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Abstract

There appears a universal logarithmic term of entanglement entropy, i.e., −a(Ω) log(H/δ),
for 3d CFTs when the entangling surface has a sharp corner. a(Ω) is a function of the corner

opening angle and behaves as a(Ω → π) ≃ σ(π−Ω)2 and a(Ω → 0) ≃ κ/Ω, respectively. Recently,

it is conjectured that σ/CT = π2/24, where CT is central charge in the stress tensor correlator,

is universal for general CFTs in three dimensions. In this paper, by applying the general higher

curvature gravity, we give a holographic proof of this conjecture. We also clarify some interesting

problems. Firstly, we find that, in contrast to σ/CT , κ/CT is not universal. Secondly, the lower

bound aE(Ω)/CT associated to Einstein gravity can be violated by higher curvature gravity. Last

but not least, we find that there are similar universal laws for CFTs in higher dimensions. We

give some holographic tests of these new conjectures.
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1 Introduction

The entanglement entropy (EE) of 3d CFTs takes the form

S = B H/δ − a(Ω) log(H/δ) +O(1) (1)

where δ is a short-distance cutoff, B is a constant and H denotes the size of the entangling surface.
The first term of eq.(1) is the ’area law’ contribution to EE and the second logarithmic term appears
only if the entangling surface has a sharp corner. For pure state, we have a(Ω) = a(2π − Ω) due to
the fact S(V ) = S(V̄ ). Besides, strong subadditivity and Lorentz invariance impose

a(Ω) ≥ 0, ∂Ωa(Ω) ≤ 0, ∂2
Ωa(Ω) ≥

|∂Ωa(Ω)|
sinΩ

for Ω ≤ π. (2)

a(Ω) characterizes the CFTs and behaves as

a(Ω → π) ≃ σ(π − Ω)2, a(Ω → 0) ≃ κ/Ω (3)

in the smooth and singular limits, respectively.
Recently, it is conjectured that

σ/CT = π2/24 (4)

is a universal law for all CFTs in three dimensions [1]. Here CT is the central charge defined in the
vacuum two-point function

< Tµν(x)Tλρ(0) >=
CT

|x|2d Iµν,λρ(x) (5)

with Iµν,λρ a dimensionless tensor fixed by symmetry.
This conjecture has been tested in [1, 2] by studying some higher curvature holographic models,

free scalars and fermions, and Wilson-Fisher fixed points of the O(N) models with N = 1, 2, 3 for π
2
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corners. For recent developments, please refer to [3, 4]. Let us briefly review the holographic models
studied in [1, 2]. Consider the following action

I =
1

16πG

∫

d4x
√
g
[ 6

L2
+R+ L2(λ1R

2 + λ2RµνR
µν + λGBX4)

+L4(λ3,0R
3 + λ1,1RX4) + L6(λ4,0R

4 + λ2,1R
2X4 + λ0,2X 2

4 )
]

(6)

where X4 = RµνρσR
µνρσ − 4RµνρR

µν + R2 is the 4d Euler density. Since we are interested of the
vacuum of the CFTs, we require the holographic model (6) has a pure AdS4 solution. This imposes
one constraint on the parameters λ. Ignoring the total derivatives and KaK

a, [1, 2] find that the
holographic entanglement entropy of the model (6) is equivalent to that of Einstein gravity

S = α

∫

d2y

√
h

4G
(7)

up to a overall factor

α = 1− 24λ1 − 6λ2 + 432λ3,0 + 24λ1,1 − 6912λ4,0 − 576λ2,1 +O(λ2). (8)

As a result, we have a(Ω) = αaE(Ω) where aE denotes the function for Einstein gravity.
Now let us discuss the central charge CT eq.(5). There is a standard holographic calculation of

CT for Einstein gravity and one finds

CT,E =
3

π3

L̃2

G
(9)

where L̃ is the radius of AdS4. The situation is a little more complicated for higher curvature gravity.
That is because, in addition to the usual massless spin-two gravition, massive modes and ghost modes
with M ∼ 1/(λL2) also appear in higher curvature gravity. To suppress these modes, it is natural
to work in the perturbative framework with λ ≪ 1. Consider the metric fluctuations in the AdS4

background together with the gauge ∇̄µhµν = 0 and gµνhµν = 0, we can derive the linearized Einstein
equations as

