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The method of increments is a wavefunction-based ab initio correlation method for solids,

which explicitly calculates the many-body wavefunction of the system. After a Hartree-
Fock treatment of the infinite system the correlation energy of the solid is expanded in

terms of localised orbitals or of a group of localised orbitals. The method of increments
has been applied to a great variety of materials with a band gap, but in this paper

the extension to metals is described. The application to solid mercury is presented,
where we achieve very good agreement of the calculated ground-state properties with

the experimental data.
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1. Introduction

Ab-initio electronic structure methods aim to solve the full electronic Hamiltonian

(in atomic units):

H =
∑

i

(
−1

2
∆i −

K∑

α

Zα

|~ri − ~Rα|

)
+

1

2

∑

i6=j

1

|~ri − ~rj|
. (1)

The first two terms are the kinetic energy and the electron-nucleus interaction, both

one-particle terms and properly described within a mean-field approach. The last

term, the electron-electron interaction is a real many-body term, the two-body in-

teraction can be solved only approximatively within a mean-field description.

Besides the very successful method to solve this Hamiltonian within the density-

functional approach1,2 (DFT), which relies on the ground-state density of the sys-

tem and avoids the calculation of the many-body wavefunction of the system, it is

desirable for many systems to calculate the many-body wave-function of the sys-

tem explicitly yielding a deeper insight to the correlation effects of the system.

The advantage of these methods, sometimes called quantum chemical methods, is

that they can be improved systematically. As the starting point for such a calcu-

lation a single-particle wave-function is necessary. Nearly all methods rely on the

Hartree-Fock wavefunction3–5 of the systems. This independent electron approxi-

mation yields the lowest ground-state energy which is possible for independent elec-
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trons. ”Independent electrons” means that the electron experiences an interaction

field which is calculated as the spatial average over the positions of all other elec-

trons. This field depends on the Hartree-Fock wavefunction, therefore the problem is

solved in a self-consistent manner, until both the wavefunction and the field is con-

verged. For a closed shell system the solution is a single Slater determinant, which

is for weakly correlated systems a good starting point for successive correlation

calculations. Moreover, the amount of electronic correlations, i.e. the instantaneous

reaction of an electron due to the movement of any other electron, is defined as the

difference between the Hartree-Fock solution and the true ground-state solution.

Quantum-chemical correlation methods rely on the Hartree-Fock solution of the

system. Starting from the Hartree-Fock orbitals, which are divided into occupied

and unoccupied ones with respect to the ground-state Slater determinant, in the

configuration interaction (CI) ansatz6,7 additional determinants are considered. In

these determinants one, two or more occupied orbitals are replaced by unoccupied

ones. The weights of these determinants in the ansatz for the many-body wavefunc-

tion are optimised by minimising the total energy of the system.

In order to apply the quantum-chemical correlation methods to an extended system

the property that the correlation hole (i.e. the region, where the electrons interact

instantaneously) is fairly local can be used. Therefore for a solid it is useful to switch

from the description with delocalised Bloch orbitals to localised Wannier orbitals.8

But even if the correlation hole extends only e.g. to the fourth-nearest neighbours,

that would correspond to 64 atoms in a dense-packed three-dimensional solid and

e.g. for carbon with its four valence electrons this would result in the need to corre-

late 256 electrons. It is hard to handle so many electrons with explicitly correlated

methods, because the computational demand increases with N 5 to N8, where N is

the number of electrons, depending on the specific method used.

Therefore further approximations are necessary. For this purpose the method of

increments was developed by Stoll.9–11 In this approach the correlation energy is

calculated in the first step as the sum of independent contributions of translation-

ally invariant localised orbitals or groups of localised orbitals. As corrections the

non-additive parts of two, three or more localised orbitals are added. If the group

of localised orbitals is chosen reasonably, this partitioning of the correlation energy

of the solid yields a fast converging series. Due to the partitioning it is necessary

that the correlation method used for the individual increments is size-consistent

and size-extensive.

The method of increments has been applied to ground-state properties of var-

ious material classes: From insulators12–16 over semiconductors9,10,17–21 to met-

als,11,22,23,25 from strongly bound ionic or covalent systems to weakly bound van der

Waals solids,26–28 from large molecules29–31 over polymers32–39 to three-dimensional

solids, from weakly correlated systems to strongly correlated ones such as transition-

metal oxides40,41 and rare-earth nitrides and oxides.42–44 This large variety of ap-

plications is possible, because the method of increments allows for an individual

selection of the localised orbital group for each system and for the choice of the
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suitable correlation method used for the ansatz of the many-body wavefunctions.

