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including self-energy and vertex corrections to first order within a spin-rotationally-
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stone mode order by order. A correlation-induced exchange-energy correction is

shown to yield the dominant quantum reduction in the spin stiffness, providing a

quantitative understanding of the ferromagnetic-state stability in terms of simple

lattice-dependent features of energy-band dispersion. The quantum reduction factor

U/W highlights the subtlety in the characteristic competition in a band ferromagnet

between interaction U and bandwidth W .
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I. INTRODUCTION

The continuous spin-rotation symmetry of a magnetic system is manifested, in the spon-

taneously broken-symmetry state, in gapless spin-wave excitations in accordance with the

Goldstone theorem,1 the zero-energy infinite-wavelength mode simply corresponding to a

uniform rotation of all spins. The gapless spin-wave spectrum has particularly important

consequences for low-dimensional (D = 1, 2) magnetic systems, where transverse spin fluc-

tuations diverge at any finite temperature, resulting in absence of long-range magnetic order

in accordance with the Mermin-Wagner theorem,2 and exponentially large spin-correlation

length in two dimensions.

A quantitative determination of the spin-wave spectrum also allows for various order-

ing, dimension, and lattice-specific investigations — finite-temperature spin dynamics and

reduction of magnetic order with temperature due to thermal excitation of spin waves,3–5

estimation of the magnetic transition temperature Tc from the broken-symmetry side,6,7

competing interactions and magnetic stability,8,9 and dispersion of magnetic and electronic

excitations in solids as inferred from inelastic neutron-scattering and angle-resolved photoe-

mission studies,10–14 References given above illustrate recent spin-wave applications to the

nearly square- and triangular-lattice antiferromagnets such as cuprates (La2CuO4), multi-

ferroics (HoMnO3), and organic systems κ − (BEDT − TTF)2X, as well as ferromagnets

(Fe,Ni) and magnetic multilayers (Fe/Cr) exhibiting giant magneto-resistance.

For band ferromagnets such as Fe and Ni, there have been extensive inelastic neutron-

scattering studies in relation with calculations for transverse spin fluctuations in the ran-

dom phase approximation (RPA), which is the lowest-order treatment in which spin rotation

symmetry and Goldstone mode are preserved. Various spin-wave features such as isotropy,

stiffness constant, damping and disappearance at higher energy due to interaction with the

continuum of Stoner excitations, persistence for T > Tc, temperature dependence of disper-

sion etc. have been discussed,15–19 and also quantitatively compared with RPA calculations

using realistic band structure.20,21 However, despite the extensive study of magnetic excita-

tions in metals and alloys over the years,22 a spin-rotationally-symmetric extension of RPA

including self-energy and vertex corrections has not been carried out quantitatively for fcc-

type lattices with respect to ferromagnetic-state stability, spin-wave and Stoner excitations,

damping, and transition temperature.
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Some of the related developments beyond RPA are summarized below. The effect of large

spin fluctuations in a nearly ferromagnetic Fermi liquid has been studied in the context

of spin waves in He3 within an extension of the paramagnon model beyond RPA, where

ambiguities of the paramagnon model were shown to be resolved.23 In the context of self-

energy corrections in a band ferromagnet, the importance of vertex corrections in restoring

the spin-rotation symmetry and Goldstone mode has been recognized at a formal level, and

a Ward identity connecting vertex corrections to self-energy corrections has been derived.24

