Electron-ion recombination in strongly coupled, cold plasmas under nonequilibrium conditions

T Pohl‡ and T Pattard

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany.

Abstract. We discuss the dynamics of recombination of an expanding ultracold plasma into highly excited Rydberg states, with emphasis on the influence of possible strong coupling between the charges and the nonequilibrium character of the electronic component. While the former does not significantly affect recombination in current experimental scenarios, the latter is shown to have a considerable influence on the system dynamics. We derive correction factors quantifying the deviation of collision rates from their respective equilibrium values. The experimentally observed unexpectedly high recombination rate at long evolution times can be reproduced by a proper inclusion of these effects without the need to invoke alternative, previously suggested mechanisms, such as an "adiabatic motion recombination" or the development of very strong electron correlations by collisional cooling.

1. Introduction

Since their first experimental realization in 1999, ultracold $(T \ll 1 \text{K})$ quasineutral plasmas [1] have gained an increasing amount of attention both from experimentalists and theoreticians [2–10]. The appeal of these systems is based on essentially two remarkable properties. First, the ultralow temperatures of the plasma suggest that the system might be in a very strongly coupled regime otherwise realized mostly in exotic astrophysical objects. While early hopes of observing Coulomb crystallization in such a plasma have not materialized yet due to various intrinsic heating mechanisms, moderately strong coupling is still observed and significantly affects the system evolution. Moreover, from the way the plasma is created by photoionization of a cloud of neutral atoms, the system is in a state far from thermodynamical equilibrium. On the one hand, the spatial distribution of the ions is fully uncorrelated initially. On the other hand, the velocity distribution of the electrons is given by a microcanonical rather than a thermal distribution immediately after the photoionization. Furthermore, the finite depth of the potential generated by the ionic space charge implies deviations from a Maxwell-Boltzmann distribution even at later times. Experimentally, the huge amount of control possible with state-of-theart techniques makes a very precise preparation of initial states possible. Moreover, convenient timescales allow for detailed measurements of the time evolution of the plasma, making ultracold plasmas an almost ideal system for experimental studies of strongly coupled nonequilibrium systems.

 \ddag present address: ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138

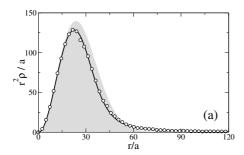
Meanwhile, theoretical approaches have been developed for the description of various aspects of the dynamics of ultracold plasmas which are in very good agreement with experimental observations [8, 11]. The time evolution of macroscopic properties, such as temperatures, densities, expansion velocities etc. can be described even with simple hydrodynamical approaches [12, 13], while ionic correlation effects can accurately be treated using a hybrid molecular dynamics method [13]. So far, the dynamics of bound-state formation through electron-ion recombination has withstood a quantitative modeling (see [14]). Firstly, the timescale of the initial population of bound states is not accurately reproduced by the current numerical simulations. Moreover, the rate of recombination at long times observed experimentally is larger than that predicted by existing theories. While there have been attempts to explain the observed behavior by proposing new recombination mechanisms such as "adiabatic motion recombination" caused by a time dependent continuum shift [15] or the development of strong electron correlations by collisional cooling [16], these explanations remain controversial. Since the former approach neglects the initial correlation-induced heating and electronic field effects on continuum lowering, the respective continuum shift is overestimated by an order of magnitude resulting in an overestimate of the corresponding "motional recombination" rate. On the other hand, the results of [16] are inconsistent with recent temperature measurements [3,4], proving the existence of well separated temperatures for the electronic and ionic subsystem. This discrepancy is mainly due to overestimated electron-ion-collision rates used in [16].

In the present paper, we analyze the role of strong coupling as well as nonequilibrium effects on the recombination behavior. As it turns out, properly accounting for these effects within existing theoretical approaches leads to reasonable agreement with experimental observations without the need of invoking new recombination mechanisms.

