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The electron-gas pair density and its geminal description
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Abstract: Attempts to generalize the density functional theory are summarized. A possible
pair density functional theory is linked to the Overhauser parametrization of the electron-
gas pair density. The importance of the cumulant partitioning is stressed and a modified
Overhauser approach for the cumulant 2-body reduced density matrix, the contraction of
which determines the 1-body reduced density matrix, is discussed.
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The simplest quantum-kinematical quantity of a many-electron system (bound by vext(r), de-
scribed by Ĥ = T̂ + V̂ext + V̂int, ground state) is its (1-body) density ρ(1) with 1 = (r, σ). Density
functional theory is an effective 1-body scheme, which provides the density ρ(1) and the total
energy E, supposed a certain density functional Exc[ρ] is approximately known. But the 1-body
reduced density matrix (1-matrix for short) γ(1|1′) and the pair density ρ2(1, 2) remain unknown
within this scheme. The 1-matrix γ(1|1′) contains not only the density with ρ(1) = γ(1|1), but also
the momentum distribution n(k) (= diagonal of the Fourier transformed 1-matrix) and it enters
the pair density in its cumulant partitioning ρ2(1, 2) = ρ(1)ρ(2) − γ(1|2)γ(2|1) − u(1, 2), where
u(1, 2) is the diagonal of the cumulant 2-matrix χ(1|1′, 2|2′). The corresponding partitioning of
the interaction energy is Vint = VH + VF + VC with H = Hartree, F = Fock, C = cumulant. The
more general density-matrix functional theory may be considered as an effective 1-body scheme
for γ(1|1′) and E, supposed VC is approximately known as a 1-matrix functional VC[γ]. But the
cumulant pair density remains unknown within this scheme. Pair-density functional theory [1]-[11]
may be considered as an effective 2-body scheme for ρ2(1, 2) and E, supposed T is approximately
known as a pair-density functional T [ρ2]. But then the 1-matrix remains unknown.

It would be most desirable, if an effective 2-body scheme would be available for the cumulant
geminals ψK(1, 2) and their occupancies νK , such that χ(1|1′, 2|2′) =

∑
K ψK(1, 2)νKψ

∗
K(1′, 2′) is

the cumulant 2-matrix. Its diagonal gives the cumulant pair density u(1, 2) = χ(1|1, 2|2) and from
the contraction sum rule

∫
d2 χ(1|1′, 2|2) =

∑

κ

ψκ(1)νκ(1− νκ)ψ∗κ(1′), γ(1|1′) =
∑

κ

ψκ(1)νκψ
∗
κ(1′) (1)

follows the 1-matrix by solving a quadratic equation. ψκ(1) and νκ are the natural orbitals and
their occupancies, respectively, which diagonalize the 1-matrix γ(1|1′). From ρ(1) = γ(1|1) follow
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Vext and VH, from γ(1|1′) follow T and VF, and from u(1, 2) follows VC: E = T+Vext+VH+VF +VC.
Unfortunately almost nothing is known about the cumulant 2-matrix χ(1|1′, 2|2′). In view of Eq.
(1) it is sufficient to know the 3-point function χ(1|1′, 2|2).

One way to learn something about these cumulant quantities may be to study them for the
spin-unpolarized uniform or homogeneous electron gas (HEG)[12]. The advantage of this model
is, that in its weak-correlation limit rs → 0, the cumulant 2-matrix χ(1|1′, 2|2′) can be controlled
through the well-known random-phase-approximation results for n(k) and ρ2(1, 2) [13]-[16]. There
is still another motivation for such a study. Namely, on the one hand, there is the idea of Kimball
and Overhauser [17]-[33], to parametrize the (dimensionless) HEG pair density as

g(r) = 2

(
1

4

+∑

L

+
3

4

−∑

L

)
〈µ(k)R2

l (r, k)〉 , 〈· · · 〉 =

∞∫

0

d(k)3 · · · (2)

in terms of pair-density geminals Rl(r, k) and corresponding weights µ(k). ± stands for even,
respectively, odd l, corresponding to the singlet, respectively, triplet components of g(r). It turns
out first a 2-body problem, which is easily treated separating-off the center-of-mass motion. It
then remains a radial Schrödinger equation with an appropriately screened Coulomb repulsion and
with scattering-state solutions Rl(r, k). The geminal weight follows from n(k) according to

µ(k) =

∞∫

0

d(K)3 n(|1
2
K + k|)n(|1

2
K − k|). (3)

Notice the cumulant partitioning of the pair density as g(r) = 1 − 1
2f

2(r) − h(r) with f(r) =
Fourier transform of n(k),

f(r) =

∞∫

0

d(k)3 sin kr

kr
n(k), and 1− 1

2
f2(r) = 2

(
1

4

+∑

L

+
3

4

−∑

L

)
〈µ(k)j2

l (kr)〉. (4)

Treating the electron-electron repulsion αrs/q
2 as perturbation, the cumulant pair density h(r) is

given by linked Feynman diagrams. The results of the Overhauser approach are promising, but
on the other hand, there is the insight, that this approach violates the plasmon sum rule [33]. Is
the mentioned search for a scheme, which provides the cumulant geminals with scattering states
R̃l(r, k) and bound states R̃n,l(r) and - following from them - the cumulant pair density

h(r) = 2

(
1

4

+∑

L

+
3

4

−∑

L

)(
〈µ̃(k)R̃2

l (r, k)〉+
∑

n

µ̃nR̃
2
n,l(r)

)
(5)

a possible way out ? h(r) should have the long-range asymptotics in agreement with the plasmon
sum rule and it has of course also to obey the cusp condition for r→ 0 [17].
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