancelation: the LDA

exchange overestimates the cohesive energy and the LDA correlation term underestimates

it.

Fig. 3c shows the electronic band structure of CeO2 calculated with FPLO-code. In this

figure the lowest shown band consists of 5p states of Ce. The highest occupied valence

band has mostly O 2p character, while the narrow band situated just above the Fermi level

is mainly due to 4f states of Ce (marked by dashed frame in Fig. 3c). The energy gap

between the 2p O band and unoccupied 4f Ce band is about 2.3 eV which is little low

than the experimental value (3.4 eV [27, 43]): the usual underestimation of the band gap

within the standard LDA scheme. The energy diference between the occupied 2p band

of O and unoccupied 5d Ce band is about 6.2 eV, which agrees well with measurements

(∆Eexp = 6 eV [27, 43]). According to the calculations CeO2 is an insulator, that is also

in agreement with experiment as well as the HF/ecp46-calculation result. This observation,

along with analysis of mechanical and thermodynamic values calculated for both electronic

subconfigurations of Ce, allows us to conclude that the f 0-configuration of cerium atom in

CeO2 is more favorable.
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C. Application of the method of increments

1. Embedding procedure

Since dynamic correlations have local character (and, as a consequence, the increments

are fairly local entities), the increments can be calculated in finite fragments of the solid.

Therefore, an appropriate embedding procedure simulating the influence of the infinite sys-

tem surrounding the chosen cluster is of crucial importance. Since in the studied system

valence electrons are located at the oxygen we selected for the calculations the O-centered

cluster Ce4O7: the central O-ion with four neighboring ceriums according to the crystal

structure and 6 additional O-ions connecting the ceriums by pairs (Fig. 4). For Ce we

used the ecp46 and the corresponding basis set ((7s6p5d2f)/[5s4p3d2f ]) increased by even

tempered basis functions to [8s7p6d3f2g] [50]. Oxygen was treated with the augmented

valence triple-ζ (avtz) basis set by Dunning [51]. An additional cover consisting of twelve

Ce4+ describing by large-core potential (ecp54) together with a contracted [1s1p1d1f ] basis

set [52] were added as shown in Fig. 4. The obtained structure is further surrounded by a

point-charge area which simulates the 2 × 2 × 2 unit cell construction (larger point charge

array would yield nearly no changes in the values of correlation increments). The correlation

energies are evaluated using the coupled cluster approach with single and double excitations

(CCSD) [53] as implemented in MOLPRO 2002. Localized orbitals used in these calcula-

tions were obtained according to the Pipek-Mezey criterion [54]. The results for the one- and

two-body increments are shown in Table II. The presented embedding approach has several

advantages. At first, the cluster describes the proper surrounding of the valence electrons

of the correlated oxygen. This leads to the assumption, that the increments obtained from

this cluster are very close to the ones in the solid. Then, there is a possibility to get a

large number of increments from the same cluster. At the same time, as can be seen from

Tab. II, the studied cluster allows to consider only finite number of increments. The idea

to use CeO8-cluster in order to find ∆ǫO−(Ce)−O was faulty because of the instability of this

highly negatively charged cluster. The correlation-energy increments ∆ǫO−(.)−O as well as

∆ǫCe−Ce with rCe−Ce = 5.41 Å could be evaluated from the cluster, which is the “sum” of

two Ce4O7− clusters [55], but these calculations will require a significant amount of com-

putational resources. Besides that we can not consider some Ce-O and Ce-Ce increments
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with the distance between the centers larger than the lattice parameter (a=5.41 Å) with the

investigated cluster. For these reasons we decided to use also the alternative embedding

scheme, where each particular increment can be obtained from an individual cluster. This

approach was shown to work well for several ionic compounds [20–22, 24]. In this scheme

the individual ions can be embedded in different ways. We have tested several embeddings:

from purely point charges up to pseudopotential-surrounding of oxygens to imitate the Ce-

ions [26]. The results shown here (see Tab. II) were obtained for the case, where correlated

negatively charged ions are embedded with Ce4+-pseudopotentials (ecp46) as next neigh-

bors. 8 outer-core electrons of the embedding-ceriums in the 5s2p6 shell are described with

a minimal basis set. The avtz and [8s7p6d3f2g] basis sets are used for the correlated O and

Ce, respectively, as in the previous calculations. Finally, the system is surrounded by a set

of point charges in accordance with the crystal symmetry.

