Non-exponential decay of base-pair opening fluctuations in DNA

G. Kalosakas,! K. . Rasmussen,? and A. R. Bishop?

! Max Planck Institute for the Physics of Complex Systems,
Nothnitzer Str. 38, D-01187 Dresden, Germany
2 Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We report non-exponential decay of the time-dependent autocorrelation functions of base-pair
opening dynamics in a model of DNA. Complex fluctuations occur in a wide temperature range,
extending from below 200K up to the premelting transition regime above physiological temperatures.
The observed slow fluctuations, attributed to vibrational hot-spots, are well described by a stretched
exponential functional form, in the picoseconds to nanoseconds range. The temperature dependence
of the corresponding relaxation rates and stretch exponents is presented and activation energies
around 4 — 6 kJ/mol are calculated.
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Non-exponential relaxation is a hallmark of complex
behavior, and is prototypically observed in glass forming
systems. There, slow relaxation, arising from complex
energy landscapes, is usually described by a stretched ex-
ponential function [1-3]. Such behavior may result from
inhomogeneities, leading to a distribution of relaxation
times, or from cooperative molecular motions giving rise
to non-trivial relaxation even locally [1].

Biomolecules certainly belong in the category of
complex materials, possessing in addition, important
functionalities. Complex dynamics resulting in non-
exponential relaxation, spanning many decades of time, is
well established in proteins [4-9]. Such observations have
lead to the fruitful concepts of conformational substates
and hierarchically organized energy landscapes [10].

Similarly, for the molecule containing the genetic code,
non-exponential relaxation has been observed experimen-
tally in synthetically tagged double stranded DNA. In
particular logarithmic relaxation of local structural dy-
namics, extending from picosecond to nanosecond time
scales, has been documented by time-resolved Stokes
shift techniques [11]. Although such measurements can
identify these motions as arising from localized dynam-
ics, occurring at the single nucleotide level, they cannot
provide detailed information on the particular degree of
freedom responsible for the probed relaxation. On longer
time scales, fluorescence correlation spectroscopy, having
a limited time resolution, has shown evidence of multi-
state slow relaxation of large bubbles, representing co-
herent motion of many base-pairs [12].

Here we consider conformational fluctuations of B-
form DNA at a single base-pair level and show, through
the time dependence of local autocorrelation functions,
that complex non-exponential dynamics up to nanosec-
ond time scales occur. Homopolymer DNA sequences,
poly(dG)-poly(dC) and poly(dA)-poly(dT), are exam-
ined, in order to isolate effects of intramolecular anhar-
monic interactions from those due to sequence hetero-
geneity.

The autocorrelation functions are calculated using the
Peyrard-Bishop-Dauxois (PBD) dynamical model [13] for
the base-pair stretchings of double stranded DNA. The
success of this model in describing base-pair openings
of double-stranded DNA has been demonstrated by di-
rect comparison with various experiments on melting
transition [14], S1 nuclease cleavage [15], and denatu-
ration bubbles [16]. The relatively simple character of
the model, which isolates the relevant base-pair degrees
of freedom and appropriately describes their nonlinear
interactions, renders it attractive for investigating phys-
ical properties [17, 18] and possible functional impor-
tance [19] of large openings in DNA.

The multiple time scales of DNA dynamics are of
course complicated given the complexity of the molecule
and its water environment. This leads to important open
questions regarding, e.g., various degrees of slaving of
modes [20]. The PBD model simplifies much of this po-
tential complexity and focuses on effective stacking con-
straint interactions between base-pairs, leading to spe-
cific nonlinear and entropic effects. It is very important
to determine multiscale (stretched exponential) behavior
inherent in these effects, so that they can be isolated from
other timescales which may appear in even more micro-
scopic descriptions of the molecule and its environments.
Our study is an important step in this direction.

In the PBD description, the evolution of the stretching
yrn of the base-pair at site n of the DNA sequence is given
by

d?y,
m
dt?

= _V/(yn) - W/(yn—la Yn) — W/(ym Yn+1), (1)

where V(y) is the on-site Morse potential
V(y) = D(e — 1), (2)

W (z,y) represents the stacking interaction,

Wey) = S04 pe )@ -2, (3)



m is the nucleotide mass, and prime denotes derivative
with respect to y,. The parameter values of the poten-
tials are [14]: k = 0.025 eV/A2%, p =2, 3 = 0.35 A~}
for the stacking interaction, while for the Morse poten-
tial Dac = 0.075 eV, agc = 6.9 A~ for GC base-pairs,
and Dar = 0.05 €V, aar = 4.2 A~! for AT pairs. The
mass m equals 300 amu. In our simulations reported be-
low we consider the case of homopolymer DNA, for both
kinds of base-pairs, with a length of N = 100 sites and
periodic boundary conditions, appropriate for describing
long homogeneous sequences.

