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Calibration of optical tweezers with positional detection in the back-focal-plane
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We explain and demonstrate a new method of force- and position-calibration for optical tweezers
with back-focal-plane photo detection. The method requires only a low level of instrumentation
and can be applied in situ in all spatial dimensions. Since it does not use the drag coefficient of
the trapped object as input, neither the viscosity, the size of the trapped object, nor its distance
to nearby surfaces need to be known. The method is both accurate and precise: true values are
returned, with small error-bars. We tested this experimentally, near and far from surfaces. Both
position- and force-calibration were accurate to within 3%. To calibrate, we moved the sample with
a piezo-electric translation stage, but the laser beam could be moved instead, e.g. by acousto-optic

deflectors.
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I. INTRODUCTION

Optical tweezers are dexterous instruments for grab-
bing and holding micron-sized objects in liquids. Optical
tweezers can also be used to measure and exert forces.
In order to use optical tweezers as a quantitative instru-
ment for position and force measurements, the detection
system must be calibrated. The position is calibrated
by comparing the detector response to a known displace-
ment. Likewise, the force on a trapped object is cali-
brated by exerting a known force on it. The two calibra-
tions are closely related, since a trapped object experi-
ences a Hookean force, ' = xx, for small displacements,
x, from the trap’s center. Thus, if the trap stiffness « is
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known, a known displacement produces a known force,
and a known force produces a known displacement. Two
known forces are often used for position-calibration via
this relationship: The thermal force causing Brownian
motion, and the drag force exerted by a constant flow of
known velocity.

Position detection schemes can be grouped into imag-
ing and non-imaging [1, and references therein]. For
imaging techniques, a known displacement is directly vi-
sualized. Calibration is performed by moving either the
position of the detector or the trap in a controlled man-
ner. In the case of non-imaging techniques, if trapping
and tracking is done with the same laser, this approach
does not work. A translation of the trap in the imaging
plane does not give rise to a signal on the detector in this
case. Only the position of the trapped object relative to
the trap center is detected. In such a system, and these
are the systems we are interested in here, the calibration



is limited by how accurately the trapped object can be
displaced relative to the laser by a known amount.

One method that creates such a relative displacement
consists of moving a micro-sphere (“bead”) fixed to the
surface through the laser beam while recording the re-
sponse of the detector. Although this movement is known
with high accuracy, the method has several drawbacks:
The bead used for the calibration cannot be used for fur-
ther experiments (it is immobilized on the surface). Also,
the calibration is done at zero bead-to-surface separation,
which is not necessarily where the actual experiment or
force calibration will take place. Finally, the exact loca-
tion of the bead relative to the trapping position is not
known. Two different lasers can be used for trapping
and detection to circumvent these problems [2]. This
approach is powerful, but technically demanding, as it
requires a moveable trap and careful alignment of the
two lasers.

For the reasons enumerated in the previous paragraph,
the preferred calibration methods are those that can be
done in situ, meaning on an individual bead located
where the experiment is to be done. For in situ calibra-
tion, the power-spectrum method is widely used: The
power spectrum of the trapped bead’s thermally driven
motion is fitted with a Lorentzian (or a more complicated
expression), which returns an amplitude and a character-
istic frequency with high precision [3]. From these, the
trap stiffness and position calibration factor can be calcu-
lated, provided that the drag coefficient is known. This
method, and all drag-force methods, suffer from the same
problem, however: The drag coefficient is very sensitive
to the viscosity of the surrounding liquid, the proximity
of nearby surfaces, and the radius of the bead. So often
the drag coefficient is not known precisely.

All in all, calibration of optical tweezers typically in-
volves three unknowns: The volt-to-meter calibration
factor 3, the trap stiffness x, and the drag coefficient
~v. At most two of these unknowns are determined by
any single method, so calibration is an under-determined
problem. To solve this problem, either one must make
assumptions about one of the unknowns, or an addi-
tional parameter must be measured in an independent
manner. Usually, the drag coefficient is calculated us-
ing Stokes’ formula 7siokes = 67 R, with significant cor-
rections when working close to surfaces [4]. The radius
of the bead R, the dynamic viscosity 1 of the liquid,
and the distance to nearby surfaces, all must be esti-
mated. Because the drag coefficient and the trap stiffness
both depend on the bead-to-surface distance, calibration
should be done where the experiment will be performed.
Even far from surfaces, the poly-dispersity of commer-
cially available micro-spheres and the strong temperature
dependence of the viscosity (= 2% per °C) introduce er-
rors. Furthermore, one has to rely on the specifications
given by the manufacturer about the mean diameter of
the micro-spheres. In a notable exception, the net optical
force acting on a trapped bead was calculated from the
total momentum transfer, found by collecting the light

scattered by the bead [5]. However, all scattered light
must be collected, making it impractical for most single-
beam laser tweezers.

In the present paper we present a method that allows
calibration of the position- and force-detection system for
individual micro-spheres at the position where the exper-
iment is performed. It combines the precision of power
spectral analysis for optical tweezers [3] with the accurate
position control of an optical trap relative to the liquid
environment. In the case of force calibration, the tem-
perature enters only on the absolute scale, suppressing
the influence of errors from temperature measurements
(= 0.3% per °C, at room temperature).

While we were adding the final touch to the present pa-
per, another paper appeared that calibrates the position-
detection system with a method that is different, but re-
lated in spirit [6]. We compare it to our method in the
Discussion section below.

