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Motivated by the aim to find new medical strategies to suppress undesirable neural synchroniza-
tion we study the control of oscillations in a system of inhibitory coupled noisy oscillators. Using
dynamical properties of inhibition, we find regimes when the malfunction oscillations can be sup-
pressed but the information signal of a certain frequency can be transmitted through the system.
The mechanism of this phenomenon is a resonant interplay of noise and the transmission signal
provided by certain value of inhibitory coupling. Analyzing a system of three or four oscillators
representing neural clusters, we show that this suppression can be effectively controlled by coupling
and noise amplitudes.
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I. INTRODUCTION

While there are very good descriptions of the dynamics
of a single neuron, the collective behavior on an ensemble
of coupled neurons is less understood from the theoreti-
cal point of view. For example, it has been observed that
while single neurons show excitable behavior, the ensem-
ble can display a synchronized oscillatory dynamics. This
type of behavior is usually associated to some brain dis-
eases, such as epilepsy. In this paper we want to deepen
in the understanding of some mechanisms that, taking
advantage of the natural connectivity between neurons,
might help in the suppression of these collective oscil-
lations. We will show that a particular kind of neural
coupling can lead to the suppression of these undesir-
able oscillations, while the neural network is still able
to efficiently propagate external stimuli throughout the
system.

Several schemes aimed to prevent undesirable neural
synchronization have been proposed previously in the
literature as, for instance, the permanent high-frequency

stimulation [1, 2]. Some of its disadvantages (brain adap-
tation and high energy consumption) can be avoided by
the demand-controlled deep brain stimulation techniques
[3, 4], which are an extension of the phase resetting

scheme [5] to the case of populations of interacting os-
cillators subjected to random forces. Another promising
framework for the development of future medical meth-
ods has been suggested by several recent theoretical pro-
posals such as delay feedback control of collective syn-

chrony [6] or noise-induced excitability [7]. In the latter
technique not only the desynchronization of oscillations
is achieved but also the complete oscillation supression
and a restoration of information transmission is possible.

The aim of this paper is to present a new method that
uses the interplay between inhibitory coupling and noise,
two usual ingredients of living neural networks, in order
to suppress undesirable oscillations but nevertheless be-

ing able to propagate external stimuli. More precisely,
we investigate in detail the effects of the coupling, signal
frequency and noise intensity on the oscillation suppres-

sion with signal transmission restoration in a linear chain
of three or four units which combines excitable and os-
cillatory neuron models.

To model the neurons we use the archetype FitzHugh–
Nagumo set of equations (also called the Bonhoeffer–
van der Pol model) [8] which are a simple example of
two-dimensional excitable dynamics and that exhibit a
Hopf bifurcation from excitable to oscillatory behavior
as a control parameter is varied. The dynamics of oscil-
latory and excitable systems near the Hopf bifurcation
attracts large interest because in this region their sen-
sitivity is greatest and they are suitable for a reliable
signal response or information exchange. The study of
Coherence Resonance [9, 10] (also named as Stochas-
tic Coherence[11]) and Stochastic Resonance in nonlin-
ear excitable units [12–15] arose a strong interest on this
field.

It is important to remark here that most of the previ-
ous work was carried out considering FitzHugh–Nagumo
units coupled through their activator variable (the one
that represents the membrane potential), whereas ac-
tual brain neural networks may contain both activator
and inhibitory synaptic connections [16]. It is known
that the inhibitory coupling between identical oscillators
may induce many limit cycles of different periods and
phase relations [17, 18] which are stable in large regions
of the control parameter space, a behavior usually re-
ferred to as “de-phasing” [19, 20] or “phase-repulsive”
[21] interaction and which was shown to be a source of
multi-rhythmicity in different systems [22–25]. With neu-
ral noisy elements, a de-phasing interaction of stochastic
limit cycles (instead of deterministic ones) may result in
the coexistence of spatiotemporal regimes selectively sen-
sitive to external signal periods. In such systems, noise
plays at least two roles: first, it stimulates firing of sta-
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ble elements and, thereby, their interaction during re-
turn excursions; second, it stimulates transitions between
coupling-dependent attractors if the associated lifetime is
sufficiently long.