2. Basic model

Despite their very low temperatures, typical densities of ultracold plasmas are sufficiently low that the corresponding Fermi temperature is well below the electron temperature and quantum statistical effects can safely be neglected. Hence, classical molecular dynamics simulations are expected to provide a very accurate description of these plasmas. Indeed, it has been demonstrated that they permit an accurate study of recombination on a short timescale [7,9]. On the other hand, the huge particle numbers required and the extreme separation of the electronic and ionic timescales make them unsuitable for investigations of the long-time plasma dynamics, rendering a direct comparison with present experiments practically impossible.

One approach to overcome this problem in the framework of a hydrodynamical model has been described in detail in [13]. Briefly, we start from the classical kinetic equations of the electronic and ionic subsystem, respectively, which together with the assumption of quasineutrality and a local density approximation for the ionic correlation function allows us to derive a closed set of ordinary differential equations for the width of the plasma cloud, the expansion velocity, and electronic and ionic temperatures. In order to take into account inelastic processes, these equations are coupled to a set of rate equations describing the population dynamics of formed atoms. We account for radiative processes such as spontaneous decay to lower levels and radiative recombination [12,17] as well as collision processes such as electron-impact



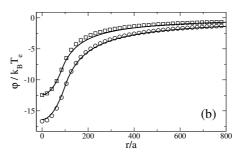


Figure 1. (a) Comparison of the electron density obtained from a full MD-simulation (circles) of 50000 ions and electrons with $\Gamma_{\rm e}(t=0)=0.5$ with the corresponding Michie-King distribution (solid line). The shaded area shows the ion density profile. (b) Numerically calculated electrostatic potential for $N_{\rm i}=300000$, $\Gamma_{\rm e}=0.2$ (circles) and $N_{\rm i}=300000$, $\Gamma_{\rm e}=0.05$ (squares), compared to the fit formula Eq.(4).

(de)excitation, electron-impact ionization and three-body recombination. The latter are described by the classical collision rates given in [18].

3. Strong coupling effects

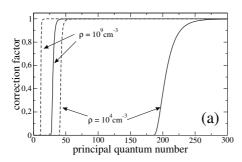
Since the bound electrons typically occupy very highly excited Rydberg states, the collision rates obtained in [18] from classical trajectory Monte-Carlo calculations are expected to yield reliable results for collisions taking place in vacuum. However, for these highly excited states level shifts caused by correlations between the charges may lead to a significant modification of the collision rates even at the extremely low densities realized in ultracold plasmas. In the simplest approximation, the level shift may be assumed to be independent of the respective binding energy, leading to the well known Stuart-Pyatt expression [19]

$$\Delta E = \frac{e^2}{a} \left[2(\Gamma_e + \Gamma_i) \right]^{-1} \left[\left(1 + 3^{3/2} \left(\Gamma_e + \Gamma_i \right)^{3/2} \right)^{2/3} - 1 \right] , \tag{1}$$

valid for two-temperature plasmas in individual equilibrium, where $\Gamma_{\rm e}$ and $\Gamma_{\rm i}$ are the Coulomb coupling parameters of electronic and ionic subsystem, respectively§. Since the timescale of the electronic dynamics, of the order of some ns, is the shortest timescale in the system, this is certainly a good approximation for the electronic subsystem. On the other hand, the build-up of ionic correlations proceeds on a much slower timescale of μ s. However, as we have shown previously [10], the properties of spatial ion correlations can be well described by an effective Coulomb coupling parameter. Here, we use this effective ionic coupling parameter to determine the time-dependent level shift from Eq.(1).

In the simplest approximation, the recombination rate is only weakly affected by the nonideality of the plasma, while the ionization rate is enhanced by a factor of roughly $\exp{(\Delta E/k_{\rm B}T_{\rm e})}$ at small electron coupling (see e.g. [20]). As shown in [21], this static screening correction yields a good description of ionization processes compared to more sophisticated calculations. Although strong-coupling corrections

 \S In the present situation of an inhomogeneous plasma with a Gaussian density profile, we define the respective Coulomb coupling parameter as $\Gamma_{\rm e/i}=e^2/(k_{\rm B}T_{\rm e/i}a)$, where $a=(4\pi\bar{\rho}/3)^{-1/3}$, $\bar{\rho}=N_{\rm i}/(4\pi\sigma^2)^{3/2}$ is the average ion density and σ is the width of the plasma cloud.