II. MATERIALS AND METHODS

Measurements were done with two separate optical
tweezers systems. Both use the trapping laser for non-
imaging position detection in the back focal plane. One
system has a long working distance and was used to test
the method far from surfaces (30 pm): This experimental
setup is described in detail in [7] and briefly here. The
instrument is based on a custom built inverted micro-
scope with a Nikon, 60x, 1.2 NA, 0.2mm working dis-
tance, Plan-Apo, water immersion objective. The laser
is a 1064 nm, Nd:YAG (Spectra-Physics, Millennia IR).
Position detection is done with a position sensitive photo-
diode (UDT DLS-20). Flow-cells with a volume of 10 ul
(dimensions 8 x 20 x 0.06 mm?) were assembled by placing
one coverslip No. 0 on top of a microscope slide separated
by spacers of double-sticking tape. A dilute solution of
beads was flowed in, and the ends were sealed with nail
polish to avoid sample evaporation. The flow-cell was
mounted upside down on a Physik Instrumente piezo-
electric translation stage (P-527.2 C1).

The other system has a short working distance and was
used to test the method close to surfaces (0-3 pm): This
experimental setup is described in detail in [8]. Briefly, it
consists of a modified Zeiss Axiovert 135 TV microscope
equipped with a Zeiss, 100x, 1.3 NA, Plan-Neofluar, oil-
immersion objective. The laser is a 1064 nm, Nd:YVOy,
(Smart Laser Systems GmbH, Berlin, Germany). Posi-
tion detection is obtained with a standard quadrant pho-
todiode, QP50-6SD (Pacific Silicon Sensors Inc). Flow-
cells with a 3mm wide channel were assembled by plac-
ing one 18 mm? cover-slip No.1.5 on top of a 22mm?
cover-slip No. 1.5 separated by a layer of parafilm. The
parafilm was melted by placing the sample on a 100°C
hot-plate. Cooling then glued the cover-slips together.
A dilute solution of microspheres was flowed in, and the
ends were sealed with vacuum grease to avoid sample
evaporation. The flow-cell was mounted on a Physik In-



strumente piezoelectric translation stage (P-733.2 CL).
For measurements close to the surface, the cover-slips
were treated as described in [8] to reduce the influence of
surface potentials.

The following beads were used: Silica beads from
Bangs Laboratories (9025 Technology Drive, Fishers, IN
46038-2886, USA), catalog code SS04N, lot number 5303,
were 1.54 ym in diameter with a standard deviation of
10% (Coulter principle). Polystyrene microspheres from
Polysciences (Warrington, PA 18976, USA), catalogue
number 07307, lot number 50602, were 528 nm in di-
ameter with a 2% coefficient of variation. Transmission
electron microscopy (TEM) of the latter microspheres in-
dicated a standard deviation of 1.2%. The beads shrunk
during the TEM observation, but the shape of the size
distribution did not change (data not shown). Thus its
relative standard deviation could be measured.

III. THEORY

In the following we discuss the theory for a calibra-
tion procedure in which the flow-cell is moved a known
distance relative to the trapping laser by a piezo-electric
translation stage. If, instead, the trap is moved a known
distance relative to the flow-cell, the same formulae ap-
ply, provided the detector is placed in the back focal plane
of the condenser. For clarity of presentation we omit
frequency dependent corrections to the hydrodynamics.
However, the full hydrodynamic theory [3] was used in
the data analysis and is easily implemented.

A. Equation of motion

A microsphere suspended in water is trapped with op-
tical tweezers inside a flow-cell. The stage moves the
flow-cell sinusoidally relative to the optical trap with a
frequency farive and an amplitude A, see Fig. 1, while
the trap remains at rest in the laboratory system. The
position of the stage Tq4,ive as a function of time ¢ is

Tdrive(t) = ASIn(27 farivet) - 1)

The stage velocity vgrive(t) = Zarive(t) also corresponds
to the velocity of the water in the flow-cell far away from
the bead, since the water is at rest relative to the flow-
cell (see Appendix A). After dropping all inertial terms,
the equation of motion for a spherical bead in the trap is

V() = Varive ()] + w2 (t) = Fr(t) (2)

where z(t) is the position of the bead relative to the cen-
ter of the trap, v is the drag coefficient, and k is the
trap stiffness. The first term on the left-hand-side is the
drag force, which is proportional to the velocity of the
bead relative to that of the stage. The second term on
the left-hand-side is the trapping force. The right-hand

side is the random thermal force driving the Brownian
motion. It has the properties

Fr(t) = 29k T &(t) = 7V2D (1) (3)
with

(€)= 0; (E@BEF)) =a(t—t) (4)
where kT is the Boltzmann energy at absolute tem-

perature T, the diffusion coefficient D = kgT'/~, & is a
normalized white noise, and § is Dirac’s delta function.

B. Solution to the equation of motion

Since the equation of motion (2) is linear with two force
terms, Yvqgrive and Fr, its general solution can be written
as a sum of two terms, one for each force,

x(t) = xresponse(t) + -Z‘T(t) , (5)
after transient initial behavior has died out. Here,

_ Tdrive (t - tlag)
xresponse(t) = i (fc/fdrivc)2 ) (6)

zr(t) = V2D / t At'e=2 = ety (1)

where tine = [arctan(farive/fe) — 7/2]/(27 farive) and
fe = k/(2my). Figure 1b shows an example of an ex-
perimentally determined trajectory x(t) of a bead in a
trap, as described in Eq. (5). In this case, the stochastic
thermal motion dominates and almost hides the driven,
deterministic component of the motion.

