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The adsorption of a flexible polyelectrolyte in a salt solution onto an oppositely charged spherical
surface is investigated. An analytical solution is derived, which is valid for any sphere radius and
consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting
the Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities like the
critical radius and the critical surface charge density are provide. A comparison of our theoretical
results for the critical radius with Monte Carlo simulations yields excellent agreement.

The complexation of charged macroions by oppositely
charged polyelectrolytes is a fundamental process in bio-
logical systems and many technical applications. Partic-
ular examples are the complexation of histone proteins
by DNA in nucleosomal core particles [1, 2] as well as
complexes of polyelectrolytes with charged colloids and
micelles [3]. Industrial applications are as diverse as sta-
bilization of colloidal suspensions, water treatment and
paper making [4].

The understanding of the complexation between a
polyion and a macroion surface accompanied by screen-
ing effects due to counterions and salt posses a major the-
oretical challenge [5]. Despite significant efforts and pro-
gresses [5–11], the understanding of charged complexes is
still unsatisfactory and lacks behind that of neutral com-
plexes. Certain insight into the complexation process is
typically obtained by approximation schemes, e.g., vari-
ational calculations [6–9], which, however, may lead to
controversial results [12] and often apply only in limiting
situations such as pointlike particles [9] or large colloidal
radii [6].

The theoretical studies of the adsorption behavior of
polyelectrolytes onto spherical surfaces [7, 10, 11, 13, 14]
lead to the observation of a phase-transition-like behav-
ior, i.e., a bound polymer state appears at certain critical
conditions which depend, e.g., on the sphere radius and
screening of the Coulomb interaction. The variational
calculations of Muthukumar and his coworkers [6, 8] have
provided useful insight into this transition in the limit
of large sphere radii. Experiments on polyelectrolyte-
protein and -micelle complexes [15] and computer simu-
lations [14], however, typically yield dependencies of the
critical quantities on the Debye screening length which
deviate from the theoretical predictions. To understand
and interpret the experimental results correctly, an ana-
lytical solution of the adsorption problem valid for any
sphere radius is mandatory.

In this letter, we will present an exact solution for the
critical adsorption of a flexible polyelectrolyte onto an
oppositely charged spherical macroion. Expressions for
critical quantities are provided, which are valid for any
sphere radius. In particular, in the limit of zero macroion

curvature, the results for a planar surface are obtained.
In general, we find a significantly different dependence of
the critical surface charge density on the Debye screen-
ing length than theoretically predicted before, but our
predictions are consistent with experimental findings.

The weakly charged polyelectrolyte is described by a
continuous space curve with the linear charge density
ρ. The intramolecular Coulomb and excluded volume
interactions are not taken into account explicitly but
are rather adsorbed into the Kuhn segment of length l.
Expressions for its dependence on the Debye screening
length are provided in Ref. [6]. The oppositely charged
macroion is considered a spherical particle of radius a
with a homogeneous surface charge density σ. The dif-
ferential equation for the probability density G(r, r′;L)
(Greens function) of a flexible polymer of length L with
one end point located at r(0) = r

′ and the other end
point located at r(L) = r is given by
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G(r, r′;L) = δ(r − r
′)δ(L), (1)

with kB the Boltzmann constant and T the temperature
[16, 17]. V is the interaction energy per length of the
chain end with the sphere which we take as the Debye-
Hückel potential
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ǫ(1 + κa)

e−κ(r−a)

r
, (2)

where r is the radial distance from the sphere center and
κ is the inverse Debye screening length. Equation (1) has
to be solved with the boundary conditions G = 0 at the
surface and lim|r|→∞ G = 0.

