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Abstract.
When High Harmonic Generation (HHG) is considered theoretically within the

ideas of the rescattering mechanism, the specifics of initial/final state of the active
electron usually attracts little attention. We explore such a specifics related to
initial/final bound p-state of the active electron (existing studies concentrated on
s-states). The halogen anions and noble gas atoms (except He) provide important
examples of such targets. The present theory with realistic wave functions gives
HHG rates by one or two orders of magnitude lower than previous calculations with
asymptotic (single-exponential) wave functions. This indicates that the HHG process
is much more sensitive to the description of the bound state wave functions in the inner
domain than the Above Threshold Ionization where the asymptotic (large-r) approach
is sufficient and self-consistent. The rates of HHG processes with and without change
of electron magnetic quantum number m` are compared for B(2p) and H(2p) targets.
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1. Introduction

When High Harmonic Generation (HHG) by atoms and ions in a laser field is considered

theoretically, the specifics of initial state of an active electron usually attracts little

attention. In most cases an s-state was considered and simple exponential expressions

were employed for the wave function, see references below. The specifics of states

with higher orbital momentum were discussed in the recent paper by Ostrovsky and

Greenwood [1]. The present work continues that study.

The important specifics of harmonic generation by atoms or ions with an active

electron in higher-` states (` ≥ 1) is that Degenerate Combinational Harmonic

Generation (DCHG) is possible. In such a process initial and final electron states are

substates differing only in magnetic quantum number m`. In case of a filled shell (like

np6 shells in inert gases) such processes are forbidden by Pauli Exclusion Principle, but

for other species with non-closed shells they are operative. These reservations apply for

any harmonic generation process (i.e. harmonic order N is not necessarily high).

Some additional features appear when generation of high harmonics is under

investigation. The appropriate physical framework in this case is provided within the

ideas of the rescattering (or three-step) mechanism. It is worthy to remind here that

the idea that HHG by an atom in a laser field (as well as some other processes, such as

the double ionization) proceeds via a rescattering mechanism was initially put forward

by Kuchiev [2, 3], Corkum [4] and Krause et al. [5, 6]. This idea was implemented

quantitatively via different schemes (see, for instance, references [7, 8, 9, 10, 11]; and

[12, 13] for reviews). The three steps involved are the above threshold ionization (ATI) of

an atom‡, the propagation of electron in a laser field and the laser assisted recombination

(LAR) that is accompanied by an additional exchange by energy with the laser field.

In order to ensure that an active electron in the laser-dressed continuum returns to

the residual core in course of its wiggling motion in linearly polarized laser wave, the

electron has to be emitted along the direction of the field electric vector. Clearly, such

emission is efficient for substates with magnetic quantum number m` = 0 (with the

quantization axis directed along the field vector), but quite non-efficient for m` = ±1,

since the related wave functions turn zero along the quantization axis§. This amounts

to an effective selection rule for HHG. On the last step (LAR) the active electron might

end up in a substate with an arbitrary value of m`, since no strict selection rules apply

for laser-dressed states. The situation when final m` differs from initial m` = 0 mean

DCHG processes. Note that in the case of m`-changing transition the emitted light has

different polarization characteristics.

The specifics discussed above is related to the angular wave function of the active

‡ Below we often refer to ATI in a broad sense, including above threshold detachment (ATD) processes
for negative ions.
§ It is worthwhile to note that due to the same general reason the ATI rates are strongly suppressed with
increase of the initial-states quantum number m`, see, for instance, review [14] and recent calculations
[15, 16].
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electron. Another issue is the choice of its radial wave function and the gauge for the

electromagnetic field. The problems of this type pertain all the theory of interaction

between the matter and the electromagnetic field (except the special ’exactly solvable’

case of the hydrogen atom). For the process of HHG they practically were not explored

(an attempt in this direction was carried out by Kuchiev and Ostrovsky [10] for the case

of an active s-electron).

Within the framework of the rescattering mechanism the problem of gauge and

wave function choice is split in two parts: these for ATI and LAR. On the ATI stage

the length gauge stresses large separations of the active electron from the core in the

initial-state wave function. This allows one to use the large-r asymptotes of wave

functions and also favors the single active electron approximation. The combination of

the length gauge with the asymptotic wave functions makes the approach self consistent,

physically justified and easy to apply. This features were stressed by Gribakin and

Kuchiev [17, 18] ‖ (see also Refs. [20, 21, 22]). The results for ATD obtained in this

way agree well with the recent experiments [23, 24, 25] in the fairly demanding test of

angle-differential rates for individual ATD channels. The results are also in agreement

with the exactly solvable zero-range potential model [26, 27]. Recently Kjeldsen and

Madsen [28] extended and supported this approach by calculating ATI on molecules.