In principle, we now could calibrate by fitting
Tresponse (t) in Eq. (6) to data like those shown in Fig. 1b.
However, this is not a reliable procedure [9]. Instead,
we Fourier transform theory and data to the frequency
domain where parameters are determined with optimal
precision because the theory is simpler there.

C. Power spectrum

From Egs. (5-7) it follows that the Fourier transform
of z(t) is
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FIG. 1: Position of the piezo-stage (a) and the trapped
bead (b) when moving the stage sinusoidally with frequency
farive = 32Hz and amplitude A = 150 nm in the z-direction.
(a): Left, time series of stage position. Right, histogram of the
z-data. The sinusoidal movement results in two clear max-
ima. (b): Left, time series of the bead’s z-positions in volts,
as given by the signal from the photodiode. The amplitude
of the sinusoidal response is much smaller than the amplitude
of the thermal motion. Consequently the sinusoidal shape is
masked by the Brownian motion of the bead, and completely
disappears in the histogram of visited positions.

Consequently, the expectation value for the one-sided
(f > 0) power spectral density (PSD) of the bead po-
sitions is

5 2
P(f) = M :PT(f)+Presponse(f)
(9)
D %fgrive‘A2

+

5(f - fdrive)
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tmsr—00 T (f +fC) f +fC

where tys is the measurement time and () denotes an
average with respect to the thermal noise é . This PSD
consists of the familiar Lorentzian (first term, Pr), plus
a delta-function spike (second term, Presponse) at the fre-
quency with which the stage is driven. The Lorentzian
comes from the Brownian motion of a bead in a parabolic
potential and is hereafter referred to as the “thermal
background”. The power in this spike is known a pri-
ori in (meters)?, hence is a “scale-bar” in the experimen-
tal power spectrum measured in (volts)?. Specifically,
Eq. (9) contains three parameters for us to determine
from an experimental power spectrum: f., D, and A.
This is one more parameter, A, than one has in a fit to
the power spectrum of Brownian motion alone. Thus,
the number of fitted parameters now equals the number
of unknowns, and calibration is done without assump-
tions about 7.

10 10 10° 10° 10*
Frequency (Hz)

FIG. 2: Power spectrum of a 528 nm diameter polystyrene
bead held in the laser trap with a corner-frequency f. =
2065 £+ 5 Hz. The sample moves sinusoidally with amplitude
A = 150nm and frequency farive = 32 Hz. The power spec-
trum shown is the average of 100 independent power spec-
tra. It consists of a thermal background caused by Brownian
motion, plus a spike at farive. The sampling frequency was
fsample = 65536 Hz, the measurement time for each spectrum
tmsr = 1s, and the temperature 24.4° C. For clear illustration,
the measurement time used here is eight times longer than the
one we typically use for calibration.

D. Positional calibration

The power in the peak in (meters)? follows from
Eq. (9),

fNyq lA2
Win = / Presponse(f) df = 1+ 2 (10)
0

Thus, the desired calibration factor for distances is

8= V Wth/Wexa [/B] = rn/V ’ (11)

where Wy is the experimentally determined power in the
peak, measured in (volts)?.

E. Force calibration

The trap’s force on a bead is kx. With the position
detection system calibrated, the displacement x is mea-
sured in meters. To determine the trap stiffness s, we use
that k = 2wkgT f./D where f. and D are determined by
fitting the first term in Eq. (9) to the thermal background
in the experimental PSD. The local temperature T of the
liquid can typically be determined with sufficient accu-
racy by direct measurement in or near the flow-cell: T
is the absolute temperature, so an absolute error of 1 K
results in a relative error of only 0.3%.



IV. HOW TO CALIBRATE

Three steps are necessary for calibration: (1) Deter-
mination of the total power in the spike; (2) Fitting of
the thermal background; (3) Subtraction of the thermal
background from the total power in the spike.

1. Power in the spike

The power in the spike, in (volts)?s, can be determined
from the PSD: In an experiment, the measurement time
tmsr 18 fixed, so the spike (scale-bar) is no longer a delta-
function. The height of the spike is now finite, and di-
rectly proportional to tpe. Its width is also finite in
general, due to leakage [10] [11, Fig. 5]. However, if cal-
ibration data are taken for a time ¢, that is an inte-
ger multiple of the period of the stage movement, then
farive 1S an integer multiple of the frequency resolution
Af = 1/tmsr, and the spike consequently consists of a
single datum [10].

Obviously, tms can also be trimmed to an integer mul-
tiple of the period of the stage after calibration data
have been taken. However, fast Fourier transformation
requires the number of points in a time series to be a
power of 2. So trimming may mean discarding up to half
of ones data.

2.  Fitting the PSD away from the spike

Depending on the precision desired, two approaches
are possible. If precision is not a major concern, the PSD
away from the spike can be fitted with a Lorentzian [12],
i.e., with the expression given by Pr in Eq. (9). When
precision is required, a more complete theory must be
used. This theory should include the frequency depen-
dence of the drag coefficient, treat the photo-diode as a
low-pass filter, account for aliasing, and model the elec-
tronic filters used during the data acquisition [3]. Both
methods will return two fit parameters, the corner fre-
quency, f., in Hz and the diffusion coefficient, Dy, in
(volts)?/s.