To find a solution of Eq. (1) we use the bilinear ex-
pansion

G(r, r′;L) =
∑

n

ψ∗
n(r′)ψn(r)e−λnL (3)

in terms of the eigenfunctions ψn of the eigenvalue equa-
tion
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ψn(r) = λnψn(r) (4)
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with the corresponding eigenvalues λn. As is well known,
in the limit L/l ≫ 1 the Greens function is dominated
by the eigenfunction corresponding to the ground state.
Thus, we can restrict our considerations to the lowest
eigenvalue [16, 17].

Equation 4 corresponds to the Schrödinger equation of
a particle in a spherically symmetric potential. Hence,
the ground state eigenfunction (s-wave) is a function of
the radial coordinate only (ψ0(r) = ψ0(r)). But even for
the ground state, there is no analytical solution for G.

To obtain an analytical solution, we approximate the
Debye-Hückel potential by the Hulthén potential [18, 19]
in the following way

e−κ(r−a)

r
→

e−κ(r−a)(1 − e−κa)

a(1 − e−κr)
, (5)

i.e., the potentials are identical for r = a. Moreover,
the difference between the two expressions is small for
κa ≤ κr ≪ 1 as well as for κa ≫ 1, since in the latter
limit r in the denominator is slowly varying and can be
replaced by a and e−κr ≪ 1.

With the substitutions ψ0(r) = e−ξ0κr(1−e−κr)χ(r)/r
and x = 1− e−κr, Eq. (4) turns into the hypergeometric
differential equation

x(1 − x)
d2

dx2
χ(x) + (2 − x(3 + 2ξ0))

d

dx
χ(x)

−

(
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2

p

)

χ(x) = 0, (6)

for χ, where the eigenvalue λ0 is related to ξ0 via λ0 =
−lξ2

0κ2/6 and p = κ2ǫkBT l(1 + κa)/[12πa|σρ|(eκa − 1)].
The solution of Eq. (6) around the point x = 1 is given
by χ(x) = F (α, β;α+β − γ +1; 1−x) with F the Gauss
hypergeometric function and the abbreviations α = ξ0 +
1 −

√

ξ2
0 + 2/p, β = ξ0 + 1 +

√

ξ2
0 + 2/p, and γ = 2 [20].

The eigenvalue λ0 (or ξ0) is determined from the
boundary conditions. In general, the eigenvalues of Eq.
(4) can be positive and negative [16]. The positive eigen-
values correspond to free states (ξ0 ∈ |C, ψ0 is a periodic
function) and negative ones to bound states (ξ0 ∈ IR).
The transition between free and bound states appears for
λ0 = ξ0 = 0. Since F (α, β;α + β − γ + 1; 1− x) = 0 con-
verges for |1−x| < 1 and α+β−γ+1 is neither zero nor a
negative integer, the boundary condition for r → ∞ (i.e.,
x = 1) is satisfied. Hence, the eigenvalue ξ0 is determined
by the boundary condition F (α, β;α+β−γ+1; e−κa) = 0.
For ξ0 = 0, the dimensionless parameter p then assumes
a particular value pc for a given κa, which is determined
from the condition

F (1 −
√

2/pc, 1 +
√

2/pc; 1; e−κa) = 0. (7)

The numerically solution, presented in Fig. 1, displays a
monotonic decrease of pc with increasing κa. For small
κa, the critical values are well approximated by pc ≈

10-2

10-1

100

101

10-2 10-1 100

p
c

κa

FIG. 1: Critical values pc obtained from the boundary condi-
tion at the sphere surface. The dotted lines are the approxi-
mations pc ≈ 2− 4κa for κa ≪ 1 and pc = (8/j2

0)e−κa, where
j0 = 2.4048 . . ., for κa ≫ 1, respectively.

2−4κa. This dependence is consistent with the necessary
condition for the existence of zeros for F , namely p < 2
[21].