While spin-wave excitations for arbitrary wave vector were not quantitatively discussed, the

spin-wave stiffness constant was shown to be reduced from its RPA value, and also compared

with earlier studies25,26 in the context of stability of the ferromagnetic state.27 A variational

approach has been used to improve the RPA result for the energy of long wave length spin-

wave modes.28 A spin-wave damping term proportional to q6 due to scattering off particle-

hole excitations has been obtained for a parabolic band.29 Recently self-energy corrections

have been incorporated in a modified RPA approach, although the q, ω-dependence of vertex

corrections was not included.7

In this paper we provide a concrete extension beyond RPA for the transverse spin-

fluctuation propagator. We make use of the inverse-degeneracy (1/N ) expansion within the

generalized N -orbital Hubbard model,30 which provides a systematic diagrammatic scheme

for incorporating quantum corrections while preserving spin-rotation symmetry and hence

the Goldstone mode order-by-order. This spin-rotationally-symmetric scheme has been ap-

plied earlier to examine quantum corrections in the antiferromagnetic state of the Hubbard

model.30 The diagrams include self-energy and vertex corrections, and physically incorpo-

rate effects such as quasiparticle damping, spectral-weight transfer and coupling of spin and

charge fluctuations. We consider the special case of a saturated band ferromagnet, in which

the absence of minority-spin particle-hole fluctuations results in relative simplification.

Owing to its intrinsically strong-coupling nature, band ferromagnetism has been recog-

nized as a fairly challenging problem, particularly with respect to the estimation of Curie

temperature for the Hubbard model, although considerable progress has been achieved in the

recent past.31 Competition between band and interaction energies, separation of moment-

melting and moment-disordering temperature scales due to strong correlation, and presence

of charge fluctuations even in the broken-symmetry state due to partially filled band(s) are

some of the non-trivial elements involved. Ferromagnetism in the Hubbard model on fcc
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and bcc lattices has been recently investigated using several different approaches, such as

the dynamical mean field theory (DMFT),32 by incorporating spin and charge fluctuations

in the correlated paramagnet using the fluctuation-exchange (FLEX) and the two-particle

self consistent (TPSC) approximations,33 by systematically improving the self energy,31 and

a modified RPA scheme.7 Ferromagnetism in a diluted Hubbard model has also been inves-

tigated recently,34,35 which is of interest in the context of carrier-mediated ferromagnetism

in diluted magnetic semiconductors such as Ga1−xMnxAs.

Incorporating only the local (Ising) spin excitations, the DMFT approach ignores long-

wavelength spin fluctuations and the k-dependence of self energy. FLEX incorporates self-

energy corrections, but ignores vertex corrections of the same order, thereby breaking the

spin-rotation symmetry. Both DMFT and FLEX are hence not in accordance with the

Mermin-Wagner theorem. While self-energy corrections in the broken-symmetry state were

incorporated in the modified RPA approach,7 the momentum-energy dependence of vertex

corrections was not considered. While FLEX, DMFT, and RPA results for the behaviour

of Curie temperature with band filling are found to be qualitatively similar, appreciable

quantitative differences7,31,33 clearly highlight the need for a spin-rotationally-symmetric

extension.

II. TRANSVERSE SPIN FLUCTUATIONS

We consider the transverse spin-fluctuation propagator in the broken-symmetry state

which describes both collective spin-wave and particle-hole Stoner excitations and is given

by

χ−+(q, ω) = i

∫

dt eiω(t−t′)
∑

j

eiq.(ri−rj)〈ΨG|T[S−
i (t)S+

j (t′)]ΨG〉 (1)

in terms of the fermion spin lowering and raising operators S∓ = Ψ†(σ∓/2)Ψ. The spin-

fluctuation propagator can be expressed as

χ−+(q, ω) =
φ(q, ω)

1 − Uφ(q, ω)
(2)

in terms of the exact irreducible propagator φ(q, ω), which incorporates all self-energy and

vertex corrections. The inverse-degeneracy expansion30

φ = φ(0) +

(

1

N

)

φ(1) +

(

1

N

)2

φ(2) + ... (3)
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systematizes the diagrams in powers of the expansion parameter 1/N which, in analogy

with 1/S for quantum spin systems, plays the role of ~. As only the ”classical” term φ(0)

survives in the N → ∞ limit, the RPA ladder series χ0(q, ω)/1 − Uχ0(q, ω) amounts to a

classical-level description of non-interacting spin-fluctuation modes. The bare antiparallel-

spin particle-hole propagator

φ(0)(q, ω) ≡ χ0(q, ω) =
∑

k

1

ǫ↓+k−q − ǫ↑−k + ω − iη
, (4)

where ǫσ
k = ǫk − σ∆ are the Hartree-Fock ferromagnetic band energies, 2∆ = mU is the

exchange band splitting, and the superscript +(−) refer to particle (hole) states above

(below) the Fermi energy ǫF. For the saturated ferromagnet, the magnetization m is equal

to the particle density n.