In this paper we extend our research on the influence
of inhibitory coupling. In contrast to our previous in-
vestigation of frequency selective Stochastic Resonance
in linear chains of identical excitable FitzHugh–Nagumo
models [26, 27], we consider chains of nonidentical oscilla-
tors and focus on the influence of the oscillatory units on
the dynamics of the whole chain. As mentioned before,
we are mainly interested in the suppression of the oscil-
lations while still keeping the information transmission
along the suppressed elements.

The paper is organized as follows. In the next section
II we start by considering three units, each of them rep-
resenting a cluster of neural oscillators, coupled through
the inhibitory variable. To extend the study onto another
architecture, in section III, we analyze a circuit where two
coupled oscillating units are connected from both sides
with excitable elements. Some general conclusions are
drawn in the last section IV.

II. THREE NON-IDENTICAL INHIBITORY

COUPLED FITZHUGH–NAGUMO

FIG. 1: Scheme of the setup for the case N = 3. At both ends
there are excitable units, coupled through inhibitor coupling
to the middle (oscillatory) element.

We consider a rather simplistic model with a minimal
scheme of connections that can retain the basic structure
of the system we want to mimic: i.e. a signal injected
through a neuron models the information to be trans-
mitted along the network with one (or more) malfunc-
tion oscillator. The basic setup is an open, linear chain
where both ends have an excitable unit. The middle unit
represents an ill (oscillatory) unit (Fig. 1). We want to
study whether a periodic, subthreshold signal, acting on
the left element can reach the right one, in such a way
that no oscillations appear in the middle unit.

A similar architecture may be responsible, for exam-
ple, for the activities of neural circuits in a nucleus found
in the brain of songbirds [28]. In such circuits the con-
nection between different functional units of the brain is
mainly due to inhibitory coupling, whereas the connec-
tions within each unit are mainly through the activator

variables. Since strong activator coupling tends to syn-
chronize the population of interacting units one can ne-
glect, as a first approximation, that each functional unit
is composed itself of several units, and restrict oneself
to a case in which only one (mean) unit is considered
for each region of the brain, coupled with others through
the inhibitor variable. In this architecture the oscillat-
ing element is directly surrounded by inhibitory coupled
excitable elements.

The scheme in Fig. 1 corresponds to three FitzHugh–
Nagumo oscillators coupled through the inhibitory vari-
ables:

εẋ1 = y1 −
x3

1

3
+ x1 (1)

ẏ1 = a1 − x1 + ξ1(t) + As cos (ωt) + D(y2 − y1)

εẋ2 = y2 −
x3

2

3
+ x2 (2)

ẏ2 = a2 − x2 + ξ2(t) + D(y1 − y2) + D(y3 − y2)

εẋ3 = y3 −
x3

3

3
+ x3 (3)

ẏ3 = a3 − x3 + ξ3(t) + D(y2 − y3)

Where ω = 2π/Ts, is the frequency of the input signal
with period Ts. The Gaussian (white) noise sources ξi(t)
satisfy 〈ξi(t)ξj(t

′)〉 = σ2
aδ(t − t′)δi,j .

In a neural context, xi(t) represents the membrane po-
tential of the neuron and yi(t) is related to the time-
dependent conductance of the potassium channels in the
membrane [29]. The dynamics of the activator variable
xi is much faster than that of the inhibitor yi, as indi-
cated by the small time-scale ratio parameter ε. It is
well known that for |ai| > 1 a single unit has a stable
fixed point and presents excitable behavior: small per-
turbations are followed by a smooth return to the fixed
point, while a perturbation larger than a threshold value
induces a return through a large excursion in phase space
(a spike). For |ai| < 1, the fixed point becomes unstable
and a stable limit cycle appears. In this regime, the dy-
namics consists in a periodic series of spikes. Along this
section, we will consider the fixed parameters: ε = 10−4,
a1 = a3 = 1.01 and a2 = 0.99, such that the two end
units are excitable and the middle one, oscillatory. We
have checked that (in the absence of external forcing and
noise) the three units retain their excitable or oscillatory
character despite the coupling amongst them, such that
the middle unit spikes periodically and the two end units
display small subthreshold oscillations around the fixed
point.