2. One-body increments

One can see from Tab. II the value obtained for the Ce-increment with the second ap-

proach is by 0.0063 a.u. lower as compared with the first one, whereas in the case of ǫO

calculated with the second approach we obtained a value which is by 0.0036 a.u. higher than

the one obtained with the first embedding-scheme. Nevertheless, summation of the one-

body increments multiplied with their respective weight factors leads to the nearly identical

correlation contribution (of −0.69728 a.u. or −0.69646 a.u. in the case of the first and the

second embedding-scheme, respectively) to the total energy of cerium dioxide. This value

corresponds to approximately −0.1210 a.u. contribution to the bulk cohesive energy Ecoh per

primitive unit cell of the CeO2−crystal or yields to ∼58% of the “experimental” correlation

contribution to the cohesive energy, i.e. the difference between Eexp
coh and the HF cohesive

energy.

3. Two- and three-body increments

Among the two-body increments let us first discuss the interaction of ions with the

opposite signs. In this series we examined Ce-O correlation-energy increments up to the

third nearest neighbor Ce and O (rCe−O ≤ 6 Å). Whereas the interaction between the nearest
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neighbor Ce4+ and O2− leads to the largest contribution among all two-body increments,

the Ce-O correlation-contributions between second and third next neighbor ions are found

to be relatively small, but can not be neglected due to their high weight factor (24).

The sum of increments related to the pairs of Ce4+-ions (−0.0062 a.u.), amounts to only

3% of the total sum of two-body increments. More important are interactions between O2−-

ions. The 6 calculated increments of this kind (see Tab. II) up to rO−O = 6.05 Å decrease

quite quickly with increase of interionic distance. The sum of ∆ǫO−O contribute about 17%

to the sum of two-body increments.

We have calculated 11 different three-body increments. As can be clearly seen from

Tab. III they are very small: they contribute less than 1% to the correlation part of the bulk

cohesive energy. This indicates a rapid convergence of the incremental expansion. Therefore,

we can conclude that neglecting three-body increments in further calculations is a reasonable

approximation.

4. Sum of increments and discussion

Adding up the increments we obtain about 85% of the experimental cohesive energy. In

order to improve this result we expand the basis set at Ce and O up to [9s8p7d4f3g1h] [56]

and avqz [51], respectively. On the other hand it is interesting to study also the influence

of triple exciations to the incremental expansion. The data obtained for the improved basis

set at the CCSD level, as well as coupled cluster level with single and double excitations

augmented by a perturbative correction for connected triple excitations [CCSD(T)] [57], are

presented in Tab. II.

One can see, that increasing the basis set as well as including triple excitations in the CC

expansion have a rather high influence on the total sum of increments and their contribution

to the cohesive energy. Turning to the values of individual increments, one can note, that

the listed changes play a far more important role for the oxygen one-body increment (ǫO)

as compared with the one for cerium. In the case of ǫO we get +9% due to the use of avqz

instead of avtz and another +3% as a result of triples’ contribution. At the same time for

ǫCe this corresponds to +3.5% and +2.5%, respectively. Among the two-body increments

∆ǫO−O are most exposed to the effects of changes in the basis set and CC model: increments

obtained at CCSD level with avqz are by about 20% higher than the ones obtained with
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avtz basis set. Application of CCSD(T) model leads to increase of this value by another

16%. For the rest the general behavior of the increments are similar when compared with

the ones obtained as described in Sec. IIIC 3.

Thus, using the [9s8p7d4f3g1h] and avqz basis sets for cerium and oxygen, respectively,

at the CCSD(T) level of theory we can cover nearly 93% of the expected cohesive energy

(see Tab. I). A basis set extrapolation at the correlated level [58] would yield an increase

of the cohesive energy by about 1%. But also the basis set limit is probably not reached

at the HF level, so we can expect an increase of the HF cohesive energy by 1-2%. Errors

due to truncation of the incremental expansion can be estimated to about ±3%. Note, that

according to Harrison [59], the experimental error of the cohesive energy, due to measur-

ing the heat of formation and the heat of atomization at different temperatures, is about

1%. At the same time the best DFT results (FPLO) overestimate the cohesive energy by

approximately 9%.

5. Mechanical properties

At the HF level the lattice constant has a deviation of 0.14 Å from the experimental value.

It is interesting, therefore, to study the influence of correlation effects on lattice parameter.