Solving the equations of motion (1) at a fixed energy
E (which is conserved during the evolution) for a large
number of different realizations, we calculate the time
dependence of two kinds of autocorrelation functions: the
local displacement autocorrelation function

Cp(t) = (n(t)yn(0)) — <yn>2 (4)

and the local energy autocorrelation function
CE(t) = (En(t)En(0)) — (En)?, ()

where angle brackets denote both ensemble averages and
averages along the base-pairs of the homopolymer DNA.
In Eq (5), Bn =V (yn) + 3W(Yn-1,9n) + W (Yn, Yn+1)
is the amount of energy localized at the base-pair n. The
total energy is £ = )" F,,, where the sum extends over
the IV base-pairs of the sequence. Note that the correla-
tion functions (4) and (5) are not normalized to unity.

Working in the microcanonical ensemble, the temper-
ature T corresponding to a fixed value of F is obtained
through the mean kinetic energy (EX™) = (% (%n)2) of
a base-pair, as T = 2(EX™) /kp, where kg is the Boltz-
mann constant. The model of Egs. (1)-(3) exhibits dif-
ferent behavior above 50-150K, as compared with that of
lower temperatures. This can be seen by the motion of a
charge interacting with the displacements y, [21, 22] and
the position of the dominant peak in the dynamic struc-
ture factor [23]. Here we focus on the high temperature
regime, which includes the biologically relevant region.

For each value of energy (temperature), one thousand
different realizations are used for the calculation of C'p ()
and Cg(t). In each realization, at fixed energy E, the
system of N base-pairs initially starts with a random
Gaussian distribution of velocities and displacements and
is then equilibrated for 2 nsec. After that time we
measure the correlation functions, which are assumed to
represent fluctuations around equilibrium, up to a few
nanoseconds.

Figure 1 shows results for the correlation func-
tion Cp(t) at different temperatures (solid lines), for
poly(dG)-poly(dC) (upper plot) and poly(dA)-poly(dT)
(lower plot). Both cases exhibit complex dynamics.
At least two distinct relaxation processes are apparent.
There are fast fluctuations, relaxing at subpicosecond
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FIG. 1: Time dependence of the local displacement autocor-
relation function Cp (¢), Eq. (4), for poly(dG)-poly(dC) (top)
and poly(dA)-poly(dT) (bottom) DNA, at various tempera-
tures from 150K to 330K. Dashed lines show fits of the long-
time behavior with the stretched exponential formula, Eq. (6).

time scales, followed by oscillations which are more dis-
tinct at lower temperatures. Then there is a slower re-
laxation extending from picoseconds up to the maximum
time investigated, i.e. a few nanoseconds.

Complex fluctuations revealing fast and slower
processes are also observed in the correlation function
CE(t), shown in Fig. 2 with solid lines at various temper-
atures. In this case a third relaxation process is apparent
at picosecond time scales, which is clearer at higher tem-
peratures. In general the Cg(t) curves are smoother and
less noisy than the corresponding Cp(t) ones.

In all cases the slow fluctuations are well-described by
a stretched exponential dependence

C(t) = Cy exp [—(kst)"]. (6)

The resulting fit of Eq. (6) to the slower relaxation of C(t)
is plotted in Figs. 1 and 2 with dashed lines. From this
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FIG. 2: Time dependence of the local energy autocorrela-
tion function Cg(t), Eq. (5), for poly(dG)-poly(dC) (top) and
poly(dA)-poly(dT) (bottom) DNA, at various temperatures
from 150K to 330K. Dashed lines show fits of the long-time
behavior with the stretched exponential form Eq. (6).

fitting the stretched exponential parameters are obtained
at different temperatures.