The issue now is the behavior of these same units when
noise and external forcing are present. We will show that
it is possible to have a noise-induced regime in which
the oscillations of the middle unit are suppressed. To
characterize this phenomenon of oscillation suppression,

we have computed [40] N
(i)
s , the number of spikes per

time unit at the i−th neuron, defined as the number of
times the variable yi(t) surpasses a fixed threshold per

time unit. N
(i)
s represents the reciprocal of the averaged
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inter-spike time interval.
An important point is whether in this oscillation sup-

pression regime, noise can help to transmit the informa-
tion of the subthreshold external signal by a stochastic
resonance mechanism. In order to address this issue, we
compute the linear response, Q(i), of the i−th neuron in
the chain at the input frequency ω [30, 31]:

Q(i) =
∣

∣〈2yi(t) eı ωt〉
∣

∣ , (4)

where 〈. . .〉 denotes a time average.

A. Oscillation suppression via a noise-induced

dynamical trap

In a previous work [25] it has been shown that in a
system of three FitzHugh–Nagumo units in the oscilla-
tory regime (and in the absence of external forcing) the
inhibitory coupling leads to two coexisting dynamical at-
tractors, with different natural frequencies. These attrac-
tors correspond to an anti-phase oscillator movement and
to the so-called dynamical trap regime where the middle
oscillator is at rest and the two oscillators at the ends os-
cillate in anti-phase. If one now applies a weak external
periodic signal to one of the end units and uncorrelated
noise to every unit, one can still achieve the suppression
of the self-excited oscillations of the middle unit and,
at the same time, achieve a reliable transmission of the
signal, provided the following two conditions hold: (i)
the frequency of the external signal coincides with the
natural frequency of the dynamical trap attractor, and
(ii) the noise in the system is near the optimal one for
the desired signal amplification (i.e. stochastic resonance
phenomenon on this attractor).

A similar result appears in our system of three coupled
units. For very small noise, the situation is as described
at the beginning of the section with the middle unit os-
cillating and the end units at rest. As noise increases,
one observes random switches between this state and a
dynamical trap regime in which the middle unit is at rest
and the two end units spike in anti-phase. This effect can

be quantified by measuring the number of spikes N
(i)
s and

the responses Q(i) as a function of the noise intensity. As
shown in Figs. 2, one can distinguish several behaviors
depending on the period of the external forcing.

(a) This is the case where the period of the input sig-
nal equals the natural period of an isolated FitzHugh–
Nagumo oscillator (Ts = 2.8 for a = 0.99). The noise-
induced oscillation suppression described before is appar-
ent in the right panel of this figure, where it is shown that

the number of spikes at the middle unit, N
(2)
s , first de-

creases as the noise intensity increases. This oscillation
suppression is maximum at a value of the noise intensity,
σ2

a ≈ 3·10−6. At noises larger that this value, the number
of spikes in the three units are very close to each other.

In the left panel we plot the response Q(i) of each unit.
Note that there is a range of values for the noise inten-
sity for which the middle unit responds to the injected
signal most effectively than the end units, as signaled by
a higher value of the response Q(2). For increasing noise
intensity, beyond the value where the oscillation suppres-
sion was maximum, all units have a similar response.

(b) For an intermediate range of periods Ts ∈ [3, 3.4],
we observe that there exists a range of noise intensities
(σ2

a ∈ [10−6, 10−5]) such that the number of spikes is
strongly reduced in the middle oscillatory unit, while the
response to the driving frequency is better than in the os-
cillatory unit, i.e. this is the manifestation of the dynamic

trap regime. One can clearly see the effective oscillation
suppression of the oscillatory middle element (the mal-
function neuron, see Fig. 2b, right) and –despite of this
suppression in the middle of the chain– the reliable infor-
mation transport from the first to the last neuron model
by a large linear response Q in these elements (Fig. 2b,
left). The dynamic trap regime includes an anti-phase
motion of the first and the last units which results in
combination with the inhibitory coupling in a suppres-
sion of the oscillations of the middle element.

(c) Increasing even further the period, Ts = 4.5, the ex-
ternal signal is now in resonance with, and hence ampli-
fies, the anti-phase motion in which the first and the last
units oscillate in-phase and in anti-phase with the middle
one. In this case, another interesting regime appears in
the noise range σ2

a ∈ [10−5, 10−4] as observed in the right
panel of Fig. 2c, where the spike numbers of all three el-
ements coincide nearly, as well as in the linear response
plot (left panel), where all oscillators display a very sim-
ilar linear response Q. This anti-phase regime demon-
strates a totally different behavior than the dynamic trap
regime, case (b) discussed previously. Note that the anti-
phase regime appears for a much larger noise intensity
than the dynamic trap regime, hence showing a double
selectivity by the input frequency and the noise intensity.

