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Abstract. Dynamical zeta functions provide a powerful method to analyze low

dimensional dynamical systems when the underlying symbolic dynamics is under

control. On the other hand even simple one-dimensional maps can show an intricate

structure of the grammar rules that may lead to a non-smooth dependence of global

observables on parameters changes. A paradigmatic example is the fractal diffusion

coefficient arising in a simple piecewise linear one-dimensional map of the real line.

Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant

we provide the exact dynamical zeta function for such a map and compute the diffusion

coefficient from its smallest zero.
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Chaotic dynamic forces to move the attention from individual trajectory to

evolution of densities. The study of the spectrum of the evolution operator, the Perron-

Frobenius operator, is a well established method for the analytic treatment of hyperbolic

dynamical systems. In particular dynamical averages can be extracted from the spectra

of the generalized transfer operator: this approach was successfully used to compute

physical quantities such as the diffusion coefficient for extended hyperbolic dynamical

systems or the escape rate for open systems [1]. Relaxing the assumption of hyperbolicity

is the natural step forward: lot of efforts are still devoted to understand how to extend

the assumptions of strong chaoticity to include the presence of regions of regular motion

into a meaningful periodic orbit expansion. Along this line it was possible to show how

to treat systems with marginally stable periodic orbits [2]. In such a case marginality has

a deep effect on the analytic structure of zeta functions and the system shows peculiar

behavior like anomalous diffusion and power law decay of correlations [3].

Even without relaxing the hyperbolicity assumption a strong limitation on the

practical implementation of the periodic orbits program relies on the need of control

over periodic orbits proliferation: the number of periodic orbits grows exponentially

with the period (at a rate given by the topological entropy) and an analytical treatment

requires the control over such a huge amount of information. Cycle expansions technique

prevents the explosion of the theory organizing cycles into fundamental terms and

curvature corrections (constructed with longer cycles and their shadowing by shorter

orbits) that turns out to be a good perturbative expansion [1]. The main ingredient is

then a good understanding of the cycles that build the fundamental and curvature terms

that implies a good control over the symbolic dynamics of the system. Unfortunately

the missing of such a control is the normal situation rather than the exception. Even

for a very simple one-dimensional map without complete branches such a control is

typically impossible. As a paradigmatic example we will use a simple one dimensional

linear map on the real line where it was shown [4] that the diffusion coefficient is a

fractal function of the parameter defining it. Such a complex behaviour is the result of

the intricacy of the symbolic dynamics for a generic parameter value. Even if transport

properties of such maps were already derived in [5] any attempt to analytical organize

the cycle expansions for the full parameter range has failed so far: at our knowledge

until now it was only possible to identify a family of parameter values were symbolic

dynamics become tractable and dynamical zeta function can be derived [6]. Here we

show how it is possible to derive the diffusion coefficient for the full range of parameter

values using an alternative formulation of the dynamical zeta functions presented by

Baladi-Ruelle [8] (their approach generalize the Milnor-Thurnston work [7] originally

devoted to topological zeta function only).

1. Invariant coordinates and kneading determinants

For Λ ≥ 2 we define the map gΛ : R → R as a lift of the map ĝΛ : [0, 1] → R:

gΛ(x + n) = ĝΛ(x) + n n ∈ Z (1)
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ĝΛ(x) =
1

2
+ Λ(x −

1

2
) (2)

Define fΛ(x) : [0, 1] → [0, 1] to be the restriction on the unit interval of ĝΛ(x) i.e.

fΛ(x) = ĝΛ(x) mod 1 (3)

Figure 1. Example of the map fΛ(x) with Λ = 3.23.

A bounce of initial condition for the map gΛ(x) will spread out diffusively on the

real line and the set of transport coefficients (for example the drift or the diffusion

coefficient) can be computed with the help of a generalized dynamical zeta function [1]

of the form:

ζ−1(z, β) =
∏

{p}

(

1 −
znpeβσp

|Λp|

)

(4)

where {p} denotes the set of prime periodic orbits of the reduced map f(x) and the

only quantities that enter the definition are the period of the orbit np, the instability

Λp =
∏np−1

i=0 f ′(f i(x)) and the integer jumping number σp = g(x)−f(x) (that remembers

the number of cells the trajectory jumps once unfolded on the real line). Cycle

expansions technique [1] provides an organization of the infinite set of periodic orbits

{p} that produces (for fully hyperbolic systems) a rapidly convergent power expansion

of the dynamical zeta function (4). Transport properties of the system are encoded into

the behaviour of its smallest zero z0(β) around its value z0(0) = 1. For example the

drift J and the diffusion coefficient D can be computed by

J =
dz0(β)

dβ

∣

∣

∣

∣

β=0

D =
1

2

d2z0(β)

dβ2

∣

∣

∣

∣

β=0

(5)
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For Λ being an odd number the map consists of complete branches and the symbolic

dynamics reduces to a full shift on an n-letter alphabet. In such a case the dynamical

zeta function can be written in closed form and the diffusion coefficient can be computed

easily. The situation is similar for even integer. For a specific set of the parameter Λ

it was possible [6] to control the symbolic dynamics and construct the dynamical zeta

function while for the generic case we will expect an infinite number of pruning rules