3. Subtracting the thermal background

If the spike is several orders of magnitude above the
thermal background, as in Fig. 2, the thermal back-
ground can be ignored. If not, the thermal background
must be subtracted from the total power in the spike
to find the contribution from the forced motion, given by
Presponse in Eq. (9). The value of the thermal background
can be found by fitting the PSD away from the spike and
then extrapolating this fit to the position of the spike.

Then, the power in the spike is

Wo = (Pelfin) = gy ) A (12

7r2(f§rive + fg)

where Py (farive) is the experimentally determined value
of the PSD at fqrive measured in (volts)?s. The second
term on the right-hand-side is the PSD of the thermal
background at fqrive-

A. Determining the calibration factor

When the spike consists of a single datum, the power
in the spike can be found by multiplying the value of the
PSD at farive by Af. In this case we have

Afdrive )
fc 2PV(fdrive)Af

This approximation is better than 1%, provided
fe/farive > 10, and the spike is two or more orders of
magnitude above the thermal background. When the
last two conditions are not satisfied

Afdrivc
\/2 {PV(fdrive)[fgrive + fc2] - DV/WQ} Af
Once the calibration parameter has been determined for

the trapped object, the experimentally determined drag
coefficient

p~ (13)

8=

(14)

kT
x = 15
’Ye ﬁ2DV ( )
and trap stiffness
Rex = 27ch'7ex (16)

can be calculated directly from the fit parameters f. and
Dy.

V. EXPERIMENTAL RESULTS

The key advantage of the calibration method presented
here is that it does not depend on an assumed value for
the bead’s drag coefficient. On the contrary, that value
results from the calibration by virtue of Einstein’s rela-
tion

D = kgT/y (17)

if the temperature is known. In order to test the accuracy
and advantage of our calibration method, we now com-
pare our experimentally determined value for the drag
coefficient with the value we would have been forced to
assume, had we used another calibration method.

We determined the drag coefficient both far from and
close to surfaces. Fitting of the PSD of the thermal back-
ground was done with as high a precision as possible us-
ing either published Matlab routines [13, 14] or custom



written software in LabView [8]. These fitting routines
take into account hydrodynamics corrections, aliasing,
parasitic filtering in the photo diode, and electronic fil-
ters in the data acquisition [3].

A. Measurements in bulk

First we measured the drag coefficient far from sur-
faces, where 7.« can be compared directly to Stokes’s
formula. Beads were trapped near the bottom of the
flow-chamber (silica beads are heavier than water) and
brought to the middle of the flow-cell, 30 um from the
bottom and the top, to minimize the effect of nearby
surfaces. The xz-axis—the direction of motion—was cho-
sen perpendicular to the long axis of the flow-cell and
to the direction of the incoming laser light. The exper-
imental parameters were: A = 208nm, fqrive = 28 Hz,
fsample = 20kHz, t = 13s, 2R = 1.54 ym, T = 23.0
°C, and f. =584 £+ 10 (mean + SE, n = 21).

Figure 3 illustrates the effect of choosing a value of
farive that does not match t.,5: The spike at fqrive is
broadened due to the leakage of power to neighboring
frequencies. The figure also illustrates the effects of win-
dowing: Leakage of power to neighboring frequencies is
suppressed and the power in the peak is distributed to a
few frequencies near fgve. Thus, the power in the peak
was found by summing the five data points closest to
farive after subtraction of the thermal background. The
conversion factor was found using Eq. (11) after calcula-
tion of Wy, from Eq. (10).

The measured value for 7., was (1.36 £ 0.02) x
108 kg/s (mean + standard error (SE), n = 21), i.e.,
the measured drag coefficient showed a standard devi-
ation of 5.4%, which agrees with the 10% variation in
bead diameter listed by Bangs because of our limited
sample size. The expected value for the drag coefficient
iS Ystokes = (1.35 +0.14) x 10~%kg/s (mean + standard
deviation (SD)) where the error is propagated from the
combined uncertainty about the viscosity and the vari-
ation in bead diameter given by the producer. These
results suggest that the method is both accurate and pre-
cise, even when choosing non-ideal parameters for driving
and sampling.

B. Measurements near surfaces

In practice, experiments are often done close to a sur-
face, such as a cover slip. Working close to a surface—
in our case < 3 um—complicates standard calibration
techniques especially if a high numerical aperture oil-
immersion objective is used. Aberrations arising from
a refractive index mismatch at the glass-water interface
cause a linear decrease in stiffness away from the surface
and a focal shift [15-17].
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FIG. 3: Power spectrum of a 1.54 pm diameter silica bead held
in the laser trap with a corner-frequency f. = 600 £+ 13 Hz.
The sample moves sinusoidally with amplitude A = 208 nm
and frequency farive = 28 Hz. The power spectrum shown is
the average of 32 independent power spectra. It consists of a
thermal background caused by Brownian motion, plus a spike
at farive. The sampling frequency was fsample = 20 kHz, the
measurement time for each spectrum tns, = 0.41s, and the
temperature 23.0 °C. The grey line shows the PSD when rect-
angular windows are used with a broadening of the spike at
farive caused by the leakage of power to neighboring frequen-
cies. The black line shows the PSD when Hann windows are
used. The use of Hann windows suppresses leakage of power
to neighboring frequencies.

1. Acquisition and fitting

The experimental parameters were: A = 150nm,
fdrive = 32 HZv fsample = 65536 sz tsr = 1/8 S, 2R =
528 um, and T = 24.4°C. Power spectra that resulted
from averaging 100 experimental spectra were fitted with
a custom-written least-squares fitting routine (Labview,
NI). Each datum was weighted by its theoretical error
bar [3]. The fit was done from 8 Hz to 25 kHz omitting
the single datum at the stage frequency fqyrive = 32 Hz.