As collective spin-wave excitations are represented by poles in (2), spin-rotation symmetry

requires that φ = 1/U for q, ω = 0, corresponding to the Goldstone mode. Since the zeroth-

order term φ(0) already yields exactly 1/U for q, ω = 0, the sum of the remaining terms

must exactly vanish in order to preserve the Goldstone mode. For this cancellation to

hold for arbitrary N , each higher-order term φ(n) in the expansion (3) must individually

vanish, implying that spin-rotation symmetry is preserved order-by-order, as expected from

the spin-rotationally-invariant form (U/N )Si.Si of the interaction term in the generalized

Hubbard model.30 We evaluate the order 1/N diagrams in φ(1) and explicitly show the exact

cancellation for q, ω = 0.

We consider the relatively simpler case of a saturated ferromagnet in which the minority-

spin (↓) band is pushed above the Fermi energy due to Coulomb repulsion, resulting in the

absence of any minority-spin particle-hole processes. In this case the effective antiparallel-

spin interaction at order 1/N reduces to the bare Hubbard interaction U and the effective

parallel-spin interaction reduces to a single term involving the majority-spin (↑) particle-hole

bubble. Generally these effective interactions involve a series of bubble diagrams, with even

and odd number of bubbles, respectively.

The order 1/N diagrams for the irreducible particle-hole propagator φ(q, ω) are shown in

Figure 1. The hatched part in diagram (a) represents the RPA ladder sum U2χ+−
RPA(−Q,−Ω),

where

χ+−
RPA(−Q,−Ω) = χ−+

RPA(Q, Ω) =
χ0(Q, Ω)

1 − Uχ0(Q, Ω)
(5)
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FIG. 1: The first-order quantum corrections to the irreducible particle-hole propagator φ(q, ω).

has purely advanced (retarded) character with respect to Ω (−Ω), and includes both spin-

wave and Stoner excitations. Diagram (a) involves a self-energy correction to the ↓-spin

particle which transfers spectral weight down from the ↓-spin band to the ↑-spin band (above

ǫF), and yields a positive correction to φ. Diagrams (b) and (c) represent vertex corrections,

where the hatched part represents U/1 − Uχ0(Q, Ω), the RPA ladder series starting with a

single interaction line U . In diagram (b) the single opposite-spin particle-particle interaction

reduces the ↓-spin particle — ↑-spin hole correlation, yielding a negative correction to φ,

whereas two such interactions in (c) and (d) yield positive corrections.

A coupling between spin and charge fluctuations is indicated by the ↑-spin particle-hole

bubble, present explicitly in diagrams (c) and (d) and implicitly in (a) and (b). It is the

availability of unoccupied ↑-spin states for partial band filling n < 1 which allows for the

different processes (a)-(d), either involving spin flip due to spin-wave coupling (a) or the

fermion-fermion scattering due to on-site Coulomb interaction (b,c,d). Indeed all these

quantum corrections identically vanish for a completely filled ↑-spin band. This coupling
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between spin and charge fluctuations is a unique feature of the quantum corrections and is

absent at the classical level.