− 1

2
[�̄+

2

L̄2
]hµν = 8πGTµν (10)

Similarly, we can derive the linearized E.O.M for the holographic model (6)

− α

2
[�̄+

2

L̄2
]hµν − λ2L

2

2
[�̄+

2

L̄2
]2hµν = 8πGTµν (11)

Clearly, the second term of the above equation is suppressed near the physical pole, i.e. [�̄+ 2
L̄2 ]hµν ∼

0. Comparing eq.(11) with eq.(10), we notice that the effective Newton constant of the holographic
model (6) is Geff = G/α. From eq.(9), we get CT = αCT,E . Recall that we have a(Ω) = αaE(Ω)
from eq.(7). We finally obtain

a(Ω)

CT
=

aE(Ω)

CT,E
(12)

which agrees with the conjecture (4).
Let us comment on the above holographic results of [1, 2].
Firstly, the holographic model (6) is a combination of Einstein gravity, curvature-squared gravity

and f(Lovelock) gravity. Although it looks quite general, it is actually very special. As we know, in
general, the extremal entropy surface of higher curvature gravity is no longer a minimal area surface.
However, the bulk entangling surface of model (6) is still a minimal area surface. As a result, we have
not only σ/CT (4) but also a(Ω)/CT (12) universal. This is, however, not the case for free scalars and
fermions. Thus, it is necessary to study more general higher curvature gravity models.

2



Secondly, [1, 2] have used the entropy formula proposed in [5] for f(Lovelock) gravity. This en-
tropy formula obeys the second law of thermodynamics for linearized perturbations of Killing horizons.
However, it conflicts with the entropy formula proposed by [6] at order K4 (K is the extrinsic curva-
ture). Note that the entropy formula of [6] also satisfies the linearized second law of theormodynamics
[7]. Thus, it is necessary to check whether the holographic results of [1, 2] change if one use the
entropy formula of [6] instead of [5].

We fill the above gaps in this paper. By studying the most general higher curvature gravity, we
give a holographic proof of the conjecture (4) [1]. It seems impossible to find such a holographic proof
because of the current limitations in understanding the holographic entanglement entropy for higher
curvature gravity. Let us summarize the difficulties below.

Firstly, although there are some important progresses [6, 8, 9], due to the ’splitting problem’
[10, 11], the exact entropy formula for higher curvature gravity is still unknown.

Secondly, we do not know where the entangling surface is located for higher curvature gravity.
In other words, we do not know on which surface to apply the entropy formula. There are two
methods to determine the location of the entangling surface in the bulk. The first one is the so-called
’boundary condition method’: one require that equations of motion are regular on the entangling
surface [12]. This method can yield the correct entangling surfaces for Einstein gravity and Lovelock
gravity [6, 12, 13]. However, so far it is not clear whether this approach can give reasonable results
for general higher curvature gravity. The second method is the so-called ’cosmic brane method’. One
takes the variation of the entropy functional and identifies the entangling surface with the extremal
entropy surface. However, there are more than one extremal entropy surfaces in higher curvature
gravity. One need extra conditions to fix the arbitrariness [14].

Thirdly, there are infinite parameters in general higher curvature gravity. If we study them case
by case, then it is impossible to give a general proof.

Our resolutions to the above difficulties are as follows. Let us discuss them one by one. Firstly,
we do not need the exact entropy formula of higher curvature gravity for the proof of the conjecture
(4). Take into account the ’splitting problem’, the correct entropy formula in AdS4 differs from the
one proposed in [6] by some higher extrinsic curvature terms K2m with m ≥ 2. It turns out that
these higher extrinsic curvature terms do not affect either σ or CT . Secondly, as argued in [1, 2], it
is natural to work in the perturbative framework in order to suppress the massive modes and ghost
modes. In the perturbative framework, the extremal entropy surface is unique and well-defined. It is
sightly deformed away from the minimal surface and can yield correct universal terms of EE for even-
dimensional CFTs. Thirdly, we use the ’background field approach’ developed for the holographic
Weyl anomaly and entanglement entropy [15]. We expand the action around a background curvature.
It turns out that only the first few terms in the expansions contribute to the universal terms of
entanglement entropy. Thus, we only need to deal with finite rather than infinite terms.