(d) Finally, for much larger period, Ts = 6.0, there is no
resonance, Figs. 2d. This can be observed especially at
the linear response Q (left panel) which is much smaller
than in the resonant cases. Noteworthy, the last element
in the chain exhibits a poor signal response.

B. Control of suppression by the coupling strength

Noise-induced dynamical trap suppression is possible
by the existence of a new attractor originated in the in-
hibitory nature of the coupling. Hence, the coupling in-
tensity, D, controls the effectivity of the suppression, as
well as the frequency of the attractor. The existence of
an optimal value for D is shown in Fig. 3, in which we
plot the linear response Q and the spike numbers Ns as
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FIG. 2: Optimal noise suppresses malfunction oscillations
while letting the signal (within a certain range) to be trans-
mitted. This effect occurs due to dynamical trap, supported
by inhibitory coupling. (a) non-resonant, Ts = 2.8; (b) dy-
namic trap, Ts = 3.1; (c) anti-phase resonance, Ts = 4.5;
(d) no resonance, Ts = 6.0. Other parameters: ε = 10−4,
a1,3 = 1.01, a2 = 0.99, As = 0.01, D = 0.15. The left and
right columns correspond to the Q and Ns measures.

a function of the coupling intensity. Setting the noise in-
tensity σ2

a to the value of maximum of the linear response
Q (Fig. 2b left panel), and varying the strength D of the
inhibitory coupling, it is clear the existence of an optimal
D such that the middle unit is silent (Fig. 3 right panel),
while the first and last units effectively respond to the
driving frequency (Fig. 3 left panel).

Since both types of coupling, inhibitory and activator,
can be immanent in neural networks, we have investi-
gated how the suppression can be regulated if we tune
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FIG. 3: Linear response Q (left), and normalized spike num-
ber Ns (right), versus inhibitory coupling. The other param-
eters are: ε = 10−4, a1,3 = 1.01, a2 = 0.99, As = 0.01,
Ts = 3.1 and σ2

a = 3 · 10−6.

the coupling from an activator to an inhibitory one. To
do this, we have added activator coupling in the model by
interchanging D by (1−α)D in the equations for the in-
hibitory variable yi and inserting the terms αD (x2 −x1)
in Eq. 1, α D (x1 − x2) + αD(x3 − x2) in Eq. 2 and
αD(x2 − x3) in Eq. 3. These extensions of the model
are used only in this section for the calculation of Fig. 4.
With help of the new sliding parameter α we change the
weight of the type coupling from α = 1 (pure activa-
tor coupling) to α = 0 (pure inhibitory coupling). The
results are illustrated in Fig. 4. We clearly see that in-
creasing the weight of the inhibitory coupling (from right
to left) leads to an abrupt suppression of the middle os-
cillator (Fig. 4 right) and to a significant joint increase
of the linear response Q of the first and third oscillators,
but not of the middle one (Fig. 4 left). Note the loga-
rithmic scaling of the parameter α at the abscissa. We
clearly observe, that already a small fraction of activator
coupling (in the order of 1%) destroys the dynamic trap
regime in the given parameter set.
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FIG. 4: The influence of the type of coupling on the linear
response Q (left) and the normalized spike number Ns (right)
for three coupled FitzHugh–Nagumo’s. The sliding parameter
α shifts the weight of the diffusion constant D from a pure
inhibitory coupling (α = 0.0) to a pure activator coupling
(α = 1). The other parameters are ε = 10−4, a1,3 = 1.01,
a2 = 0.99, σ2

a = 4 · 10−6, As = 0.01, Ts = 3.1 and D = 0.15.
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III. MODEL FOR FOUR NON-IDENTICAL

UNITS

Next we delve into the question of whether larger
chains with more coupled oscillatory units also show the
same phenomenon discussed in the previous section. Al-
though it would seem a rather trivial proposal just en-
large it to a case in which the system size is N = 4,
the dynamical regimes that arise in such situation are
far from being simple modifications of the results shown
above.