Application of the CCSD(T) model together with the “good” basis set requires significant

computational resources even within the second embedding approach. At the same time it

is necessary to note here, that the calculated lattice constant and bulk modulus are strongly

influenced by the form of the potential curve and we do not expect significant dependence

of the calculated mechanical properties on the type of the CC model and quality of the used

basis set. Therefore, for the optimization of the lattice constant we decided to use the avtz

and [8s7p6d3f2g] basis sets for the correlated O and Ce, respectively, at the CCSD level of

theory. Summing up one and two-body correlation contributions, the lattice constant was

found to be 5.43 Å, i.e. about 0.4% larger than the measured parameter (see Fig. 5a). The

bulk modulus, obtained for the calculated lattice constant (240GPa) is about 2% higher than

the experimental value. The bulk modulus calculated at the experimental lattice constant

(255GPa), is by 8% too large compared to the measured one. To obtain these results we

applied a quadratic fit to the correlation energy and 4th order polynomial fit to the HF

potential curve.
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As was already found for previously studied systems [20–22], there are two main effects of

the correlations. On the one hand, the one-body increments enforce a larger lattice constant

(see Fig 5b, closed circles), due to the increasing of the quantum well enclosing the oxygen

ion which leads to the lower excitation energies. It is evident, at the same time, that since in

Ce4+ only outer-core electrons are correlated, ǫCe is weakly influenced by lattice parameter.

On the other hand, the two-body increments yield a large reduction of the lattice constant

(see Fig. 5b, triangles). Due to the inclusion of correlations the electrons can “avoid each

other” better and therefore a shorter interatomic distances is favourable.

IV. CONCLUSION

The electron-correlation effects on the ground-state properties of the cerium dioxide were

studied by ab initio quantum-chemical methods. First, the cohesive energy, lattice con-

stant and bulk modulus of the cerium dioxide were determined at the HF level. With this

method we recover about 60% of the experimental cohesive energy. The lattice constant is

overestimated by 2.5% and bulk modulus, evaluated at the experimental lattice constant

is too large. Then, the correlation contribution to the ground-state properties of CeO2 was

calculated using an expansion into local increments. After inclusion of correlations obtained

at the CCSD(T) level the calculated values are in good agreement with experiment: we

obtained about 93% with an estimated error of ±4% of the expected cohesive energy. The

computed lattice constant shows a deviation of less then 1% from the experimental one.

The calculated bulk modulus overestimates the measured value by 8%. With this detailed

description of the electronic correlations in bulk CeO2 it is now possible to extend the work

to CeO2 surfaces and adsorbed molecules on it.
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[49] P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

[50] We added one s, p, d and f (αs=0.010920, αp=0.012178, αd=0.027009, αf=0.103158, respec-

tively) exponents and two g exponents (0.82 and 0.34).

[51] T. H. Dunning (Jr), J. Chem. Phys. 98, 1007 (1998); R. A. Kendall, T. H. Dunning (Jr), and

R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

[52] R. B. Ross, S. Gayen, and W. C. Ermler, J. Chem. Phys. 100, 8145 (1994).

[53] R. C. Bartlett, J. Phys. Chem. 93, 1697 (1989); J. Paldus, in Methods in Computational

Physics, edited by S. Wilson and G. H. F. Diercksen (Plenum Press, New York, 1992).

[54] J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).

[55] Two central oxygens at (a/4,a/4,a/4) and (-a/4,-a/4, -a/4), respectively, each surrounded by

four Ce4+. This structure has an environment consisting of 12 oxygens and 18 Ce-ions.

[56] We added two s, p, d and f (αs=0.010920 and 0.004474, αp=0.012178 and 0.004206,

αd=0.027009 and 0.009277, αf=0.103158 and 0.038006, respectively) exponents, three g ex-

ponents (0.82, 0.34, and 0.14), and one h exponent (0.93).

[57] J. Noga and R. J. Barlett, J. Chem. Phys. 86, 7041 (1987); 89, 3401 (1988); G. E. Scuseria

and H. F. Schaefer III, Chem. Phys. Lett. 152, 382 (1988); K. Raghavarchari, G. W. Trucks,

J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

[58] T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).

[59] W. A. Harrison, Electronic structure and the properties of solids (Dover Publications, Inc.,

New York, 1989).