For the last (LAR) step in the HHG process the situation is much less transparent.

The necessary matrix element is contributed by entire range of electron-core separation

r. This circumstance was noticed for LAR process in Ref. [29] and for HHG in Ref. [9].

Moreover, it becomes particularly important in case of HHG with an active p-electron

where for DCHG the matrix element might diverge if an asymptotic wave functions is

substituted [1]. In these circumstances there seems to be no other choice than to try to

improve quality of the wave function in entire space.

The objective of the present work is to study the influence of the choice of the

bound state wave function on the calculated HHG rates. To the best of our knowledge

the investigations of this issue were not carried out before. The targets considered are

the halogen anions and noble gas atoms (Section 2). The principle conclusion is that

the matter is not about some small corrections: the use of non-asymptotic realistic wave

functions generally reduces HHG rates by one or even two orders of magnitude, although

reverse situation also might occur. We also present the comparative study of DCHG and

conventional HG processes, correcting our previous results for excited hydrogen H(2p)

atom and providing results for B(2p) atom with a single p-electron above a filled shell

(Section 3). Section 4 contains some concluding remarks.

‖ Gribakin and Kuchiev provided a valuable modification of Keldysh [19] approach to ATI; for the
recent review of Keldysh theory see paper by Popov [14].
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2. HHG rates and choice of bound state wave functions

2.1. Theory

The present calculations of HHG are carried out within the general theoretical framework

developed earlier [9, 10] and subsequently adjusted [1] to calculations for the case of

an active p electron. The only difference is in the choice of the bound state wave

function. According to discussion in the Introduction we retain the physically justified

asymptotic (large-r) wave functions for the ATI step and use for the LAR step the

realistic wave functions that provide a good approximation for the entire range of r.

This is conveniently done within the approach of Ref. [9, 10] where ATI and LAR steps

are explicitely singled out in the formulae for the HHG amplitude.

The realistic bound state wave functions for an active electron were used in the

form of superpositions

φni`m`
(~r) =

∑

i

Ciχni`m`
(~r) , (1)

χni`m`
(~r) = Rni,`(r) Y`m`

(~̂r ) , ~̂r = ~r/r , (2)

Rni,`(r) = Nir
ni−1 exp(−ζir) , (3)

where the parameters ζi, Ci and Ni are tabulated [31, 32, 30]. The number of terms in

the sum (1) varied from 4 to 5.

The asymptotic wave functions have form

φni`m`
(~r) ≈ Aar

ν−1 exp(−κr) Y`m`
(~̂r ) , (4)

where ν = Z/κ and κ is related to the binding energy of the active electron: Eb = 1
2
κ2.

The asymptotic parameters Aa are listed in the book [30].

2.2. HHG by halogen anions

Our calculations are carried out for the laser wavelength λ = 800nm, corresponding to

a photon energy of ω = 0.057a.u. The m`-changing transitions are not considered for

halogen anions and noble gas atoms since they are forbidden by the Pauli Exclusion

Principle as indicated in Introduction. Relatively weak laser intensities I were chosen

in order to show formation of the plateau as I increases. Fig. 1 displays results of

calculations for the lightest (F−, circles) and the heaviest (I−, triangles) halogen anions.

The open symbols show our present results while the closed symbols refer to the previous

calculations [1] where the asymptotic wave functions were used both for LAR and

ATI steps of HHG. The general trend is that the present results are between one and

two orders of magnitude lower. The reason for this is clear from the fact that the

asymptotic approximation (4) is similar to retaining a single term in the sum (1), with

the appropriate parameters chosen to match the large-r behavior¶. It does not reproduce

wave function oscillations in the inner (small-r) region and thus generally overestimates

¶ Note, however, that the preexponential factor rν−1 in (4) has non-integer power of r related to the
energy parameter κ, while in formula (1) all ni are assumed to be integer.
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the electron density in this domain. The inner domain does not essentially contribute

to the ATD amplitudes but it is probed on the LAR step of HHG processes.

In the plateau domain the HHG rates are known to oscillate with harmonic order

N (see, for instance, Ref. [7, 8, 9, 10, 11, 33]). The positions of maxima and minima

generally depend on the bound-state wave function employed, so that the relation

between the previous and present refined results for rates is reversed for some N .