We will not consider an enlargement of the excitable
ends of the chain, because it is a well known fact that cou-
pling them through the activator variable with a strong
enough bind, will result in an entrainment of such sub-
chain and the dynamical evolution of such units will be
effectively that of one oscillator. Then, the most inter-
esting question arises from the enlargement of the mid-
dle part, that is composed by oscillatory (malfunctioning)
units. So, we add to the scheme of three elements (Fig. 1)
an oscillatory element in the middle position and couple
it by an activator coupling with the other (identical) os-
cillatory element and with an inhibitory coupling to the
adjacent excitable element (Fig. 5).

FIG. 5: Scheme of the setup for the case N = 4. While
at both ends there are excitable units, in the center there
are oscillatory ones. The coupling between units of different
nature is inhibitory, and the coupling between the oscillatory
units is through the activator variable.

The mathematical description of the scheme in Fig. 5 is
given in Eqs. 5-8. The two oscillatory units (malfunction
neurons) are placed at the middle position and are both
coupled to their adjacent excitable one by an inhibitory
coupling as in the chain of three elements, whereas an
activator coupling is set between them. As in the pre-
vious section, independent additive white noises act on
the units and an external, subthreshold, periodic signal
drives only the first element:

ε ẋ1 = y1 −
x3

1

3
+ x1 (5)

ẏ1 = a1 − x1 + ξ1(t) + As sin (ωt) + D(y2 − y1)

ε ẋ2 = y2 −
x3

2

3
+ x2 + C(x3 − x2) (6)

ẏ2 = a2 − x2 + ξ2(t) + D(y1 − y2)

ε ẋ3 = y3 −
x3

3

3
+ x3 + C(x2 − x3) (7)

ẏ3 = a3 − x3 + ξ3(t) + D(y4 − y3)

ε ẋ4 = y4 −
x3

4

3
+ x4 (8)

ẏ4 = a4 − x4 + ξ4(t) + D(y3 − y4)

We will fix along the following simulations the param-
eters: a2,3 = 0.99 (oscillatory regime), a1,4 = 1.01 (ex-
citable regime) and the signal intensity As = 0.01 (sub-
threshold).

We are interested in the signal penetration along the
chain from the first to the last element as a function
of the signal period and the noise intensity. In order
to investigate whether the same phenomenon appears in
this chain, two different cases are considered: first, we
take the optimal parameters from the case N = 3 and
make the coupling between the oscillatory units strong
enough such that they become entrained. In the second
case, we use a weaker activator coupling.

A. Strong inter-oscillatory coupling

Let us focus first on a regime of strong coupling among
the oscillatory units. We use the following set of param-
eters ε = 10−4, a1,4 = 1.01, a2,3 = 0.99, C = 0.80 and
D = 0.22. In this case, and without an external peri-
odic signal (As = 0.0) injected nor noise (σ2

a = 0.0), the
analysis of the power spectrum exhibits that the natu-
ral period of the system is Tnat ≈ 2.67. The oscillatory
units exhibit their periodic oscillations at their natural
frequency. The excitable units, at their time, show only
subthreshold oscillations at the natural frequency of the
oscillatory units.

In the presence of an external signal Fig. 6 illustrates
the normalized spike number and the linear response Q
as a function of the noise intensity σ2

a for different driving
periods Ts. Fig. 6a depicts the results when the system is
subjected both to noise and external signal and the signal
period Ts = 2.61 is slightly below the natural period. It is
observed (as in the N = 3 case) that now the oscillatory
units respond but not the excitable one at the end of the
chain.

Increasing Ts well over the natural frequency, e.g.
Ts = 2.8 or 2.9 (Figs. 6b or 6c), the dynamic trap regime
appears. It is important to emphasize that the quality of
the signal transmission to the last unit is enhanced with
respect to the N = 3 case (compare Figs. 2 and Figs. 6).