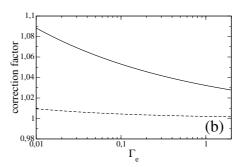


Figure 2. (a) Average correction factor for ionization rates (solid line) and $n \to n+1$ -excitation rates (dashed line) for $N_{\rm i}=500000$ and $\Gamma_{\rm e}=0.2$ at two different densities, as indicated by the arrows. (b) Average correction factor for recombination rates (solid line) and total deexcitation rates (dashed line) for $N_{\rm i}=500000$.

to the individual recombination rates are weak and hence not considered here, the level shift (1) may decrease the total rate of recombination by setting an upper limit for bound levels $n_{\rm stat} = \sqrt{\mathcal{R}/\Delta E}$ in addition to the Thomson value of $n_{\rm therm} = \sqrt{\mathcal{R}/k_{\rm B}T_{\rm e}}$, where $\mathcal{R}=13.6$ eV denotes the Rydberg energy. This fact has also been discussed in [15] as possibly important in ultracold plasmas. However, the influence of electronic electrostatic fields as well as the initial correlation-induced heating of the ions have been neglected there, resulting in an overestimate of the level shift by an order of magnitude and therefore in a much too low recombination rate. For the plasma parameters realized in the experiment [2], the strong-coupling corrections discussed above do not lead to qualitative changes of the recombination dynamics, but are expected to be important for the short-time dynamics at still lower electron temperatures and for alternative scenarios as considered, e.g., in [22].

4. Nonequilibrium effects

Another modification of the collision rates results from deviations from the commonly assumed Maxwellian distribution of electron velocities, which does not hold for finite-size plasmas. Since there is no external trapping potential, electrons evaporate from the plasma until the resulting charge imbalance becomes large enough to trap the remaining electrons, which quickly reach a quasi-steady state forming a temporarily quasineutral plasma in the central region of the cloud. As first discussed in connection with studies of globular star clusters, the resulting steady state is well represented by a truncated Maxwell-Boltzmann distribution

$$f_{\rm e}(\mathbf{r}, \mathbf{v}) \propto \exp\left(-\frac{\varphi(r)}{k_{\rm B}T_{\rm e}}\right) \begin{cases} e^{-\frac{m_{\rm e}v^2}{2k_{\rm B}T_{\rm e}}} - e^{-\frac{m_{\rm e}v_{\rm e}^2}{2k_{\rm B}T_{\rm e}}}, \ v \leq v_{\rm c} \\ 0, \ v > v_{\rm c} \end{cases}$$
(2)

where the space charge potential φ has to be determined from $\Delta \varphi = 4\pi e^2 (\rho_e - \rho_i)$ and $v_c = \sqrt{2\varphi/m_e}$ denotes the escape velocity||. In order to demonstrate the quality of this expression, we compare in figure 1a the resulting density profile, the so-called

 \parallel Note that this relation implies a monotonic space dependence of φ . The general case has been discussed in [13].

Michie-King distribution, with the electron density obtained from a full molecular dynamics simulation for a relatively large particle number of 10^5 .

Consequently, the correct collision rates have to be obtained by using the steadystate distribution Eq.(2) instead of a Maxwellian, leading to a correction factor

$$\kappa(r) = \frac{\int_0^{\varphi} \sqrt{E}\sigma(E) f_{\rm MB}(E) dE}{\int_0^{\varphi} f_{\rm MB}(E) dE} \frac{\int_0^{\infty} f_{\rm MB}(E) dE}{\int_0^{\infty} \sqrt{E}\sigma(E) f_{\rm MB}(E) dE} , \qquad (3)$$

where $f_{\rm MB} \propto \sqrt{E} \exp(-E/k_{\rm B}T_{\rm e})$ denotes the Maxwell-Boltzmann distribution. The required collision cross sections $\sigma(E)$ are obtained from an inverse Laplace transform of the original rates. This procedure leads to an additional space dependence of the collision rates via the potential $\varphi(r)$. Finally, an average correction coefficient $\bar{\kappa}$ may be calculated by integrating over the Gaussian density profile. The resulting correction factor only depends on the ion number N_i , the electronic Coulomb coupling parameter $\Gamma_{\rm e}$, and the transition energy in units of e^2/a , $\varepsilon = E/(e^2/a)$.