The results allow us to discuss the influence of electronic correlation on the cohesive

energy, on the lattice constants, the bulk moduli and other ground-state properties.

In addition we can determine the origin of the electronic correlations and the range

of the correlation hole.

The generalisation to metals is discussed in this paper for the example of solid

mercury.23–25 Mercury condenses at 233 K into the rhombohedral structure with a

bond length a = 3.005 Å and an angle of 70.53o45 (see Fig. 1). This is in contrast to
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Fig. 1. The rhombohedral structure occurring in solid mercury. The solid lines indicate the nearest
neighbour distance a and the dashed lines show the second nearest neighbours, which form a regular

hexagon.

zinc and cadmium, which adopt the hexagonal close-packed (hcp) structure, with

an anomalous c/a ratio which is far from ideal hcp. Density functional methods fail

to describe either of these structures accurately. Even in mercury some functionals

yield a closed-packed fcc structure, and others a simple cubic structure. An appli-

cation of the method of increments to mercury, including correlation via coupled

cluster calculations on finite fragments of the solid, allows the systematic inclusion

and comparison of the competing effects that leads to the observed structure.

The paper is organised as follows: In the next section the method of increments

is presented and the extension to metals is described. In Sec. 3 the results for the

ground-state properties of mercury are discussed. Conclusion follows in Sec. 4.

2. The Method of increments

The method of increments expands the correlation energy of the systems in terms

of local increments (for a sketch see Fig.2). It is formally similar to treating the

hierarchy of nth order atomic Bethe-Goldstone equations.46 Here we want to sketch

the basic ideas and some important formulae (for more details see Ref. [47,48]). The

method relies on localised orbitals or a group of localised orbitals generated in a

Hartree-Fock reference calculation. One-body correlation-energy increments εi are

obtained by correlating each of the localised orbital groups separately while keep-

ing the other ones inactive. In the present work we are using the coupled-cluster
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Fig. 2. Schematic overview of the procedure of the method of increments for metals.

approach with single and double substitutions with perturbative triples (CCSD(T))

as implemented in Molpro,49–51 but every size-consistent correlation method is pos-

sible. This yields a first approximation of the correlation energy

E
(1)
corr =

∑

i

εi, (2)

which corresponds to the correlation energy of independent orbital groups.

In the next step we include the correlations of pairs of orbital groups. Only the

non-additive part ∆εij of the two-body correlation energy εij is needed.

∆εij = εij − (εi + εj). (3)

Higher order increments are defined analogously, e.g. the three-body increment

∆εijk = εijk − (εi + εj + εk) − (∆εij + ∆εjk + ∆εik). (4)

The correlation energy of the system is finally obtained by adding up all the incre-

ments with appropriate weight factors:

Ecorr =
∑

i

εi +
1

2

∑

ij
i6=j

∆εij +
1

6

∑

ijk
i6=j 6=k

∆εijk + · · · . (5)

It is obvious that by calculating higher and higher increments the exact correlation

energy is determined within the correlation method applied.

This partitioning of the correlation energy is only sensible if the series converges

quickly enough, both with the order of increments (i.e., 3-body increments should

be significantly smaller than two-body increments, etc.) and with the distance of

the orbital groups involved in the increments. Increments involving distant orbital

groups must decay faster than the number of increments increases in a 3-dimensional

system. For a semiconductor or an insulator, increments with distant orbital groups

interact only via van der Waals and thus decay like r−6, whereas the number of

pairs grows with r2, so an overall decay of r−4 guarantees the convergence with

respect to the distance of orbital groups.

A direct transfer of this approach to metallic systems is not possible, however,
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Fig. 3. Schematic overview of the procedure of the ground-state calculations with the method of

increments.

since localised orbitals become very long-range entities here and a many-body ex-

pansion in terms of such orbitals cannot be expected to have useful convergence

characteristics. In order to make the expansion still computationally feasible, we

have suggested23,30 to start from suitable model systems where long-range orbital

tails are absent, and to allow for delocalisation only successively in the course of the

expansion; more specifically, when calculating pair contributions for a given orbital

group combination (i, j), we allow for delocalisation i→ j and j → i, and similarly

with the 3-body terms we allow for delocalisation over the triples of atoms, etc. It

is clear that the final result is not affected, only the convergence properties of the

many-body expansion are changed. As an additional advantage, we can calculate

individual terms of the expansion from (suitably modelled/embedded) finite clus-

ters of reasonable size. In the case of mercury, for example, we can force localisation

of the solid by using a s-type atomic basis set for describing the valence-electron
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system. This way, delocalisation due to sp-mixing is avoided, but still each atom has

its correct crystal surroundings concerning the electrostatic interaction. Due to the

metallic embedding scheme even the conduction bands are localised in the central

region. The incremental expansion has to take care subsequently of the non-additive

effects of correlation and delocalisation.