In the limit κa → ∞, the boundary con-
dition (7) can be expressed in terms of Leg-
endre functions of the first kind Pν and the
Bessel function of the first kind J0 according to
limκa→∞ F (αc, 2 − αc; 1; e−κa) = limκa→∞ P−αc

(1 −
2e−κa) = limκa→∞ J0(

√

8/pce
−κa/2) = 0, with αc =

1 −
√

2/pc [20]. The latter condition is identical to
the boundary condition for the adsorption of a polyelec-
trolyte onto a planar surface [16]. Thus, our approach
reproduces exactly the properties of the planar geometry
in the limit of vanishing sphere curvature. Denoting the
first positive root of J0 by j0, where j0 = 2.4048 . . ., we
obtain the approximation pc = (8/j2

0)e−κa for large κa.
Using the critical values pc, we can calculated other

critical quantities for the adsorption, like the critical tem-
perature [6], the critical colloid surface charge density
(σc), or the critical colloid radius ac. As pointed out in
Ref. [22], the critical surface charge density is the more
useful experimental quantity than the critical tempera-
ture, because a temperature change not only affects the
colloid polymer interaction but also affects the solvent
properties.

Figure 2 displays the critical charge density as a func-
tion of κ. For |σ| > |σc|, polyelectrolytes adsorb at
the spherical macroion. In the large curvature limit
(κa ≪ 1), we obtain the critical charge density

|σc| =
ǫkBT l

24πa2|ρ|
κ (8)

when we use pc = 2. Thus, the exact solution for the
Debye-Hückel potential predicts a linear dependence of
the critical colloid charge density on the inverse Debye
screening length for κa ≪ 1. This is different from the
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FIG. 2: Critical charge |σc| as function of the inverse Debye
screening length. The dotted lines are the analytical approx-
imations Eq. (8) for κa ≪ 1 and Eq. (9) for κa ≫ 1, respec-
tively. No adsorption is obtained in the area on the right of
the curve.

predicted dependence |σc| ∼ κ2 based on the variational
calculation of Ref. [6]. However, the variational calcula-
tion of Ref. [7] predicts the same dependence on κ, but
the numerical factors are rather different. The Kuhn seg-
ment length l of the polymer is independent of κ in this
limit, as shown in Ref. [17].

In the opposite limit of small curvature (κa ≫ 1), we
obtain from the pc = (8/j2

0)e−κa the critical charge den-
sity

|σc| =
j2
0ǫkBT l

96π|ρ|
κ3. (9)

This dependence on κ is identical to that found by the
variational calculation [6, 7]. Since the persistence length
now depends on κ – the calculation of Ref. [17] yields
l ∼ κ−4/5 – the critical charge density exhibits the overall
κ dependence |σc| ∼ κ−11/5 in agreement with Ref. [6].

The limit κa → ∞ corresponds to the limit of a planar
surface. Correspondingly, we obtain exactly the same
expression as that derived for such a geometry in Refs.
[16, 17]. But, these authors consider a planar surface
with surface charge densities on both sides of the plane.
The small curvature limit of our potential, however, cor-
responds to a charge density on one of the surfaces only.
This leads to a critical charge density which is a factor
two larger than that presented in Refs. [16, 17].

The complex formation of a polyelectrolyte with oppo-
sitely charged micelles and proteins has been extensively
studied by a number of techniques [15, 22, 23]. These
experiments confirm that the complexation occurs only
when the surface charge density exceeds a critical value
|σc|. This value typically grows with the reciprocal De-
bye screening length as |σc| ∼ κb with b = 1−1.4 [24–26].
Our results agree with the experimental findings when we
take the dependence lp ∼ κ−4/5 into account. Since κa is

on the order of unity for the experimental data, the σcs
are rather within the crossover regime than characteristic
for the limiting behavior at small or large κ.

Instead of the charge density σc, a critical sphere ra-
dius ac is often considered [6, 8, 14]. By introducing the
abbreviation κ̄ = [96π|σρ|/(j2

0ǫkBT l)]1/3 and using the
definition of p, we obtain the following equation for ac

pc(κac) (eκac − 1) −
8κ2

j2
0acκ̄3

(1 + κac) = 0. (10)

The solution of this equation yields a universal curve for
acκ̄ as a function of κ/κ̄.