An interesting phenomenon occurs for Ts = 2.9
(Fig. 6c) where there are two well-differenced situations
of dynamics trap like regimes. First, for very low noise
intensities (σ2

a ≈ 10−7) there is an almost perfect sup-
pression of the oscillations and at the same time a per-
fect signal transmission which is the result of the desired
dynamic trap regime. There is a then a secondary os-
cillation suppression regime at σ2

a ≈ 2.5 · 10−6, at which
the signal is not transmitted with the same fidelity as
compared to the case at about σ2

a ≈ 10−7. What is hap-
pening in the second regime is that the last unit is oscil-
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lating, neither at the driving frequency, nor at the natural
one of the middle oscillators, but at another one. Fig. 7
shows the power spectrum for such secondary regime in
the interesting frequency range around driving and res-
onance frequency. Let us consider the particular case of
the fourth oscillator. It is subject to two different signals,
one of them with the natural frequency of the third unit,
and one with the external driving frequency. It is not
trivial how this two signals interact in order to produce
this unit’s response, but it has been demonstrated that
in non-linear systems [32] subjected to two signals, the
response may appear at neither any of the driving ones.
Nevertheless these facts, the important footprint of this
secondary regime is the low response of the last unit to
the driving frequency.

One can clearly see in Fig. 7 three peaks in the fre-
quency range ω ∈ [1.8, 2.8] in the system output. The
first and highest peak at ω ≈ 2.16 is well pronounced
only for the first and driven oscillator and corresponds
to a period T ≈ 2.9, equal to the driving period Ts, i.e.
only the driven oscillator exhibits a good response to the
signal. The second peak, very close to the first one, at
ω ≈ 2.245 (T ≈ 2.8) is displayed mainly by the last unit.
The third peak at ω ≈ 2.49 (T ≈ 2.52) can be found in all
elements with nearly equal hight. The third peak has a
very small influence on the total responses of the system
(note the logarithmic scale) and it is produced by small
sub-threshold oscillations. The corresponding time series
is as follows: the first (driven) oscillator shows a reliable
spiking behavior with a period equal to the driving pe-
riod, while the two middle oscillators are mostly silent
and the last oscillator spikes with a slightly reduced pe-
riod of Ts = 2.8 (so leading to the difference in the linear
response at the signal frequency Q between the first and
last FitzHugh–Nagumo in this regime). Due to the small
difference in the periodicity, there is no phase locking in
this regime and a continuous phase slip between the first
and last unit appears. If the phase difference is large
enough, the chain switches to an anti-phase regime, i.e.
the otherwise silent middle oscillators spike in anti-phase
to their excitable neighbors. This transition to the anti-
phase attractor induces a delay of the last unit compared
to the first one. This anti-phase regime is unstable at the
considered parameter set and the chain switches back to
the previous attractor with the silent middle elements
and the phase slip between the first and last one. The
interruption of this long-life attractor by the unstable
anti-phase attractor results in a nearly equal spike num-
ber of the first and last unit. Therefore, the interesting
behavior in Figs. 6c at a noise intensity σ2

a ≈ 2.5 ·10−6 is
caused by a regime which is only similar to the dynamic
trap regime, but is not exactly the desired dynamic trap
and hence does not provide a reliable information trans-
port.

As a summary of this section, it could be said that
the dynamic trap regime still occurs, but in a narrower
region of the driving period (Ts ∈ [2.8, 3.0], Fig. 8) than
in the case of N = 3 (Ts ∈ [3.0, 3.4]).

Finally, Fig. 9 yields that there is also a range of
inhibitory coupling D such that this phenomenon hap-
pens. This resonance like behavior with respect to the
inhibitory coupling strength is caused by the influence
of this parameter on the resonance frequency of the dy-
namic trap regime. This figure shows the existence of a
maximum (located at a coupling D ≈ 0.25) in the re-
sponse as a function of this parameter.
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FIG. 6: Linear response Q (left column) and Ns (normalized
spike number), in the right column, versus noise intensity
for a chain of four oscillators. (a) Ts = 2.61; (b) Ts = 2.8;
(c) Ts = 2.9; (d) Ts = 3.1; Other parameters: ε = 10−4,
a1,4 = 1.01, a2,3 = 0.99, As = 0.01. The couplings are,
C = 0.80 and D = 0.22 (strong inter-oscillatory coupling
regime). and Ts = 2.61.
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Ts = 2.9, C = 0.80, D = 0.22, and σ2
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FIG. 8: Linear response Q and normalized spike number Ns

versus time periodicity Ts. The system is composed by four
units in the strong inter-oscillatory coupling regime and the
rest of parameters, are: ε = 10−4, a1,4 = 1.01, a2,3 = 0.99,
As = 0.01, C = 0.80, D = 0.22, and σ2

a = 2 · 10−7.
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FIG. 9: Linear response Q and normalized spike number Ns

as a function of the inhibitory coupling strength D. The sys-
tem is composed by four units in the strong inter- oscillatory
coupling regime and the rest of parameters, are: ε = 10−4,
a1,4 = 1.01, a2,3 = 0.99, As = 0.01, C = 0.80, σ2

a = 2 · 10−7

and Ts = 2.9.

