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Abstract. – We present results from three-dimensional off-lattice Monte-Carlo simulations
to investigate the stretching response of a semi-flexible polymer subjected to self-attractive
interactions. We employ the quasi-static approximation and consider both the fixed elongation
and the fixed force ensemble, which can equally well be reproduced in experiments nowadays.
The force versus elongation curves are in general non-monotonic, and the quantity and height of
peaks increase with decreasing temperature, and with increasing stiffness. We finally compute
the variation of unfolding force with temperature. Our results should be relevant for stretching
experimental studies, and for more refined theoretical modeling, taking non-equilibrium and
kinetic effects into account.

Introduction. – In recent years, the elastic properties of bio-polymers like proteins and
DNA have been thoroughly investigated experimentally, thanks to the rapid development of
single-molecule techniques, e.g. soft micro-needles [1], atomic force microscopes (AFMs) [2]
and optical tweezers [3]. A major motivation for these studies comes from the possibility
to enhance our quantitative understanding of the physical and biochemical properties of
biomolecules. For instance, monitoring the applied tension at the ends of a macromolecule
offers an insight into the molecular forces acting among its constituents. The detailed sce-
nario emerging from the experimental force-elongation curves has called for the validating of
a number of theoretical models previously introduced in polymer physics. The Freely Jointed
Chain (FJC) [4] and the Worm-like Chain (WLC) models [5] are arguably the simplest and
most widely known ones. These models predict markebly different shapes for the force versus
elongation curves for a polymer, notably for intermediate to large forces [4, 6–8]. Briefly, ev-
idence has shown that the FJC model is appropriate for flexible polymers like polyethylene,
while using the WLC model is crucial when fitting elasticity data for double-stranded (ds)
DNA and other semi-flexible polymers and proteins.

However, neither of these models take into account of the excluded volume, and their
validity is further limited to cases in which self-interactions between distinct polymer segments
are negligible. This is appropriate in the strong-force regime, or far from the θ point (or folding
temperature) for a self-attractive chain, such as a DNA molecule with multivalent counterions
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Fig. 1 – Schematics of the studied polymer system. The chain is attached to one end at r0, taken as
the origin of the frame, whilst all the configurations with a monomer at z < 0 are forbidden. The
stretching force is directed along the z-direction. Each bond between consecutive beads has length
b = 1. Consecutive vectors ri−1 and ri and their difference ti = ri − ri−1 are also shown.

[9] or a protein. Nonetheless, it would be of major interest to characterize with similarly
coarse grained models and good accuracy what goes on whenever self-interactions cannot be
neglected. In such cases we know that the stretching response is much more complicated,
as has been found with on and off lattice simulations in 2 and 3 dimensions [10–13]. Even
though an increasing amount of work has now been published on the subject (see also [14–16]),
there is still a wealth of outstanding questions, which call for detailed theoretical calculations
not relying on any mean field or large force approximation but carefully taking into account
the interactions among different monomers. Thus, here we set out to compute the force
versus elongation curves for a semi-flexible polymer subject to self-attractive interactions,
using 3-dimensional Monte-Carlo simulations. Our model and results should be of relevance
to stretching experiments with condensed DNA or other semi-flexible polymers in poor solvent
condition [17]. We show that, in the constant distance ensemble, which may be attained by
soft microneedles or laser tweezer experiments, the force changes in a non-monotonic way even
neglecting kinetic effects, and a multi-peak pattern is in general observed at low temperature.
It is important to have a reference calculation which predicts the shape of these curves in quasi-
equilibrium, in order to precisely estimate kinetic effects in the experiments or in molecular
or Langevin dynamics simulations [18, 19]. Furthermore it should be possible to perform
single molecule experiments at very low pulling speed, to test the results we predict here.
Our simulations show that stiffness greatly enhances the height and number of peaks in the
force versus elongation curves. Such peaks are ultimately due to non-convexity regions in
the free energy as a function of extension along the pulling force. We also sketch a phase
diagram featuring the temperature dependence of the unfolding force on temperature, which
can be experimentally measured to test whether the model we tackle here may yield a faithful
representation of DNA biophysics over a range of temperatures, or if other details are needed
for that, as in the case of e.g. DNA unzipping [20].