For every trapped bead the calibration factor, the drag
coefficient, and the trap stiffness were found at each of
50 distances to the surface. The exact surface position
was obtained from a fit of the drag coefficient to Faxén’s
law taking the focal shift into account. Thus, the quoted
values for 7. are the measured values extrapolated to
bulk, corresponding to vstokes- More details for the above
procedure can be found in [8].

2. Temperature

To compare our experimentally determined value for
the drag coefficient with the theoretically expected value,
we need to know the temperature of the liquid. We mea-
sured this temperature with a small thermocouple intro-
duced into the flow cell, while simultaneously recording



the temperature of the imaging and condenser objective,
and the room temperature. The temperatures of the two
objectives differed by 0.5°C. The temperature inside the
flow cell was intermediate between these and was mea-
sured to within 0.2°C. We estimated an upper limit of
0.5°C for the temperature increase due to laser heating
[18]. Thus, the propagated error on veyx from uncertainty
about the temperature is less than 0.2% as seen from
Eq. (15).

3. Drag coefficient

Figure 4a shows the experimentally determined values
for the drag coefficient, ey, measured in units of the theo-
retically expected drag coefficient, ystokes, for 24 individ-
ual beads. The error-bars on the individual data-points
are the propagated errors from the fit to Faxén’s law and
the uncertainty in the temperature, with a root-mean-
square value of 0.5%. This high precision results from
the long measurement time and the 50 determinations of
~ for each bead. Any systematic error e.g. an undetected
error in the specifications of the piezo-stage will offset
the mean value of 7. but will not change the position
of the data-points relative to each other. In other words,
systematic errors directly influence the accuracy of the
method, but do not influence the precision. We check
the accuracy by comparing to Ystokes including its esti-
mated errors. The shaded area shows the 2.3% error on
Ystokes from the propagated uncertainty on the viscosity
(temperature) and the bead radius.

The measured value for 7ex in units of Ystokes Was
1.005 £ 0.003 (mean + SE, n = 24). As seen in Fig. 4a,
the experimental value for an individual bead may devi-
ate several percent from the theoretically expected value
Ystokes €ven if the average value does not. Thus, if Ysiokes
is used for calibration, stochastic errors of several percent
is expected due to the poly-dispersity of bead radii.

We were able to measure the poly-dispersity of the
bead population because the precision of our calibration
method (error-bar on single-bead datum) was smaller
than this poly-dispersity. The standard deviation of the
bead-population’s various 7ex-values was 1.5%, which is
comparable to the 2% coefficient of variation for the bead
diameter listed by the producer, and measured indepen-
dently by us using TEM to 1.2%.

4.  Trap stiffness

The experimentally determined trap stiffnesses are
plotted in Fig. 4b. During the experiment the laser inten-
sity and the temperature were kept constant and the trap
stiffness was measured to be (5.16 £ 0.09) x 1072 pN/nm
(mean + SD, n = 24). The observed 1.7% variation
from bead to bead is slightly larger than the variation in
the drag-coefficient. It reflects, in addition to the poly-
dispersity of the bead radii, stochastic variations in the

corner frequency and differences in material properties
from bead to bead, e.g. in the density of polystyrene.
However, since the trapping strength depends on the di-
ameter of the bead, we expect Keyx to correlate with 7ey.
A one-sided t-test gives a 99% probability (¢ = 2.46) that
there is a positive linear correlation.
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FIG. 4: Results from the calibration of 24 individual beads
trapped close to a surface. Error-bars are the propagated
errors from the fitting routines used, see text and [8] for de-
tails. Lines show the mean + SD. (a): Measured drag coeffi-
cients Eq. (15), extrapolated to their bulk values according to
Faxén’s law, in units of the theoretically expected drag coeffi-
cient in bulk. The accuracy of the method is reflected by the
agreement of the two values Yex/Ystokes = 1.005+0.003 (mean
+ SE). The shaded region shows the estimated 2.3% uncer-
tainty on ystokes- (b): Measured trap stiffnesses Eq. (16). Ad-
ditional variation compared to the drag coefficient is caused
by variation in material properties of the individual bead as
well as stochastic errors on the fit parameter f..

VI. DISCUSSION

Several popular calibration methods rely directly on
an estimate for the drag coefficient. Since this parameter
depends algebraically on the height of the bead above the
surface, according to Faxén’s law, a common approach is
to perform the calibration far enough from the surface
that only a correction of 5-10% has to be applied, given
by the first term in Faxén’s law. If the actual experiment
is performed near the surface and an oil-immersion ob-
jective is used, this is an error-prone approach because
the trap stiffness decreases rapidly with distance from the
surface—10 um from the surface, the stiffness is typically
reduced by more than a factor of two for beads with a
diameter of ~ 500nm [8, 16, 17]. Thus, one detrimental
effect is swapped for another, and calibration errors can



be large.

The calibration method presented here has some re-
semblance to a method used in [19]. There, a bead em-
bedded in a gel was driven sinusoidally through the de-
tection laser and the resulting spike in the PSD was used
to estimate the sensitivity of the detection system. How-
ever, that method was not in situ since the bead used for
the calibration could not be used for later experiments.
The main strength of the calibration method presented
here is that it is independent of estimates regarding the
drag coefficient and that it can be performed on the lo-
cation of the experiment.