Here we want only briefly sketch the technical details necessary to apply the method

of increments to real systems. The first question is the selection of the pseudopo-

tentials, if necessary, and the basis set which is usually a set of contracted Gaussian

functions centred at the atoms involved in the system. Because we want to use

standard correlation methods as implemented in quantum chemical programs we

have to calculate the correlation energy increments in finite fragments of the solid.

Therefore we generate a proper embedding, so that the localised orbitals in the

cluster are very simular to the one in the solid. The localisation procedure is mostly

according to Foster and Boys.52 An schematic overview of the procedure is given in

Fig.3.

3. Application to solid mercury

The Hartree-Fock ground-state properties are calculated with CRYSTAL53 sup-

plying a 20-valence-electron pseudopotential54 for mercury and the corresponding

crystal-optimised basis set.30 The value for the cohesive energy is corrected for the

basis set superposition error55 by a counterpoise correction with the atomic en-

ergy calculated in the presence of basis sets placed at the positions of neighbouring

atoms in the solid (convergence required 12 nearest neighbours for Hg). As shown in

Fig.4,5 the HF treatment yields no binding for mercury, the cohesive energy at the

experimental structure is repulsive by about the same amount as the experimental

cohesive energy is binding.

For the correlation calculation we use an embedding scheme where the part of the

cluster which is not correlated is described with 2-valence-electron scalar relativistic

pseudopotentials56 which simulate the Hg 5s25p65d10 shells within the atomic core.

Thus, only the 6s shell is explicitly treated in the embedding region. The critical

part in the application of the method of increments to metals is the possibility of de-

scribing the metallic orbitals calculated in the embedding region in a local way. This

localization is done in our approach by a unitary transformation of the occupied

canonical orbitals according to the criterion of Foster and Boys.52 Good localisa-

tion characteristics are achieved by using an s-type atomic basis set (2s basis, with

contraction coefficients optimised for the free atom) on the embedding and thereby

avoiding delocalisation due to sp-mixing. Within this localised environment we can

use the full basis for the 1, 2, or 3 atoms that we are calculating the correlation

energy of, for the 1-, 2-, or 3-body increments, respectively. This approach allows

us to successively include metallic delocalisation in an incremental way.

The increments are calculated for selected cluster models which reflect the geom-

etry of the Hg crystal. The rhombohedral structure of the infinite crystal can be
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Fig. 4. The cohesive energy of Hg with respect to the nearest neighbour-distance a.
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Fig. 5. The cohesive energy of Hg with respect to the angle in the rhombohedral structure.

viewed as a central atom surrounded by atom shells of various size. We select for the

embedding the first shell containing 12 atoms, 6 of them at distance a(nn) (=3.005

Å) and 6 at 1.155 a(nn); For calculating a few-body term, we include all atoms

in the embedding which are in the first shell of one of the atoms to be correlated.

The description of the atoms to be correlated is much more important for the final

correlation energy, as we will keep frozen the localised orbitals of the atoms of the
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embedding region when calculating correlation energies.

The basis sets of the correlated atoms were described in Ref. 30. A

(10s9p7d2f1g)/[8s7p6d2f1g] set is used for the 20 valence electrons of mercury,

and an even tempered augmented version of the same basis to gain an impression of

the basis set completeness for these calculations. Using these basis sets, we recalcu-

late the integrals and reoptimise the orbitals of the atoms to be correlated, in a HF

calculation, within the frozen environment of the embedding. Thus we have reason-

ably delocalised orbitals within the interior of our cluster over the atoms i, j, .. to be

correlated, but localised orbitals with respect to the embedding. Then we calculate

the correlation energy of these atoms in a coupled-cluster calculation with single

and double excitations and perturbative treatment of the triples (CCSD(T)).50,51

We can do this with different definitions of the core in order to see the different

contributions of the valence 6s, 5d, and core 5sp electrons. All these calculations

are performed using the MOLPRO suite of ab-initio programs.49

The results for the lattice parameters, the cohesive energy and the bulk modulus

are summarised in Table 1. In order to discuss the dependence of the energy of

Table 1. Results for the structure and bulk modulus of solid mercury. a is in Å,
α in degrees, Ecoh in eV and B in Mbar. For the LDA value in the hcp structure,

a = a(nn) is given.