Model. – Our algorithm simulates a self-interacting chain of N + 1 beads connected by
rigid bonds of length b = 1, and stretched at one end by a constant force f . Since in most
experiments the polymer is attached to a substrate, we have treated the plane z = 0 as an
impenetrable wall (see ref. [2]). In fig. 1, we show the coordinate axis as well as the schematic
of set-up used in our model system. The Hamiltonian H for this system is given by

βH = βH(f) = −βKs

N−1
∑

i=1

ti · ti+1 + β

N−2
∑

i=0

N
∑

j≥i+2

V (|ri − rj |) − βf · (rN − r0), (1)
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where we have explicitly included the dependence on the force f – whose modulus we call
f . In eq. (1), β = 1/KBT , where KB denotes the Boltzmann constant (here, taken to be
1) and T the temperature. The first term in the Hamiltonian is the Kratky-Porod term to
describe semiflexible polymers [4], and Ks is the stiffness constant or elastic modulus (it has
the dimension of an energy times a time scale), while ti = ri+1−ri (i = 1, ..., N) is the vector
joining two consecutive beads. The second term corresponds to the self-interaction potential
between non-consecutive beads, which is of the form of a square-well as described below

V (r) =







∞ if r < r0

−V0 if r0 < r < r1

0 otherwise
(2)

with V0 = 1, r0 = 0.8 and r1 = 1.2. The potential is chosen in such a way that, for f = 0
and relatively low T , the polymer is found in a compact state. We note that the transition
to the compact state occurs at a stiffness dependent temperature. Moreover, the square-well
potential has been chosen for the computational efficiency.

From standard thermodynamical relations, we know that the partition function of the
system described by eq. (1) is given by

Z = Z(f) =

∫ N
∏

i=1

drie
−βH(f), (3)

and the average extension z along the stretching force is

〈z〉 = −
1

β

∂

∂f
logZ(f). (4)

In eq. (4), 〈·〉 means the ensemble average with respect to the Boltzmann distribution. An-
other important quantity of experimental interest is the end-to-end distribution function or
Green function [4], Gf (r), mathematically defined as

Gf (r) = 〈δ(rN − r0 − r)〉 =
1

Z(f)

∫ N
∏

i=1

drie
−βH(f)δ(rN − r0 − r), (5)

where δ denotes Dirac’s delta. After integrating this function yields the partition function, it
contains all the information which is needed to compute the thermal averages we are interested
in. Of particular interest to us is the number of polymer conformations whose projection of
the end-to-end distance along f is z. The corresponding reduced Green function Gf (z) is
given by

Gf (z) =

∫

dxdyGf (r) ≡ G0(z)e−βfz. (6)

From G0(z), one can readily extract the average 〈f〉 at fixed distance z, see e.g. ref. [21],

〈f〉 = −
1

β

∂

∂z
log G0(z). (7)

It is known that the two ensembles – fixed distance and fixed force – are equivalent only in
the thermodynamical limit [12, 22]. It will either be obvious from the context or specified in
each case which ensemble we use in the following. Hereafter, we shall make use of the scaled
elongation ζ = z/N . To investigate the stretching response of the polymer system under
consideration, we adopted the reweighted histograms technique [23,24], which has revealed to
be very powerful in studying phase transition in interacting systems. In present case this has
allowed us to obtain precise estimates for 〈z〉 and 〈f〉. Note that all simulations presented
here were performed with N = 45. Different values of N yield qualitatively similar results.
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Fig. 2 – Plots at different stretching forces of the logarithm of the Green function log Gf (ζ) versus
the scaled elongation ζ = z/N (see eq. 6) at T = 0.8, with Ks = 0 and N = 45. The solid lines
represent the plots for f = 2.7, 2.75, 2.8, 2.85 (from bottom to top). For clarity, we have also plotted
the same function around the transition force ft ≃ 2.765 (dashed line).