(changing discontinuously under parameter variation) and no simple expression for the

cycle expansions organization of periodic orbits. On the other hand Milnor and Thurston

[7] have shown how it is possible to control the symbolic dynamics of maps of the unit

interval following the iteration of critical points. In particular they were able to relate

the topological entropy to the determinant of a finite matrix (the kneading determinant)

were the entries are formal power series (with coefficients determined by the kneading

trajectories). Later Baladi and Ruelle [8] have generalized the result to constant weight

(see also [9] and references therein for more general results). We will closely follow the

notation of Baladi-Ruelle [8] to construct the dynamical zeta function for the family of

maps fΛ(x) defined above.

Fix Λ and rename for simplicity f(x) := fΛ(x). Call a0 < a1 < ... < aN the ordered

sequence of end points of each branch (see Fig.(1)). Define ǫ(x) = sgn(f ′(x)) and t(x) as

a constant weight for x ∈ [ai−1, ai]. In our specific case the restriction of these functions

on the i-interval will take the constant values:

ǫi = 1 (6)

ti =
z eβσi

Λ
(7)

where σi is the jumping number associated to the i-th branch.

Let’s associate to each point x the address vector in Z
N−1

~α(x) = [sgn(x − a1), ..., sgn(x − aN−1)] (8)

and define the invariant coordinate of x by the formal series:

~θ(x) =
∞

∑

n=0

[

n−1
∏

k=0

(ǫt)(fk(x))

]

~α(fn(x)) (9)

with the convenction that the product is equal to one if n = 0 (the invariant coordinate

θ is single valued once we put ǫ(ai) = 0).

Defining φ(a±) = limx→a± φ(x) we compute the discontinuity vector at the critical

points ai for i = 1, .., N − 1:

~Ki(z, β) =
1

2

[

~θ(a+
i ) − ~θ(a−

i )
]

(10)

The kneading matrix K(z, β) is defined as the (N − 1) × (N − 1) matrix with
~Ki; i = 1, .., N − 1 as rows. We call ∆(z, β) = det K(z, β) the kneading determinant.
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2. Relation between kneading determinant and dynamical zeta function

Without entering into many details we restrict to the case under study and present the

formula that relates the kneading determinant and the dynamical zeta function for the

map f(x) defined above. Let’ s call {p̃} the set of prime periodic orbits that contain

a critical point as periodic point (i.e. fnp̃(ai) = ai). We note explicitly that there is

at most a finite number of such prime orbits (for a finite number of ai). It is possible

to show that the dynamical zeta function is equal to the kneading determinant up to a

rational function (see [8] for more general results and a proof of relation (11)):

∆(z, β) = R(z, β) ζ−1(z, β) (11)

R(z, β) =

[

1 −
1

2
(ǫ1t1 + ǫN tN)

]

∏

{p̃}

[1 − tp̃(z, β)]−1 (12)

In their original work [8] Baladi and Ruelle inserted the product over the set {p̃} into

a definition of a reduced zeta function where they do not count such (repelling) cycles.

Here we prefer to remain with the usual zeta function and factorize out explicitly the

critical cycles. In particular formula (11) shows that the smallest zero of the kneading

determinant coincides with the smallest zero of the dynamical zeta function for β → 0.

3. Fractal diffusion coefficient

We start computing explicitly the kneading determinant for the map fΛ. It is easy to

see that for i = 1, .., N − 1 we have:

~θ(a+
i ) = (...., +, +,−, ....) + ti+1

~θ(a+
0 ) (13)

~θ(a−
i ) = (...., +,−,−, ....) + ti ~θ(a

−
N) (14)

where the change of sign in the component of the first addend appear at the i-th position.

From the choice (6) we have ti+1 = eβti and so

~Ki(z, β) = (0, ..., 0, 1, 0, ...., 0) +
1

2
tie

β

2

[

e
β

2 ~θ(a+
0 ) − e−

β

2 ~θ(a−
N)

]

(15)

Simplifying the notation we get that the kneading matrix is of the form:

Kij = 1 − Wij Wij = aibj (16)

and the kneading determinant can be easily computed to be

∆ = det(K) = exp

[

−

∞
∑

n=1

Tr (W n)

n

]

= (17)

= 1 − Tr W (18)

where in the last passage we have used the fact that for matrix W of the form (16) we

have Tr (W n) = (Tr W )n. Finally the kneading determinant simplifies to:

∆(z, β) = 1 +
z

2Λ

N−1
∑

i=1

eβ(σi+1/2)
[

e
β

2 ~θ(a+
0 ) − e−

β

2 ~θ(a−
N)

]

i
(19)
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Due to the symmetry under x 7→ −x the map g(x) presents no net drift. In

order to show it we compute the first derivative of the smallest zero of the kneading

determinant (5). We relabel the intervals by the associated jumping numbers: call it

bj j = −M, ..., 0, .., M and call ~α(j) the address (8) of a point in the interval bj . Define

the function sj(z, β) by the relation:

eβ/2~θ(a+
0 ) =:

M
∑

j=−M

sj(z, β)~α(j) (20)

In the symmetric case iterations of the critical point a0 can be mapped to iterates of

the other ‘external’ critical point aN and so we have

e−β/2~θ(a−
N) =

M
∑

j=−M

sj(z,−β)~α(−j) (21)

With the definition above the function sj(z, β) receives contributions only when the

trajectory of the critical point a0 traverses the interval bj .

Each of the ~α(j) has 2M components (see 8) that, with abuse of notation, we can

label by k = −2M +1,−2M +3, ...,−1; 1, ..., 2M−3, 2M−1. The kneading determinant

can be rewritten as:

∆(z, β) = 1 +
z

2Λ

∑

k

∑

j

eβ k
2 [sj(z, β)~α(j) − sj(z,−β)~α(−j)]k (22)

and the first derivative is then

∂∆(z, β)

∂β

∣

∣

∣

∣

z=1,β=0

=
z

2Λ

∑

k,j

[

sj(1, 0)(k +
1

2
)~xj

k + ∂βsj(1, 0)~yj
k

]

∣

∣

∣

∣

∣

z=1,β=0

(23)

= 0 (24)

were we used:

~x(j) = [~α(j) − ~α(−j)] ~y(j) = [~α(j) + ~α(−j)] (25)

[~x(j)]k = [~x(j)]−k [~y(j)]k = −[~y(j)]−k (26)

For β = 0 the leading zero of the dynamical zeta function must be z(0) = 1 and

then the kneading determinant must satisfy:

∆(1, 0) = 1 +
1

2Λ

∑

k,j

sj(1, 0)[~x(j)]k = (27)

= 1 +
2

Λ

M
∑

j=−M

j sj(1, 0) = 0 (28)

where in the last passage we used the fact that
∑

k [~x(j)]k = 4j. In order to clarify Eq.

(28) we check it for the simplest case of odd integer Λ. In such a case the map consists

of complete branches and a0 = 0 become a fixed point. The function sj(z, β) vanishes

for all indexes but j = −M where

s−M(z, β) =
∞

∑

n=0

[

z e−βM

Λ

]n

e−
β

2 (29)
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Using the fact that M = (Λ − 1)/2 the relation (28) becomes

∆(1, 0) = 1 −
1

Λ
(Λ − 1)

Λ

Λ − 1
= 0 (30)

Similar relations are found for even integer Λ, were again the address of a0 can be

written in closed form due to the fact that fn(0) = 1/2 for all n > 0.

In the same spirit it is possible to compute the diffusion coefficient for a generic

value of Λ, rewriting Eq. (5) as

D = −
1

2

(

∂2∆(z, β)

∂β2
/
∂∆(z, β)

∂z

)
∣

∣

∣

∣

z=1,β=0

(31)

where

∂2∆(z, β)

∂β2

∣

∣

∣

∣

z=1,β=0

=
1

2Λ

∑

k,j

[

k2sj(z, β)~x(j)k + 2k
∂sj(z, β)

∂β
~y(j)k +

+
∂2sj(z, β)

∂β2
~x(j)k

]

∣

∣

∣

∣

z=1,β=0

(32)

∂∆(z, β)

∂z

∣

∣

∣

∣

z=1,β=0

= − 1 +
1

2Λ

∑

k,j

∂sj(z, β)

∂z
~x(j)k

∣

∣

∣

∣

∣

z=1,β=0

(33)

The evaluation of expression (31) for a parameter choice Λ ∈ [2, 3] is shown in Fig. (2)

and can be compared, for example, with Fig.10 in [4] .

Figure 2. Fractal diffusion coefficient as a function of the slope of the map fΛ(x)

computed from the smallest zero of the dynamical zeta function. The insert is a blow

up of a part of the main figure
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4. Conclusions

The fractality of the diffusion coefficient of the piecewise linear map under consideration

is a consequence of the sensitivity of the topological entropy to parameter variation:

even an arbitrary small parameter change creates and destroys infinitely many periodic

orbits and the cycle expansion approach to dynamical zeta function becomes unfeasible.

Avoiding periodic orbits and using the Baladi-Ruelle generalization of the Milnor-

Thurston kneading determinant we were able to construct the dynamical zeta function

for arbitrary parameter values and compute from it the fractal diffusion coefficient.
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