This strength is also achieved in [6], which uses a cal-
ibrated acousto-optic deflector (AOD) to move the trap
relative to the sample. This is done with a triangular-
wave movement in short bursts lasting only 1% of the
measurement time, to avoid losing the bead. It might
be simpler, both experimentally and for the data anal-
ysis, to move the trap as we move our stage, and use
power-spectrum analysis. Continuous movement of the
trap requires ten times less amplitude to give unchanged
signal power in Eq. (9) above for the same time of mea-
surement. This reduces the risk of losing the trapped
bead. Sinusoidal movement replaces [6, Fig. 4] with our
spike (“scale-bar”) in the power-spectrum, and any non-
linearity stands out as spikes at integer multiples of fqyive-
Also, the bead’s co-movement with the trap is accounted
for by the denominators in, e.g., our Egs. (6) and (10),
so it causes no calibration error. The second term in
these denominators gives the relative importance of this
co-movement.

Finally, the method of [6] requires the calibration of the
AOD. For comparison, we get a known distance with one
per mil accuracy from a factory-calibrated translation
stage.

A. Experimental issues

We considered the following issues in the implementa-
tion of our calibration method using a stage.

1. Stage response:

Piezo stages have a finite response time, but this is not
a problem here, since we drive with a sinusoidal signal.
This is the signal form that another periodic signal de-
generates to if the period is shorter than the response
time. Also, any deviation from the chosen signal shows
up in the experimental power spectrum as distinct, iso-
lated higher modes at frequencies that are integer multi-
ples of the driving frequency. So the quality of the stage
response to the driving signal is under easy and strict
experimental control, because a simple sinusoidal drive
is used.

Mechanical resonances of the experimental setup can
be exited. Our setups have resonance frequencies starting

at approximately 400 Hz. The excitation of a resonance
will give rise to additional power in the PSD at the res-
onance frequency, hence is under experimental control.

Mechanical crosstalk between axes occurs, as seen in
Fig. 1. However, as the equations of motion are linear,
this does not influence the calibration.

Finally, the stage position was measured as a voltage
drop over built-in capacitors and converted to meters us-
ing the conversion factor 1mV = 10 nm with a precision
better than 0.1% according to the piezo-stage data sheet.

2. Photodiode response

Photodiodes may act as filters, but the effect is well
understood and can be accounted for [3, 11, 20]. De-
pending on the type of diode used (quadrant or position
sensitive), the linearity of the response to bead displace-
ments may also vary. The region of linearity is easily
found by moving a stuck bead through the laser focus.
The photodiode must be aligned with the piezo-stage,
but this is easily tested by looking at the PSD of the
bead positions in response to driving the stage along one
of its axes.

3. Crosstalk

Crosstalk between the axial (z) and the lateral (z and
y) channels from a quadrant-photodiode may lead to un-
derestimates of f. of up to 10%. This crosstalk shows up
as additional power in the x,y-channels for frequencies
below the z-corner-frequency: The PSD for the x and y
channels will gain a “shoulder” in their plateau region.
A likely source of the crosstalk is differences in ampli-
fication of the signals from the diode’s four quadrants.
By repositioning the diode relative to the laser so that
a small offset from the center position (i.e. zero volts in
x and y) is introduced, the crosstalk can be eliminated
3, §].

4. Laser heating of the liquid

The laser heats up the liquid locally, resulting in a
decrease in viscosity. We looked for this effect by varying
the laser intensity, but did not find any such effect when
working close to surfaces. This result is to be expected
because the glass cover-slip acts as a heat-sink [18].

5. Hydrodynamic response of the sample

The calibration method presented here relies on the
liquid co-moving with the stage. In Appendix A we
calculate the response of the liquid to the oscillatory
movement, of the stage. Close to the surface, the no-
slip boundary condition entrains the liquid. Further



into the sample, the degree of entrainment depends on
the height of the sample d and the drive frequency. If
AT farive < V & 1 um2/us, where v is the kinematic vis-
cosity, the liquid co-moves in the entire flow-cell.

6. Shape of the trapped object

The only demand on the trapped object is that it does
not rotate upon forced movement, in a manner that gives
rise to a response in the detection system. This condi-
tion is fulfilled when the particle is either spherical, or
asymmetric but strongly trapped. Due to the height de-
pendence of the drag coefficient, even a spherical bead
will rotate when translated close to a surface. But this
rotation does not give rise to a signal from the photodiode
because the bead is spherical and only displacements are
detected. If the trapped object is elongated and weakly
trapped, it may wobble in the trap in response to the
oscillating liquid, and give rise to detection of false move-
ment by the photodiode. Commercial micro-spheres are
typically highly spherical, as are many small biological
object, such as lipid droplets or micelles.

7. Shape of the trapping potential

Throughout this paper we assumed a parabolic trap-
ping potential, but the method is not limited by this
assumption. By choosing large drive amplitudes A, it
is possible to map the shape of the potential and cali-
brate it. This is done by analyzing the higher modes of
the bead’s motion, that arise in response to a sinusoidal
drive in a nonlinear trapping force-field.

VII. CONCLUSIONS AND OUTLOOK
A. Recommended approach

We suggest the following steps in experiments using a
piezo-electric translation stage:

1. Trap the object of interest at the position of inter-
est.

2. Drive the stage at fqrive = 16 or 32 Hz.

3. Collect position data from the photo detection sys-
tem and the piezo-stage, with fayive/Af = an inte-
ger (to avoid leakage).