Results and discussion. – To fix ideas, let us first analyze the limit case of a self-
interacting flexible chain (Ks = 0 in eq. (1)). Fig. 2 shows the logarithm of the Green
function log Gf (ζ) as a function of the scaled elongation ζ = z/N , for various values of f (see
caption). The temperature is T = 0.8 (which is below the θ point for all Ks considered here).
From fig. 2 the bi-modal nature of the free energy is apparent. This means that the unfolding
transition is first order, in agreement with the literature [13]. (We note that the order of this
transition changes in 2 dimensions, where it is continuous [10, 11, 13]). In fig. 2 and in the
rest of the paper, the statistical error in log Gf (ζ) [24] has been found to be at most 2%.

Let us now consider how this scenario is modified for Ks 6= 0. In fig. 3 (left panel) we
have plotted the force vs extension curves, in the fixed elongation ensemble [see eq. (7)] for
Ks = 0, 1.2 and 2, where T = 0.8 as of fig. 2. The curves display a non-monotonic behaviour,
in agreement with what has been recently found in molecular dynamics [25,26] and theoretical
calculations on the stretching response of a homopolymer. Our curves typically display first
a maximum and then a minimum below full stretching. This means that the system has
to overcome a free energy barrier before going into the unfolded state (fig. 3). The non-
monotonicity is formally a consequence of the double well shape attained by log Gf (ζ) near
criticality, observed in Fig. 2. Such a behaviour is in sharp contrast with the corresponding
curves calculated in the fixed force ensemble, shown as continuous curves in Fig. 3 (left panel).
There is thus a strong inequivalence between the two ensembles, as in the fixed force ensemble,
due to the thermodynamical averaging, the oscillations are completely washed out. Moreover,
stiffness enhances the sharpness of the transition. In particular, this feature is evident if we
plot log Gf (ζ) vs. ζ for the various Ks used and in the vicinity of the corresponding transition
forces (fig. 3, right panel). As anticipated, the height of the free energy barrier – hence the
height of the peaks in the force vs elongation curves – is enhanced by stiffness.

We now turn to the analysis of the stretching behaviour at fixed stiffness for different
temperature. A different scenario appears here. In fig. 4 we have shown the results for
Ks = 0 (left panel) and Ks = 2 (right panel) at T = 0.8 and 0.4. Fig. 4 demonstrates
that the polymer stiffness and the attracting potential compete each other to give rise to a
multi-peak behaviour in the force versus elongation characteristic curves. This can also be
appreciated upon inspection of fig. 5 (left panel), where log Gf (ζ) vs. ζ is plotted, for T = 0.8
and T = 0.4, in the vicinity of the transition forces. The multi-peak behaviour is similar to the
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Fig. 3 – (Left panel) 〈f〉 vs. the scaled elongation ζ = z/N at T = 0.8, with N = 45 and for different
values of the stiffness parameter Ks. From top to bottom, Ks = 0, Ks = 1.2 and Ks = 2. The solid
curves are the corresponding plots in the fixed force ensemble. Differences between the two ensembles
are apparent. (Right panel) The sharpness of the transition in the fixed force ensemble increases with
polymer stiffness. The depth of the potential barrier for log Gf (ζ) (shown for the same values of Ks

and in the proximity of the corresponding transition forces) displays a similar behaviour. Note that
the plots for Ks = 1.2 and Ks = 2 have been shifted up of a constant to help the comparison.