Figure 3 depicts the temperature dependence of the
stretched exponential parameters 3 (upper plot) and kg
(lower plot). These parameters are similar for the two
correlation functions Cp(t) and Cg(t), which probe the
same local fluctuations. The exponent (3 is relatively in-
sensitive to temperature changes —the obtained varia-
tions are within the errors of the fits. Temperature inde-
pendence of 3 is a rather common observation in glasses
[1]. For poly(dG)-poly(dC), § is between 0.5 and 0.6,
while it has a significantly lower value, around 0.3, in the
case of poly(dA)-poly(dT). This sequence dependence is
also pronounced in the rate ks of the stretched exponen-
tial. For poly(dA)-poly(dT) it is two orders of magnitude
larger than that for poly(dG)-poly(dC). Evidently there
are quite significant differences in the complexity of the
dynamics of the two sequences, and it is therefore ex-
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FIG. 3: Stretch exponent 8 (top) and rate ks (bottom) of
Eq. (6) for the slow fluctuations as a function of tempera-
ture for poly(dG)-poly(dC) (circles) and poly(dA)-poly(dT)
(squares) DNA. Filled symbols correspond to the local dis-
placement autocorrelation functions Cp(t) and open to the
local energy autocorrelation functions Cg(t).

pected that in a real sequence there will be identifiable
dynamical differences in the behavior of GC rich and AT
rich regions.

In a relaxation of the form Eq (6), the average relax-
ation time 74, and the corresponding rate kqp = 1/7ay
can be obtained through the integral of the stretched ex-
ponential function [24-26]. This yields

_ B
kav - F(l/ﬁ) kS) (7)

where I'(1/6) is the gamma function with argument 1/0.
The smaller the exponent 3, the smaller the average rate,
as compared to k.

Figure 4 shows an Arrhenius plot of the average rate

kqv, obtained through Eq. (7) and the data presented in
Fig. 3. Fitting the results with an Arrhenius relation

E
kaw = A €Xp <_k—1;1>7 (8)
B
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FIG. 4: Average rate kqv, Eq. (7), for the slow fluctuations as
a function of inverse temperature for poly(dG)-poly(dC) (cir-
cles) and poly(dA)-poly(dT) (squares) DNA. Filled symbols
correspond to the local displacement autocorrelation func-
tions Cp(t) and open to the local energy autocorrelation func-
tions Cg(t). Lines show fits of the corresponding data with
an Arrhenius form.

we obtain an activation energy of approximately 4
kJ/mol from the Cp(t) data and 6 kJ/mol from the
Cg(t) data, for both homopolymers. The fits, shown
by lines in Fig. 4, are not so precise, except for the Cg
data in the poly(dG)-poly(dC) case. Therefore, these val-
ues represent rough estimates only. The corresponding
characteristic times 7, at 300K are about 0.5 nsec and
10 nsec for poly(dA)-poly(dT) and poly(dG)-poly(dC),
respectively. Such time scales are consistent with the
life-times of nonlinearity induced localized modes found
in a simpler model with harmonic stacking interac-
tion [27]. This suggests that vibrational hot-spots (bub-
bles) [27],[21] are respomnsible for the slower, stretched
exponential fluctuations presented here.

31 P and ' H NMR measurements [28] at room tempera-
ture have indicated the existence of local internal motions
of DNA at time scales of the order of ~ 1 nsec. All-atom
molecular dynamics simulations have shown that inter-
nal motions of DNA on this time scale are related to
the rigid-body translation of subunits (bases, sugar, or
phosphate groups), since the internal deformation and
the rotational autocorrelation functions of rigid subunits
decay faster than 10 psec [29]. Only the rigid transla-
tions, such as the motions described by Eq. (1), have
correlation times longer than 0.1 nsec. More direct ob-
servation of the motions investigated here is provided by
NMR, experiments of imino-proton exchange, determin-
ing open base-pair lifetimes of the order of 1-10 nsec [30].
If the probed open base-pair state is not very far from the
equilibrium state considered here, then these times can
be compared with the model’s correlation times discussed

above.

In summary, we used the simple PBD model to in-
vestigate the equilibrium fluctuations of DNA openings
at a single base-pair level. Analysis of the autocorrela-
tion functions demonstrate complex non-exponential de-
cay with distinct glass-like behavior consisting of fast and
slower processes over an extended temperature regime.
The slow relaxation has been analyzed in detail and char-
acteristic rates, stretch exponents, and activation ener-
gies are obtained. Our results suggest the need for fur-
ther experimental scrutiny of DNA dynamics with a view
towards possible biological roles of the long correlation
times observed here for the base-pair openings. We find
that the details of the ensuing dynamics, as characterized
by the stretched exponential parameters § and kg are
very sensitive to the sequence. This clearly indicates the
existence of careful structural control of the local thermal
dynamics along the DNA molecule, lending support to
the concept that biological action at the molecular level
must be discussed in terms of dynamics [31-33], rather
than in purely traditional terms of static structures.
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