4. Determine A and fqrive from the PSD of the piezo-
stage positions (or use previously calibrated val-
ues).

5. Determine Dy and f. from a fit to the PSD of the
bead-positions.

6. Determine the value of the spike in the PSD at
farive and calculate 8 and kex using Eqgs. (13-16).

In point 2 the suggested values for fqive are powers
of two for ease of calculation of the appropriate tys and
fsample- They are also well below the resonance frequency
of most systems, and low enough to ensure that the liquid
co-moves with the stage, see Appendix A.

B. Imaging and non-imaging positional detection

Here we demonstrated our method, using positional
detection in the non-imaging back-focal-plane of the con-
denser. Position detection in the image plane should also
work, if the laser-trap remains stationary in the labora-
tory coordinate system, while the flow cell is driven.

Another approach moves the trapping laser relative to
the flow-cell, e.g. using acousto-optic deflectors, galvano-
mirrors, or some other beam-steering apparatus [1]. This
approach works, if back-focal-plane detection is used: A
pure translation of the laser in the image-plane produces
no signal in the back-focal-plane, only a motion of the
trapped object relative to the laser is detected. An ad-
vantage of this approach is that open samples can be
used, because the sample is not moving. Furthermore,
if the trap is driven with fayive/fc > 10 and the spike
is two or more orders of magnitude above the thermal
background Eq. (14) reduces to

B~ A . (18)
2Py (farive) Af

However, at high frequencies extra care has to be
taken that the response of the photo-detection system
is well characterized. Parasitic filtering and frequency-
dependent hydrodynamics both remove power from the
PSD at high frequencies—but only parasitic filtering af-
fects (.

C. Atomic force microscopy

The method presented here should in principle also
be applicable to the calibration of atomic force micro-
scope (AFM) cantilevers in a liquid environment. The
equations used to describe the motion of an AFM can-
tilever differ from our Eq. (2) by the inertial mass term,
which cannot be neglected for a cantilever. In addi-
tion, the following problem must be surmounted before
one can use our method for AFM: An expression for
the frequency-dependent drag-coefficient of the cantilever
must be known. Currently no useful analytical expres-
sions exist, to the best of our knowledge.

D. In situ measurements

The method presented here can be implemented
strictly in situ. Therefore, it should be applicable in situ-



ations that have so far eluded accurate measurements of
positions and forces, e.g. when trapping spherical struc-
tures of unknown refractive index and size in the inte-
rior of cells. Or when measuring forces and viscosities
inside micron-sized channels, i.e., the method described
here could favorably be combined with microfluidic, lab-
on-a-chip devices. Generally, position and force calibra-
tion should be possible in an arbitrary geometry because
we do not need to know the corrections to the drag-
coefficient due to the proximity of surfaces.
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APPENDIX A: HYDRODYNAMICS

Sometimes it is desirable to work with a flow-cell with
open ends, e.g. to facilitate the exchange of buffer solu-
tion. When the ends are open, the liquid between the
two cover-slips will generally not move with the same
amplitude or phase as the flow-cell.

To calibrate we need to know the amplitude of the
liquid’s motion. We cannot measure this amplitude with
an uncalibrated system, but we can calculate it. What we
can measure is the phase of the liquid’s motion, through
the motion of the trapped bead, relative to the phase of
the stage’s motion. This measured phase-shift can then
be compared to the phase-shift calculated below. Thus,
the theory developed here is not used blindly. It is under
experimental control.

We consider a liquid contained between two infinite,
parallel planes, see Fig. 5. The planes are moved identi-
cally, parallel to themselves, in a simple sinusoidal fash-
ion. In an experiment two sides of the flow-cell are sealed,
increasing the drag force on the liquid: When oscillating
a half-plan parallel to its edge there are additional fric-
tion forces because of the edge. In addition, the surface-
tension at the openings will also force the liquid to move
with the flow-cell. So, what we treat below is a worst-
case scenario because it does not take these additional
forces into account.

The velocity of the oscillating planes (the cover-slips)
is zero in the y and z direction, and

Vdrive = WA cos(wt) (A1)
in the z-direction, where w = 27 fqrive. The only forces
on the liquid are the shear forces arising from the no-slip
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FIG. 5: Schematic drawing of the flow-cell seen from the
side. The liquid is contained between the two glass cover-
slips (shown in grey) at positions z =0 and z = d.

boundary condition between the liquid and the acceler-
ated planes. The liquid moves with the accelerated planes
with a time-lag determined by the balance between the
inertia of the liquid and the shear forces inside the lig-
uid. Thus, we see that the velocity of the liquid can be
written as (z,y, 2,t) = (u(z,1),0,0).

The equation of motion for the liquid is obtained
from the linearized Navier-Stokes equations with con-
stant pressure (see [21]):

ou 0%u

—(z,t) = V@(z,t) , (A2)

where v is the kinematic viscosity of the liquid. The

relevant solution to this equation can be written
u(z,t) = a(z)cos(wt) + b(z) sin(wt)

= Aliquia(2) cos(w(t — tphase(2)))

where Ajiquia = VvaZ + 52 and Wtphase = arctan(b/a).

The coefficients a and b can be found by substituting
Eq. (A3) into Eq. (A2):

(A3)
(A4)

(A5)

v v
a=——b" and b= —a" ,
w w

from which we find

2
w
"
=~ (2)a,
14

where indicates differentiation with respect to =z.