In order to simulate the plasma evolution including these corrections, we have numerically calculated the required space charge potential for a broad range of parameters, two examples of which are shown in Fig.1b. Note that φ can be well fitted by the potential of a homogeneously charged sphere

$$\varphi \approx F_0 R^3 \begin{cases} r^2 / 2R^3 - 3/2R, \ r \le R \\ -1/r, \ r > R \end{cases} ,$$
(4)

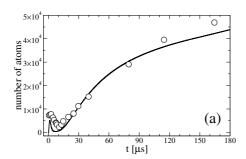
with $R=0.73N_{\rm i}^{0.404}\Gamma_{\rm e}^{0.105}$ and $F_0=(e^2/a^3)^{-1}k_{\rm B}T_{\rm e}/\sigma^2=(6\sqrt{\pi}/N_{\rm i})^{2/3}\Gamma_{\rm e}^{-1}$, an observation which might prove to be very useful for future temperature measurements as described in [4,22].

In Fig.2, we show the parameter dependence of the rate corrections for (de)excitation, ionization as well as recombination. While the corrections for the recombination and deexcitation rates do not depend on the associated transition energy and these rates are only slightly enhanced, the ionization and excitation rates quickly drop to zero below a critical quantum number n_c . This sudden decrease takes place when the potential depth $-\varphi(0)$ becomes smaller than the corresponding transition energy, since there is no electron left in the plasma which could drive this transition. As we show below, this effect may lead to considerable changes of the recombination dynamics due to the drastic decrease of the potential depth during the plasma expansion.

5. Results and Discussion

Before comparing our results with the measurements [2], some details of this experiment need to be discussed. Experimentally, the number of Rydberg atoms has been determined by analyzing the signal obtained by applying an electrical field ramp to the plasma. In order to avoid any further electron-atom collisions during this field ramp, an additional 10μ s field pulse was used prior to the Rydberg atom detection to strip away free plasma electrons. We have therefore shifted the experimental curve by -10μ s. Furthermore, only a finite window $n_l < n < n_u$ of Rydberg levels could be detected in the experiment since more deeply bound states $n < n_1$ were not ionized by the field ramp while more weakly bound states $n > n_{\rm u}$ were already destroyed by the stripping field. From the respective maximum field strengths F of the pre-ionization pulse and the detection ramp, and by using the relation [2]

$$F_n = \frac{F_0}{6n^4}$$
, $F_0 = 5.14 \times 10^9 \text{V/cm}$, (5)



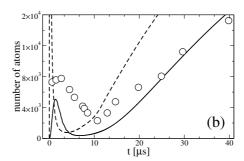


Figure 3. Comparison of the calculated (solid line) time dependence of the number of Rydberg atoms with the experiment [2] (circles) for $N_i(t=0) = 700000$, $\rho(t=0) = 2.7 \times 10^9 \text{cm}^{-3}$ and $T_e(t=0) = 6\text{K}$. The dashed line in (b) shows the result without the effect of ionic microfields (see text).

this window has been determined to be $40 \le n \le 100$. However, after removing the free electrons, the plasma becomes strongly charged, resulting in strong electric microfields which may change the above window of detectable Rydberg levels. Measurements of such microfields [23] reveal that they are indeed strong enough to significantly disturb the observed field ionization spectrum. As a simple estimate of this effect, we add the average electric field, as calculated in [23], to the field ionization ramp, from which we obtain a time dependent window of detectable Rydberg atoms by using Eq.(5).

A comparison between the experimental atom number dynamics¶ and the present calculation including strong-coupling effects, nonequilibrium effects and the influence of ionic microfields is shown in Fig.3. As can be seen, there is reasonable agreement for the long-time evolution of the Rydberg atom number as well as for the short-time behavior. As discussed in [12], the nonmonotonic atom number evolution is entirely due to the finite number of detectable Rydberg atoms. In fact, the total number of atoms is found to increase monotonically, in contrast to the conclusions reached in [16]. On the other hand, the result without taking into acount the level shift by ionic microfields yields a far too large initial atom number and a too short timescale for the initial rise. The improved agreement, even with our simple estimate of the resulting level shifts, reveals the importance of electrical microfields in interpreting field-ionization spectra.