Integrating out the fermion frequency-momentum modes, the order 1/N quantum cor-

rections to the irreducible particle-hole propagator φ(q, ω) are obtained as:

φ(a)(q, ω) = U2
∑

Q

∫

dΩ

2πi

{

χ0(Q, Ω)

1 − Uχ0(Q, Ω)

}

.
∑

k′

(

1

ǫ↓+k′−q − ǫ↑−k′ + ω − iη

)2(

1

ǫ↑+k′−q+Q − ǫ↑−k′ + ω − Ω − iη

)

(6)

φ(b)(q, ω) = −2U2
∑

Q

∫

dΩ

2πi

{

1

1 − Uχ0(Q, Ω)

}

.
∑

k′

(

1

ǫ↓+k′−q − ǫ↑−k′ + ω − iη

)(

1

ǫ↑+k′−q+Q − ǫ↑−k′ + ω − Ω − iη

)

.
∑

k′′

(

1

ǫ↓+k′′−q − ǫ↑−k′′ + ω − iη

)(

1

ǫ↓+k′′−Q − ǫ↑−k′′ + Ω − iη

)

(7)

φ(c)(q, ω) = U3
∑

Q

∫

dΩ

2πi

{

1

1 − Uχ0(Q, Ω)

}

.
∑

k′

(

1

ǫ↓+k′−q − ǫ↑−k′ + ω − iη

)(

1

ǫ↓+k′−Q − ǫ↑−k′ + Ω − iη

)

.
∑

k′′

(

1

ǫ↓+k′′−q − ǫ↑−k′′ + ω − iη

)(

1

ǫ↓+k′′−Q − ǫ↑−k′′ + Ω − iη

)

.
∑

k′′′

(

1

ǫ↑+k′′′−q+Q − ǫ↑−k′′′ + ω − Ω − iη

)

(8)

φ(d)(q, ω) = U2
∑

Q

∫

dΩ

2πi

∑

k′

(

1

ǫ↓+k′−q − ǫ↑−k′ + ω − iη

)2(

1

ǫ↓+k′−Q − ǫ↑−k′ + Ω − iη

)

.
∑

k′′′

(

1

ǫ↑+k′′′−q+Q − ǫ↑−k′′′ + ω − Ω − iη

)

(9)

In the infinite-wavelength limit (q → 0), the total order 1/N contribution φ(1)(q, ω)

exactly vanishes, as required from spin-rotation symmetry. With ǫ↓+k − ǫ↑−k = 2∆, we obtain

φ(1)(q = 0, ω) = φ(a) + φ(b) + φ(c) + φ(d)
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= U2
∑

Q

∫

dΩ

2πi

(

1

2∆ + ω

)2
∑

k′

(

1

ǫ↑+k′+Q − ǫ↑−k′ + ω − Ω − iη

)

.

[

χ0

1 − Uχ0
−

2χ0

1 − Uχ0
+

Uχ2
0

1 − Uχ0
+ χ0

]

, (10)

which yields identically vanishing contribution for each spin-fluctuation mode Q. We note

that this mode-by-mode cancellation is quite independent of the spectral-weight distribution

of the spin-fluctuation spectrum between collective spin-wave excitations and particle-hole

Stoner excitations. Furthermore, the cancellation holds for all ω, indicating no spin-wave

amplitude renormalization, as expected for the saturated ferromagnet in which there are no

quantum corrections to magnetization.

The coupling between spin and charge fluctuations is highlighted by the structure of (10),

where the common ↑-spin particle-hole bubble term within the k′ sum represents charge fluc-

tuations. This coupling provides a spin-wave damping mechanism for a band ferromagnet,

fundamentally different from the conventional damping mechanism in Heisenberg insulating

magnets involving decay into three spin waves. The spin-wave decay and damping process

in a band ferromagnet involves the imaginary part of the ↑-spin particle-hole bubble