The solution to Eq. (A6) is a linear combination of

exp(i\%i V/2z) whose four coefficients are determined

(A6)

/

by the symmetry requirement a(z) = a(d — z), and the
boundary conditions a(0) = wA and a”’(0) = 0:

a(z) = o cos(z_<d/2)cosh(z_<d/2)
+ e sin(zgd/2)sinh(2d/2) (A7)
where
e x= T co BT
6 = wA Sln(2i)si§h(%) (49)



and

(=V2w/w

is the depth of penetration of the shear-wave into the
fluid. The expression for b follows from Eq. (A5) and
is identical to Eq. (A7) except for ¢; and ¢y swapping
places. When d > ( the shear-wave’s amplitude de-
creases exponentially as a function of z. When d < (
the liquid co-moves with the planes as a solid body.

With the parameters used in the experiment far from
surfaces, described in Sec. V, i.e.; fqrive = 28 Hz, the pen-
etration depth ¢ = 107 pm is larger than the thickness of
the flow-cell d ~ 60 pm. With these parameters, the am-
plitude of the liquid’s motion differ at most 0.25% from
the amplitude of the stage’s motion, see Fig. 6. This
result is independent of the amplitude A but is quite
sensitive to d and fayive. Thus, if working away from the
surface it is important to choose fqrive SO that it matches
the thickness of the cell, i.e., so that d/{ < 1.

(A10)
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FIG. 6: Hydrodynamic prediction of the response of the lig-
uid to the motion of the cover-slips. Abscissa: height above
cover-slip z. Ordinate: Amplitude of liquid motion Aiiquia(2),
Eq. (A4), in units of the amplitude of the oscillating planes

Astage = A. Parameters are the same as used in the ex-
periment far from surfaces ( farive = 28Hz, A = 208 nm,
T =23.0°C).

It is illustrative to calculate the velocity of the lig-
uid midway between the two planes, since this is where
the motion of the liquid differ the most from that of the
planes:

,t) = ¢ cos(wt) + co sin(wt) (A11)

= Aliquid(g) COS(W(t - tphase(d/Q))) (A12)

where now Aliquid(g) = /& + 3 and wiphase(d/2) =
arctan(cz/c1). When the cover-slips are close together
or the drive frequency is very low % < 1, and we have

u(£,t) = Varive(t), i.e., the fluid co-moves with the planes.
If the cover-slips are far apart or the drive-frequency is
high Eq. (A12) becomes:

u(g,t) = 2wAe™ % cos(wt —d/2¢), d > 2¢

; (A13)
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i.e., the amplitude decreases exponentially as d/¢ grows
and the motion of the liquid is phase-shifted relative to
the motion of the planes. These behaviors are illustrated
in Fig. 7. From this we see the importance of choosing a
drive-frequency small enough for the fluid to follow the
flow-cell in the region where the trap is to be calibrated.

1.0

o o o
» ) )
T

Fluid amplitude

o
o

0.0

0 1 2 3 4 5
dre

FIG. 7: Amplitude of liquid motion midway between cover-
slips. Abscissa: The distance between two planes d, measured
in units of the penetration depth ¢, Eq. (A10). Ordinate:
Amplitude of the liquid-oscillations midway between the two
planes Aiquia(2), Eq. (A12), measured in units of the ampli-
tude of the oscillating planes. Notice the plateau at unity for
small values of d/¢ where the fluid moves with the planes,
and the exponential decay to zero at larger values where the
liquid no longer follows the planes.

APPENDIX B: POWER SPECTRAL DENSITY
FOR FINITE MEASUREMENT TIME

In Section IIT we calculated the PSD for the beads’
motion, assuming infinite measurement time as well as
continuous sampling. In an experiment, the data are
collected for a finite time t,,5, and with a finite sampling
frequency fsample- In what follows we are going to assume
continuous sampling in time (fsample = 00 Hz). For the
finite, but continuous, time Fourier transform of Eq. (5)
we now have

tmsr/2
i,l];ect _ / dt eiQWfktx(t) ,
_tmsr/2

(B1)

and the expectation value for the one-sided (f;, > 0) PSD

becomes:

2<|‘%26Ct‘2> _ D+ (fdriveTkA)ztmsr
tansr w2 (fi + £2) ’

Pt = (B2)

where

.= L bln(ﬂ-(fk - fdrive)tmsr)
; 2 (fk - fdrivc)tmsr

; (B3)



gives the shape of the spike in the PSD. Here, f; =
k/tmsra k = 071a2a-~-aN/25 and N = tmsrfsample~
In Eq. (B3) we have ignored cross terms of the type
Sin(ﬂ-(fk - fdrive)tmsr) Sin(’n—(fk + fdrive)tmsr)a as they are
typically several orders of magnitude smaller than the
terms retained.

When the drive and sampling frequencies are chosen
such that fqrive = fx, for some k, the spike consists of a
single datum

T

Tk \/i 6fk s farive (B4)

and the PSD becomes

D + %fgriveAZt 5f f
msr s Jdrive
(1) i+ o

prect = (B5)

12

where 0y, 7. is Kronecker’s delta. This is the discrete
version of the expression given in Eq. (9). We also see
that the height of the spike depends linearly on the mea-
surement time t,,o,. When the measurement time is in-
creased the spike approaches Dirac’s delta function

tmsr 6fk7fdrive - J(f - fdrive); tmsr — 00 (BG)

and the expression in Eq. (9) is regained.
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