At long times, the number of Rydberg atoms grows stronger than what has been predicted using the rates from [18]. This can be attributed to the fact that the density, and hence the depth of the ionic potential well φ , significantly decreases during the plasma expansion. As a consequence, the critical quantum number n_c below which the ionization rate drops to zero (Fig.1a) increases continuously, shifting the balance between recombination of free electrons and re-ionization of bound states. Taking this effect into account leads to a reasonable agreement with the experimental results even for the later stages of the plasma evolution.

In conclusion, incorporating strong-coupling effects as well as the influence of the nonequilibrium electronic velocity distribution on the recombination behavior of ultracold quasineutral plasmas leads to results in reasonable agreement with experimental measurements. This seems to obliviate the need for invoking alternative,

 \P Since there is an experimental uncertainty of a factor of 2 in the number of Rydberg atoms due to detector calibration [2], we have scaled down the experimental curve by a factor of 1.6.

more exotic recombination mechanisms.

Acknowledgments

We would like to thank Jan-Michael Rost for many helpful discussions.

References

- [1] Killian TC, Kulin S, Bergeson SD, Orozco LA, Orzel C and Rolston SL 1999 Phys. Rev. Lett. 83 4776
- [2] Killian TC, Lim MJ, Kulin S, Dumke R, Bergeson SD and Rolston SL 2001 Phys. Rev. Lett. 86 3759
- [3] Chen YC, Simien CE, Laha S, Gupta P, Martinez YN, Mickelson PG, Nagel SB and Killian TC 2004 Phys. Rev. Lett. 93 265003
- [4] Roberts JL, Fertig CD, Lim MJ and Rolston SL 2004 Phys. Rev. Lett. 92 253003
- [5] Cummings EA, Daily JE, Durfee DS and Bergeson SD 2005 Preprint physics/0506069
- [6] Murillo MS 2001 Phys. Rev. Lett. 87 115003
- [7] Mazevet S, Collins LA and Kress JD 2002 Phys. Rev. Lett. 88 055001
- [8] Robicheaux F and Hanson JD 2002 Phys. Rev. Lett. 88 055002
- [9] Kuzmin SG and O'Neil TM 2002 Phys. Rev. Lett. 88 065003
- [10] Pohl T, Pattard T and Rost JM 2005 Phys. Rev. Lett. 94 205003
- [11] Pohl T and Pattard T 2005 J. Phys. Conf. Ser. 11 223
- [12] Robicheaux F and Hanson JD 2003 Phys. Plasmas 10 2217
- [13] Pohl T, Pattard T and Rost JM 2004 Phys. Rev. A 70 033416
- [14] Rolston SL and Roberts JL 2002 XVIII ICAP 2002 Proceedings (online: http://cfa-www.harvard.edu/~hrs/icap2-2/proceedings/Rolston.pdf)
- [15] Hahn Y 2001 Phys. Rev. E $\bf 64$ 046409
- $[16]\,$ Zelener BB, Zelener BV and Manykin EA 2004 JETP $\bf 99\,$ $1173\,$
- [17] Stevefelt J, Boulmer J and Delpech JF 1975 Phys. Rev. A 12 1246
- [18] Mansbach P and Keck J 1969 Phys. Rev. 181 275
- [19] Stewart JC and Pyatt, Jr. KD 1966 Astrophys. J. 144 1203
- [20] Schlanges M, Bornath T and Kremp D 198 Phys. Rev. A 38 2174
- [21] Murillo MS and Weisheit JC 1998 Phys. Rep. 302 1
- [22] Vanhaecke N, Comparat D, Tate DA and Pillet P 2005 Phys. Rev. A 71 013416
- [23] Feldbaum D, Morrow NV, Dutta SK and Raithel G 2002 Phys. Rev. Lett. 89 173004