Method a α Ecoh B

Hartree-Fock — — +0.985 —

Incremental correlation (2b:aug. basis,s-only) — — +0.245 —
Incremental correlation (2b:aug. basis) 2.97 70.0 -0.375 0.132

Incremental correlation (3b:s-only) 2.97 69.2 -0.561 0.383
Incremental correlation (3b) 2.96 69.5 -0.649 0.360

Expt.45,57 3.005 70.53 -0.670 0.322

the lattice on its structure, we vary the lattice distance and angle of the struc-

ture around the experimental lattice parameters. The HF energy decreases with

increasing distance (see Fig. 4) as is normal for a purely repulsive potential. It also

decreases with increasing angle (see Fig. 5) which corresponds to an opening of the

structure and lowering of the density. The one-body terms of the correlation-energy

expansion are repulsive for mercury and have nearly no dependence on the lattice

parameter. The first term in the expansion to examine closely with respect to the

effect of the lattice parameter is therefore the two-body increment. Here the poten-

tial is actually very flat, and thus the minimum can be shifted noticeably by the

use of an augmented basis set, if we are only considering the two-body increments.

In Fig. 5 the angular dependence of the two-body part is shown to be even weaker.

Only with the augmented basis set does a shallow minimum appear. With the aug-

mented basis, we find a minimum with a = 2.97 Å, and α = 70.0o. If we include
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only the correlation of the valence s-electrons in the two-body increments we still

have no minimum. Only with the inclusion of d-correlation in the two-body part do

we find a bound solid. We have chosen to truncate the expansion of the three-body

correlation after 8 increments. We concentrate on these eight geometries because

they contribute about 80% to the 3-body part of the cohesive energy. These 8 clus-

ters all have 2 nearest or second-nearest-neighbour distances connecting the atoms.

Including the contributions of the three-body increments the rhombohedral lattice

structure is stabilised with only a very small shift to a smaller interatomic distance

and somewhat smaller angle. Overall the lattice parameter agree within 1.4% with

the experimental values.

The results for the cohesive energy are summarised in the third column of Table 1.

The HF part of the cohesive energy is repulsive, the 1-body correlation contribu-

tion to the cohesive energy is repulsive, too. The main contribution to the binding

comes from the 2-body increments, with about half of this originating from the

core-valence correlation of the d shell. Without correlating the d shell solid mercury

would not be bound. The 3-body contributions are attractive, both for the valence

as for the d shell, whereas the latter one contribute by about one third to the total

3-body contributions. The most important four-body contributions have been cal-

culated, they are small (≤ 0.08 eV) and repulsive. The spin-orbit contribution to

the binding and the zero-point energy can be neglected. In summary, the method of

increments allows us to determine the cohesive energy of solid mercury within the

same accuracy compared to the experimental value (error less than 15% within the

given finite basis set) as was achieved for semiconductors and insulators.

Our calculated values for the bulk modulus are given in Tab. 1. The bulk modulus

calculated with two-body increments only is 0.132 Mbar, considerably lower than

the experimental value. When only the s-correlation of the three-body increments

is included, the bulk modulus increases to a value of 0.383 Mbar. The final result

of the method of increments, with the inclusion of d-correlation for the three-body

increments, gives 0.360 Mbar in good agreement with experiment.

4. Conclusion

We have presented here the generalisation of the method of increments to metals.

Only the correlation part of the energy is treated by means of the incremental

scheme. To obtain localised orbitals, we start from embedded clusters without any

metallic character. Within the incremental scheme we allow for a delocalisation of

the orbitals and therefore account for the metallic character of the systems. With

this approach the convergence rate, especially with the order of increments, is not

as good as for insulators, but still three- and higher-body terms account for only

about 15% of the correlation contribution to the binding. For the first time we

could solve the puzzling problem of the binding in solid mercury, where the binding

is entirely due to electronic correlations. The lattice structure of solid mercury

has been calculated using the method of increments. With this wavefunction-based
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method, we can reproduce the lattice constant and rhombohedral angle to within

99% of the experimental values, and obtain a cohesive energy of -0.65 eV, 97% of

the experimental value, and a bulk modulus well within the experimental error bars.
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56. W. Küchle, M. Dolg, H. Stoll, and H. Preuss, Mol. Phys., 74 (1991) 1245.
57. H. B. Huntingdon, Solid State Phys., 7 (1958) 282.