∑

Q

∑

k′

δ(ǫ↑+k′−q+Q − ǫ↑−k′ + ω − Ω) (11)

which corresponds to energy conservation in the spin-wave (energy −ω = ω−q) decay into

an intermediate-state spin wave (energy −Ω = Ω−Q) plus a particle-hole excitation in the

metal. Exactly vanishing for ω = 0, the imaginary term increases with |ω|. The typically

strongly peaked spin-wave density of states near the top end of the spectrum yields significant

spin-wave damping only for zone boundary modes. Further investigations, including effects

of disorder and diffusion pole, are clearly of interest in view of the observed temperature-

independent linewidth in neutron-scattering studies.18,19

III. QUANTUM CORRECTIONS TO SPIN STIFFNESS

We next consider the quantum corrections for small q and show that the above exact

cancellation for q = 0 actually extends to the next order as well, yielding spin-stiffness

quantum corrections only from the higher-order surviving terms. For analytical simplicity,

we neglect the contribution of higher-energy Stoner excitations in the Ω integral in (6) - (8),
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and only consider contributions from the spin-wave pole

χ0(Q, Ω)

1 − Uχ0(Q, Ω)
=

mQ

Ω + ΩQ − iη
, (12)

where mQ is the spin-wave amplitude for momentum Q. Writing the antiparallel-spin

particle-hole energy denominators as

ǫ↓+k−q − ǫ↑−k = 2∆[1 + (ǫk−q − ǫk)/2∆] (13)

and expanding in powers of the small band-energy difference

δ ≡ −(ǫk−q − ǫk) = q.∇ǫk −
1

2
(q.∇)2ǫk (14)

for small q, we find that besides the zeroth-order cancellation for q = 0, the first-order terms

in δ also exactly cancel, implying no quantum correction to the classical term 〈∇2ǫk〉 in

the spin-wave stiffness constant, in accordance with the exact structure.25,26 The surviving

second-order terms in δ can be written, up to order q2, as

φ(1)(q) =
U2

(2∆)4

∑

Q

mQ

∑

k′

(q.∇ǫk′)2

ǫ↑+k′+Q − ǫ↑−k′ + ΩQ

−
2U3

(2∆)4

∑

Q

mQ

∑

k′

q.∇ǫk′

ǫ↑+k′+Q − ǫ↑−k′ + ΩQ

∑

k′′

q.∇ǫk′′

ǫ↓+k′′−Q − ǫ↑−k′′ − ΩQ

+
U4

(2∆)4

∑

Q

mQ

(

∑

k′

q.∇ǫk′

ǫ↓+k′−Q − ǫ↑−k′ − ΩQ

)2
∑

k′′′

1

ǫ↑+k′′′+Q − ǫ↑−k′′′ + ΩQ

, (15)

where we have set q, ω = 0 in the energy denominators as all three terms are already explic-

itly second order in q. Incorporating the energy cost of spin twisting, the three terms in (15)

represent exchange-type processes involving ↑-spin particle-hole (charge) excitations accom-

panied with zero, one, and two ↓-spin particle-particle scatterings, respectively. Cross terms

such as qxqy etc. in (15) identically vanish from symmetry, leaving an isotropic momentum

dependence on q2 = q2
x+q2

y +q2
z . Equation (15) is a new result and incorporates all first-order

(1/N ) quantum corrections to the spin-wave stiffness constant due to collective spin-wave

excitations. Including the Stoner contribution in (6-9) again yields an exact cancellation of

the ∇
2ǫk-type terms, leaving only an additional (∇ǫk)

2-type term qualitatively similar to

the first term in (15).36

Now, as ∇ǫk is odd in momentum k, the second and third terms in (15) involve a partial

cancellation resulting from the momentum summations. Therefore, keeping the contribution
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of the dominant first term only, with an order-of-magnitude estimate for the particle-hole

energy denominator as W , the fermion bandwidth, the renormalized spin-wave energy in D

dimensions is obtained as

ωq ≈
1

D

[

1

2
〈∇2ǫk〉 −

〈(∇ǫk)
2〉

2∆
−

〈(∇ǫk)2〉

2∆

U

W
(1 − n)α

]

q2 , (16)

where 2∆ = nU , the angular bracket 〈 〉 represents momentum summation normalized over

the number of occupied states, the explicit hole density factor (1−n) highlights the particle-

hole process involved which vanishes for a filled band, α is a band-dependent factor of order

1, and the prefactor 1/D follows from hypercubic symmetry. A straightforward calculation of

the two competing terms in spin stiffness 〈∇2ǫk〉 and 〈(∇ǫk)2〉/2∆ can provide a quantitative

estimate of the stability of the ferromagnetic state for different lattices.