one observed in refs. [12,22] for semi-flexible polymers and polymethylene chains. In all these
cases the peak pattern was usually ascending, whereas in the present one it displays a more
irregular behaviour. It would be interesting to compare experimental measurement of force
versus elongation characteristic curves for semiflexible polymers in a poor solvent, to clarify
this issue. We also note that in a related calculation on the square lattice it was found that
the probability distribution of the end-to-end distance showed oscillations for sufficiently stiff
chains [27], which shows that free energy profile of such system is quite rough. Moreover, peaks

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

<
f>

ζ

T=0.8
T=0.4

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

<
f>

ζ

T=0.8
T=0.4

Fig. 4 – (Left panel) Plot of 〈f〉 vs. ζ for Ks = 0, with N = 45, and at temperatures T = 0.8 (dashed
line) and T = 0.4 (dotted line). (Right panel) 〈f〉 vs. ζ for Ks = 2, with N = 45 and at temperatures
T = 0.8 (dashed line) and T = 0.4 (dotted line). Here, in particular, the pronounced multi-peak
behaviour in the low-T limit is evident.
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Fig. 5 – (Left panel) Plot of log Gf (ζ) as a function of ζ for T = 0.8 and T = 0.4 and in the proximity
of the corresponding transition forces. (Right panel) Phase diagram showing the transition force
ft(T ) vs. the temperature T .

in the force versus elongation curves have also been found in Langevin dynamics simulations
of the stretching of a flexible polymer in a poor solvent [26]. It would be nice to couple
simulations as in [26] to our Monte-Carlo quasi-static calculations to pinpoint in a clean
and quantitative way the magnitude of kinetic and hydrodynamic effects in the stretching
response of a semi-flexible polymer in computer simulations. In simulations performed here
the minimum of the force curves just before full stretching corresponds to the unraveling
transition described in [26]. In fig. 6 we have plotted three configurations obtained from a
simulation performed at f = 1.175 and T = 0.4, that exemplifies the presence of many states
around the transition force. The observed multi-peak behaviour is physically due to this fact.
In particular the central snapshot reproduce a ball-and-chain configuration which has also
been seen in refs. [25,26].

Fig. 5 (right panel) finally shows how the transition force ft(T ) for a semi-flexible chain
with Ks = 2 varies with temperature T between 0.4 and 0.8. The transition force is defined
for each temperature T , as the force at which the derivative with respect to the applied force
of ζ has a maximum. The reproduced values are averages over five independent simulations

Fig. 6 – Snapshots of three configurations obtained at force f = 1.175 and T = 0.4. The left
configuration looks like an elongated globule along the z-direction (blue arrow). The central snapshot
represents a ball-and-chain configuration [25,26], while the right one is the full stretched chain.
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and error bars correspond to standard deviations. This is a different procedure than the one
employed for fig. 4 (right panel) and fig. 5 (left panel), where the curves for T = 0.4 were
obtained reweighting together the histograms coming from all five simulations.

Conclusions. – In conclusion, we have presented here results obtained by coupling fully 3-
dimensional off-lattice Monte-Carlo simulations to a standard histogram reweighting technique
to investigate the stretching response of a semi-flexible polymer of varying stiffness, subjected
to self-attractive interactions. The present model of a semi-flexible polymer in a poor solvent
should be of relevance to experiments with DNA in solutions with multivalent counterions
or to proteins or heteropolymers. We have worked out the force versus elongation curves
in the fixed elongation and fixed force ensembles, under the quasi-static assumption that
the quantities of interest are not affected by kinetic effects such as the speed of stretching
etc. While this situation may be achieved in experiments by sufficiently slow stretching, we
anticipate that an important use of our results and of our methodological framework should
be that of providing a reference for the estimate of force versus elongation curves in quasi-
equilibrium situation. Then, a comparison with molecular or Langevin dynamic calculations
such as those reported in refs. [25,26] will allow a clean quantitative determination of kinetic,
hydrodynamics or non-equilibrium effects in stretching real and numerical experiments, which
would be of high relevance to the field of single molecule experiments.

Acknowledgments. – We thank N. Becker for a careful reading of the manuscript.
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