16



Ce-ions

O-ions

FIG. 1: (Color online) Cubic fluorite structure of cerium dioxide

17



5.4 5.5 5.6 5.7 5.8

-188.065

-188.060

-188.055

-188.050

-188.045

50

100

150

200

250

300

350

400

5.
55

Å

5.
41

Å

B
(G

Pa
)

E
(a

.u
.)

a (Å)

307 GPa

224 GPa

FIG. 2: (Color online) The total energy per unit cell as a function of the lattice parameter a.

The crosses are the data-points obtained from CRYSTAL calculations (f0-subconfiguration of Ce).

Solid line is the fourth-order polynomial fit. Open-circled line is the bulk modulus as a function of

the lattice constant a.
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FIG. 4: (Color online) Embedding of the Ce4O7-cluster.
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TABLE I: Experimental and calculated lattice constant (a), bulk modulus (B) and cohesive energy

(Ecoh) of CeO2.

Exchange Experi- HF HF HF HF LDAa HF

Correlation ment − − PW-LSD PW-GGA LDAa CCSD

PP ecp46 ecp47 ecp46 ecp46 all-el. ecp46

a (Å) 5.41 [5] 5.55 5.85 5.47 5.42 5.42 5.43

B (GPa) 236 [42] 307b 139b 298b 272 217 255b

Ecoh (a.u.) -0.7807 -0.4590 -0.2091 -0.5298 -0.5778 -0.8524 -0.7266c

a FPLO-calculations
b calculated for experimental lattice parameter
cobtained at CCSD(T) level of theory
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TABLE II: Correlation energy increments for CeO2

Atom Dist. ωa ǫ (a.u.) b ǫ (a.u.) c ǫ (a.u.) c ǫ (a.u.) c

(group) (Å) (CCSD, (CCSD, (CCSD, (CCSD(T),

Basis Ad) Basis A) Basis Be) Basis B)

One-body increments (ǫA)

Ce - 1 −0.17418 −0.18048 −0.18654 −0.19080

O - 2 −0.26155 −0.25799 −0.28052 −0.28942

ΣǫA −0.69728 −0.69646 −0.74758 −0.76964

Two-body increments (∆ǫAB)

Ce-O 2.34 8 −0.01198 −0.01492 −0.01578 −0.01767

Ce-O 4.49 24 −0.00093 −0.00070 −0.00082 −0.00093

Ce-O 5.90 24 −0.00008 −0.00010 −0.00011

Ce-Ce 3.83 6 −0.00068 −0.00095 −0.00095 −0.00104

Ce-Ce 5.41 3 −0.00016 −0.00016 −0.00017

O-O 2.71 6 −0.00691 −0.00337 −0.00404 −0.00469

O-O 3.83 12 −0.00146 −0.00049 −0.00065 −0.00075

O-(Ce)-O 4.69 4 −0.00044 −0.00048 −0.00057

O-(.)-O 4.69 4 −0.00022 −0.00029 −0.00035

O-O 5.41 6 −0.00021 −0.00010 −0.00012 −0.00014

O-O 6.05 24 −0.00002 −0.00003 −0.00003

Σ∆ǫAB −0.18248 −0.17408 −0.19106 −0.21545

aweight factor per unit cell
bobtained from calculations performed for the single cluster (see Fig. 4)
cobtained from different cluster-calculations
d[8s7p6d3f2g] and avtz basis sets for cerium and oxygen were used
e[9s8p7d4f3g1h] and avqz basis sets for cerium and oxygen were used
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TABLE III: Three-body correlation-energy increments determined at the CCSD level.

Distances (Å) ω ǫ a (a.u.)

Ce-Ce-Ce 3.83 3.83 3.83 4 −0.000008

Ce-Ce-O 3.83 2.34 2.34 8/3 −0.001249

Ce-Ce-O 3.83 2.34 4.49 8/3 −0.000312

Ce-Ce-O 3.83 4.49 4.49 4/3 +0.000042

Ce-O-O 2.34 2.71 2.34 5/3 −0.000157

Ce-O-O 2.34 2.71 4.49 40/9 +0.000056

Ce-O-O 2.34 5.41 4.49 5 +0.000636

O-O-O 2.71 3.83 2.71 8 −0.000128

O-O-O 3.83 3.83 3.83 16 −0.000155

O-O-O 2.71 5.41 2.71 2 −0.000091

O-O-O 3.83 5.41 3.83 44/3 +0.000288

Σ∆ǫABC −0.000433

a obtained from different cluster-calculations
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