B. Intermediate inter-oscillatory coupling

We also found another kind of dynamic regime in this
model with a smaller activator coupling. The analysis of
the power spectrum in the absence of noise and external
signal shows that the oscillatory units exhibit their peri-
odic oscillations at their natural period Tnat ≈ 2.54. The
excitable units, at their time, generate only subthreshold
oscillations at the natural frequency of the oscillatory
units. Note that the natural frequency is shifted from

the previous case of a strong inter-oscillatory coupling
(Tnat ≈ 2.67). In this case, however, the dependence
with Ts of the linear response Q curves and the oscilla-
tion suppression is quite different from the previous case.
Even for slightly detuned input signals Ts = 2.55 a strong
dynamic trap arises in the system (Fig. 10a). This oscil-
lation suppression mechanism is very robust over a wide
range of driving periods Ts (Figs. 10a-c), whereas a reli-
able signal transmission along the chain can be observed
only in a much narrower range of the driving period,
Ts ∈ [2.6, 2.65] (Fig. 10b).

The oscillation suppression here is really robust, show-
ing that the middle units do not spike for very large pe-
riods of time. The phenomenon is also robust to changes
of almost four decades in the noise intensity.

Note that the curves for the number of spikes show an
exact coincidence between the first and the last units (i.e.
the excitable ones), although such a perfect matching
does not occur for the linear response Q. The first and
the last units fire at the same rate (same normalized spike
number Ns), but they are not phase locked, i.e. there
is a random phase slip. When the difference in phase
between these two excitable units is large enough, this
dynamic regime destabilizes and a regime in which there
is an in-phase motion of excitable units, and (in anti-
phase) spikes of the oscillatory units appears. But this
last dynamic regime is unstable and rapidly falls to the
previous one. It is interesting that the matching in the
number of spikes occurs in the dynamic trap regime, i.e.
that the sub-threshold dynamics of the oscillatory units is
sufficient to carry information from one end of the chain
to the other one.

Figs. 11 and 12 demonstrate that there are optimal val-
ues of couplings for the suppression to occur. While the
dependence on the activator coupling C is such that the
suppression holds for couplings larger than a given value,
we observe a much narrower range, a resonance-like be-
havior, as a function of the inhibitor coupling D. Even
further, for D large enough, the oscillation suppression
phenomenon disappears, and most of the spikes occur at
frequencies different to the driving one (i.e. Q vanishes).

Fig. 13 shows the dependence on the signal periodic-
ity Ts. It is clear that the oscillation suppression and
signal transmission are optimal at the same parameter
values. Furthermore, in the same figure it can be seen
that there is a very narrow peak around the natural pe-
riod (Ts = Tnat = 2.54) of the oscillatory units at which
they respond optimally. Note that the oscillation sup-
pression holds for a wide range of values of the driving
period Ts. But the main result shown in this figure is the
fact that the suppression of oscillations in the oscillatory
units is much more robust than in the previous cases, i.e.
N = 3 and N = 4 with inter-oscillatory coupling. This
result is somewhat unexpected given the fact that these
couplings are not as strong as in the previous parameter
sets, and then the units are allowed to move more freely.

To show the different influence of activator and in-
hibitory couplings, we have added an extra activator cou-
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FIG. 10: Linear response Q and normalized spike number Ns

(left and right columns, respectively) versus noise intensity.
The time periodicities, are (a) Ts = 2.55; (b) Ts = 2.61; (c)
Ts = 5.2. The other parameters are: ε = 10−4, a1,4 = 1.01,
a2,3 = 0.99, As = 0.01, C = 0.20, and D = 0.50.