The numerical solution of Eq. (10) is shown in Fig. 3
together with the analytical approximations

acκ̄ =

{ √

4κ/κ̄j2
0 κ ≪ κ̄

(κ/κ̄)
2
/(1 − (κ/κ̄)3) κ → κ̄

. (11)

No adsorption is obtained in the region located at the
right of the curve. At a fixed κ < κ̄, the entropy penalty
due to adsorption of the chain monomers decreases with
increases sphere radius. Beyond the critical radius the
energy gain exceeds the entropy loss and the polymer
adsorbs at the sphere surface. As is obvious from the
analytical expression, κ̄ is the maximum value of the in-
verse Debye screening length; no adsorption is obtained
for larger values neither for a sphere nor for a planar sur-
face. This is qualitatively consistent with the variational
calculations of Refs. [6, 8]. These calculations predict
the same dependence of the maximum value for κ on the
polymer and sphere parameters as our (exact) solution.
Quantitatively, however, the value of the variational cal-
culation is smaller by the factor 8/j2

0 . In addition, the
shape of the critical curve is rather different as shown in
Fig. 3.

In Ref. [14], the critical radius has been determined
by Monte Carlo simulations. By adjusting the κ values
of these data such that the singularity appears at unity,
we find that the functional dependence of the simulation
data is very similar to that predicted by our calculations.
Multiplying the simulation data by a proportionality fac-
tor, we achieve a remarkable good agreement with our
universal ac curve. Hence, the difference between the
simulation data and the results of the variational cal-
culations of the Muthukumar model is not due to the
ground state dominance approximation as speculated in
Ref. [14]. It is rather a consequence of the limited appli-
cability of the variational ansatz.

An important issue of polyelectrolyte adsorption is
overcharging of a spherical object. Several theoretical
models predict such an effect [27–29] and it has been ob-
served experimentally in complexation of polyelectrolytes
with globular proteins of inhomogeneous charge patterns
[25]. Our considerations apply to the adsorption transi-
tion only and no overcharging can be predicted because
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FIG. 3: Critical radius ac as a function of the Debye screening
length according to Eq. (10). The dotted lines are the approx-
imations of Eq. (11). The dashed line represents the critical
radius according to the variational calculations of Refs. [6, 8].
The symbols are Monte Carlo simulation results taken from
Ref. [14]. To match the scales of our model, the κ values of
Ref. [14] are multiplied by 4.06 and the values for the critical
radii are divided by 16.

there is a critical charge density below which no adsorp-
tion occurs. The overcharging phenomena requires fur-
ther investigations.

In the present model the regime of weak polyelectrolyte
adsorption onto a sphere is considered. In the opposite
limit of strong adsorption, the adsorbed polyelectrolytes
self-organize in well-defined patterns on the sphere sur-
face [13]. Here, the chain entropy becomes less impor-
tant; the pattern is rather governed by maximization
of polyelectrolyte-sphere attraction and minimization of
polyelectrolyte-polyelectrolyte repulsion. Within a sim-
ple model, the solution of the linear Poisson-Boltzmann
equation for such charge patterns predicts that neutral
and undercharged complexes are favored [29, 30].

In summary, we have derived critical values for the
adsorption of a weakly charged flexible polyelectrolyte
onto an oppositely charged spherical surface. In the
limit of zero curvature the results for a planar surface
are consistently obtained. The dependence of the criti-
cal charge density on κ is consistent with experimental
findings when we take the dependence of the persistence
length on the salt conditions into account. As far as
computer simulations are concerned, we find a remark-
able good agreement for the critical sphere radius [14].
More experiments are required to fully understand the
adsorption of flexible polymers. We hope that the pre-
dicted universal dependencies, e.g., for the critical sphere
radius (10), will be helpful in such an endeavor.
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