2.3. HHG by noble gas atoms

Fig. 2 shows the results of calculations for the lightest (Ne, circles) and the heaviest

(Xe, triangles) noble gas atoms with outer p electrons. The same frequency of laser

field is used as above. Again, the open symbols show the present results while the

closed symbols refer to the results of previous calculations [1]. The refined rates tend to

be lower, although the difference is less pronounced than in the case of halogen anions.

The reversed relation occurs in the plateau domain for some N while beyond the plateau

the new and old results tend to merge.

For noble gas atoms with large ionization potentials the characteristic number of

photons involved in the processes is large that favours applicability of the present theory

[10]. The calculated HHG rates apparently become more sensitive for the wave function

details when the number of photons is smaller, as for anions.

3. Degenerate Combinational HHG

In this section we compare rates for the conventional (m`-conserving) HHG process and

the m` changing (DCHG) process taking B(1s22s22p) atom as a target. The choice is

explained by the fact that this is the simplest atom with a single p-electron above closed

shell in the ground state; this is the first comparative study of the two processes for a

ground state atom. As above, we use the realistic wave functions for the LAR step of

HHG and the asymptotic functions for the initial ATI step (the asymptotic parameters

of the wave functions are κB = 0.781, Aa = 0.88 [30]). Our interest to such calculations

stems from the fact that there is no obvious general grounds to conclude which HHG

process is more efficient, so that the direct calculation seems to be the only way to resolve

the issue. Fig. 3 shows that for the conventional process the rate is higher almost by

an order of magnitude. This situation is reversed for some values of harmonic order N

within the oscillatory patterns in the plateau domain.

In Fig. 4 the similar results for the excited hydrogen atom H(2p) are presented

(they replace our previous results [1] that were found to be in error). In this case the

difference between the conventional HG process and DCHG is much more significant

than that for B atom. The main distinction seems to be that in the case of B atom an

active electron has larger binding energy, 1
2
κ2

B = 0.305 a.u., compared to 0.125 a.u. for

H(2p). Note that in the both cases an active electron has nodeless radial wave function,

although the details of behavior in the small-r domain are, of course, different. For
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the linearly polarized laser field it would be probably more appropriate to consider an

excited hydrogen atom in various parabolic states. However, we limit the present study

to the spherical states since the main interest is to compare H(2p) and B(2p) atoms

with an active electron in the states of the similar type.

4. Conclusion

In the present paper the HHG process is considered in the aspect of an initial/final

wave functions choice. Both radial and angular parts of wavefunction are substantial.

We show that the refined choice of the radial wave functions leads to decrease of the

calculated HHG rates by one or two orders of magnitude, albeit the trend might be

reversed in the plateau domain where the rates depend on the harmonic order in an

oscillatory fashion. The reason for this is that the HHG process generally probes the

inner domain of configurational space for the final electron state. For the same laser

frequency ω the sensitivity of HHG rates to the final state wave function is higher for

the halogen anions than for the noble gas atoms.

The non-spherical angular part of wave function (` 6= 0) implies that the magnetic

quantum number m` might change leading to emission of energetic photons with the

same energy as in the conventional HHG. The m`-changing processes generally have

lower rates than conventional HHG, although the difference might be less than order

of magnitude. Again, the relation might be reversed in the plateau domain. The m`-

changing transitions are of interest since the emitted harmonic differs in polarization

from that of the original laser wave; the harmonics produced by the conventional and

DCHG processes are not coherent, although have the same frequency.
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Figure 1. Rates for HG by halogen anions depending on the harmonic order N for
various targets: circles – F−; triangles – I−; open symbols – the present calculations
with realistic wave functions; closed symbols – calculations with asymptotic wave
functions [1]. The symbols are joined by lines to help the eye. The laser field intensities
I are shown in the plots.

Figure 2. Rates for HG by noble gas atoms with an active p-electrons depending on
the harmonic order N for various targets: circles – Ne; triangles – Xe; open symbols
– the present calculations with realistic wave functions; closed symbols – calculations
with asymptotic wave functions [1]. The laser field intensities I are indicated in the
plots.

Figure 3. Rates for HG by ground state B(2p) atom depending on the harmonic order
N . The rates for conventional HHG process (circles) are compared with m`-changing
(or DCHG) process rates (triangles) for various laser field intensities I indicated in the
plot.

Figure 4. Same as in Fig. 3, but for excited hydrogen atom H(2p).