0.2 0.4 0.6 0.8
C

0

0.1

0.2

0.3

0.4

0.5

Q

0.2 0.4 0.6 0.8
C

0

0.1

0.2

0.3

0.4

N
S

i = 1
i = 2
i = 3
i = 4

(a)

FIG. 11: Linear response Q and normalized spike number Ns

versus activator coupling C. The system is composed by four
units, and the other parameters are: ε = 10−4, a1,4 = 1.01,
a2,3 = 0.99, As = 0.01, D = 0.50, Ts = 2.61 and σ2

a = 2·10−7.

pling in the model by interchanging D by (1 − α)D in
the equations for the inhibitory variable yi and inserting
the terms αD(x2 − x1) in Eq. 5, αD(x1 − x2) in Eq. 6,
αD(x4 − x3) in Eq. 7 and αD(x3 − x4) in Eq. 8. These
extensions of the model are used only in this section for
the calculation of Fig. 14. We shift the balance between
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FIG. 12: Linear response Q and normalized spike number Ns

versus inhibitory coupling D. The parameters are: ε = 10−4,
a1,4 = 1.01, a2,3 = 0.99, As = 0.01, C = 0.20, Ts = 2.61 and
σ2

a = 2 · 10−7.
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FIG. 13: Linear response Q and normalized spike number
Ns versus driving period Ts, For this four units system, the
parameters are: ε = 10−4, a1,4 = 1.01, a2,3 = 0.99, As = 0.01,
C = 0.20, D = 0.50 and σ2

a = 2 · 10−7.

the activator and inhibitory coupling between these ele-
ments continuously with the parameter α. In Fig. 14, two
clearly different regimes can be observed: for α < 3 ·10−3

there is a situation of dynamic trap regime with reliable
information transport; while for α > 3 · 10−3, there are
oscillations in the middle units position and no response
to the driving frequency.

As shown in Fig. 14, a very sharp transition to a sit-
uation of oscillation suppression and no response to the
driving frequency in the middle units is observed when
the activator coupling is strong enough, α > 3 · 10−3).
Fig. 14 (as Fig. 4 for the N = 3 case) shows the es-
sential imperative of the inhibitory coupling between the
excitable and oscillatory units to reach the dynamic trap
regime with the desired feature of oscillation suppression
and information transmission.

IV. CONCLUSIONS

In the present work we have considered chains of three
or four coupled FitzHugh–Nagumo’s units subject to
noise and to an external signal. The number of units
has been chosen in order to keep the number of param-
eters small, but our model could be exemplary also for
larger systems, if one regards one oscillator in the model
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FIG. 14: The influence of the type of coupling on the the
linear response Q and the normalized spike number Ns in a
system composed by four coupled FitzHugh–Nagumo’s. The
sliding parameter α shifts the weight of the diffusion constant
D from a pure inhibitory coupling (α = 0.0) to a pure acti-
vator coupling (α = 1). The other parameters are ε = 10−4,
a1,4 = 1.01, a2,3 = 0.99, σ2

a = 2 · 10−6, As = 0.01, Ts = 2.61,
C = 0.20 and D = 0.50.

as a representation of a cluster of many neurons in a
close area with similar properties. We have found new
mechanisms which, with the help of a constructive role
of the noise, help to suppress undesirable self-sustained
oscillations in neuron networks while yet allowing for the
propagation of external stimuli. In our scheme, an in-
hibitory coupling between oscillatory (malfunction) and
excitable neurons is essential to reach the dynamic trap
regime which is responsible for the oscillation suppres-
sion and the information transport. This dynamic trap
regime is characterized by an anti-phase spiking behav-
ior (with the same frequency of the external signal) of
the excitable neurons at both ends of the chain and a

silent (oscillation suppressed) behavior of the originally
oscillatory units in between. The desired dynamic trap
regime is sensitive with respect to the driving frequency,
the noise intensity and the coupling strength.

Besides the dynamic trap regime we found other at-
tractors which also offer a reliable oscillation suppression
but, however, do not provide a good information trans-
port along the chain. In this case, the oscillation sup-
pression did not necessarily imply a reliable information
transport.

It is interesting to note that the oscillation suppres-
sion can also be achieved (in the absence of noise) in the
presence of a strong enough driving force. Further study
would be needed in order to determine the main features
of this suppression of oscillations by the injection of an
external signal.

Since we have considered only paradigmatic models in
a very general framework, we expect that our results are
also relevant to other models with inhibitory coupling,
used, for example, to describe various physical [33], elec-
tronic [24], chemical [34, 35] systems, biological systems
with spatial non uniformities [36], animal coat pattern
formation [37], or artificial gene networks synchroniza-
tion with slow auto-inducer diffusion [38, 39].
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