The origin and physical interpretation of the three terms in (16) are given below. The first

two terms represent classical (RPA) spin-stiffness contributions arising from the two fermion

band curvature terms (14) substituted in (4). With respect to stiffness against spin twisting,

the first (positive) term represents delocalization-energy loss which vanishes for a filled band,

whereas the second (negative) term of order t2/U represents exchange-energy gain. The

third term represents an additional exchange process involving minority-spin intermediate

states which are transferred to lower energies, corresponding to the finite probability 1 − n

of a site being unoccupied by a majority-spin electrons. The third term thus represents a

correlation-induced quantum correction to spin stiffness.

If the normalized averages 〈〉 in (16) are essentially n-independent (as for the fcc lattice

with t′ = 0.25 in the low-density limit), the band-filling dependence (1−n)/n of the quantum

term destabilizes the ferromagnetic state for small n, whereas the competition between

the two classical terms destabilizes the ferromagnetic state as n approaches 1, yielding an

optimization of the spin stiffness at some intermediate n. Also, the quantum correction factor

U/W again highlights the characteristic competition between interaction U and bandwidth

W , although favouring a stability condition quite opposite to the Stoner criterion. In the low-

density limit (n ≪ 1), the second and third terms in (16) can be combined as 〈(∇ǫk)
2〉/nUeff ,

where the effective interaction Ueff = U/(1 + U/W ) approaches the bandwidth W in the

strong coupling limit, in agreement with the low-density result of Kanamori.27
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IV. CONCLUSIONS

We have investigated correlation effects on the spin dynamics in a band ferromagnet,

providing a physically transparent framework for quantitative understanding of ferromag-

netic stability in terms of simple lattice-dependent features of energy-band dispersion. The

correlation effect arises from the minority-spin spectral-weight transfer to lower energies

corresponding to finite site-vacancy probability (1−n) of majority-spin electrons, the avail-

ability of these low-lying intermediate states resulting in an additional exchange-energy gain

of order t2/U , yielding a lattice-dependent destabilization of the ferromagnetic state.

The inverse-degeneracy (1/N ) expansion provides a fully spin-rotationally-symmetric

scheme for incorporating self-energy and vertex corrections in the transverse spin-fluctuation

propagator. First-order contributions to the irreducible particle-hole propagator were ob-

tained, with full momentum-energy dependence in the vertex corrections, and shown to have

appropriate cancellations for q = 0, small q, as well as finite ω. Lattice-specific evaluations

thus allow for quantitative study of magnetic excitations for arbitrary wave vector, which

should be especially suitable for low-dimensional systems as the scheme is in accordance

with the Mermin-Wagner theorem.

The factor U/W in the spin-stiffness quantum reduction highlights the subtlety in the

characteristic competition in a band ferromagnet between interaction U and bandwidth W .

While Stoner criterion favours a high density of states at Fermi energy, the quantum correc-

tion favours a large bandwidth for the stability of the ferromagnetic state. Indeed, with a

large density of states at one end and a broad band tail, the fcc-lattice band does provide opti-

mum conditions for a stable ferromagnetic state within the single-band Hubbard model. The

quantum corrections also involve a coupling between spin and charge fluctuations, resulting

in an intrinsic spin-wave damping mechanism which fundamentally distinguishes between

band and insulating ferromagnets. Lattice-specific calculations including the contribution of

both spin-wave and Stoner excitations in the intermediate-state spin-fluctuation spectrum

are currently in progress, and quantitative results for spin stiffness, spin-wave energy, Curie

temperature, electronic spectral function etc. will be presented elsewhere.36
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