In addition to the holographic proof of the conjecture (4) [1], we also clarify some interesting
problems discussed in [1, 2]. Firstly, we find that, in contrast to σ/CT , κ/CT is not a universal
ratio. In other words, the behaviour of logarithmic terms of EE is not universal in the singular limit.
Secondly, we notice that the lower bound aE(Ω)/CT associated to Einstein gravity can be violated by
general higher curvature gravity.

By studying the holographic models, we find that there are similar universal laws for CFTs in
higher dimensions. For simplicity, we focus on the singularities from the higher-dimensional cones.
The corresponding bulk metric takes the form

ds2 =
dz2 + dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2

d−3)

z2
(13)

where dΩ2
d−3 is the metric of unit (d− 3)-sphere. We have θ ∈ [0,Ω] with Ω ≤ π. The universal terms

of EE are logarithmic terms −ad(Ω) log(H/δ) and squared logarithmic terms −ad(Ω) log
2(H/δ) in odd

dimensions and even dimensions, respectively. Similar to the 3d CFTs, we have ad(Ω) = ad(π − Ω)
and the following asymptotic behaviors

ad(Ω → π/2) ≃ σd(π/2− Ω)2, ad(Ω → 0) ≃ κd/Ω (14)
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Based on holographic results, we conjecture that

σd/CT = σd,E/CT,E = cd (15)

are universal ratios for general CFTs. Here CT are the central charges defined in eq.(5), ’E’ denotes
Einstein gravity and cd are universal constants which only depend on the dimensions.

The paper is organized as follows. In Sect.2, we study the central charge CT for CFTs dual to
general higher curvature gravity. In Sect.3, we briefly review the holographic entanglement entropy
and derive a formal entropy formula for general higher curvature gravity in AdS. In Sect.4, we give a
holographic proof of the conjecture of [1]. In Sect.5, we find similar univeral laws for CFTs in higher
dimensions. Finally, we conclude in Sect.6.

Note added: While we were finishing this paper, the work [16] appeared in arXiv and it seems to
have some overlaps in the universal ratios for CFTs in higher dimensions. It should be mentioned
that [1, 2] have also anticipated the generalizations of the universal ratios to higher dimensions. Later
they derive a nice formula of the universal ratios in general dimensions in [17].

2 The holographic central charges

In this section, we discuss the central charge CT for CFTs dual to general higher derivative gravity
f(Rµνσρ). We obtain a very simple expression for CT and find that CT is the coefficient of the Weyl-
squared term in the Weyl anomaly. For examples, CT is the ’c’ charge relevant to the C2 term in the
4d Weyl anomaly

< T i
i >=

c

16π2
CijklC

ijkl − a

16π2
E4. (16)

And CT is the ’B3’ charge relevant to the C�C term in the 6d Weyl anomaly

< T i
i >=

3
∑

n=1

BnIn + 2AE6 (17)

where I3 ∼ Cijkl�Cijkl + ....
We use the ’background field approach’ introduced in [15]. This method together with [18, 19] are

very useful tools to derive the holographic Weyl anomaly and universal terms of EE [11, 15]. Firstly,
we define a ’background-curvature’ (we set the AdS radius H̃ = 1 below)

R̃µνσρ = gµρgνσ − gµσgνρ (18)

and denote the difference between the curvature and the ’background-curvature’ by

R̄µνσρ = Rµνσρ − R̃µνσρ. (19)

Then we expand the action around this ’background-curvature’ and get [15]

I =
1

16πG

∫

dd+1x
√
gf(Rµνσρ)

=
1

16πG

∫

dd+1x
√
g
[

f0 + c
(1)
1 R̄ + (c

(2)
1 R̄µνσρR̄

µνσρ + c
(2)
2 R̄µνR̄

µν + c
(2)
3 R̄2) +O(R̄3)

]

(20)

where f0 = f(R̃µνσρ) = f(Rµνσρ)|AdS is the Lagrangian for pure AdS, cni are some constants deter-
mined by the action. We require that the higher derivative gravity has an asymptotic AdS solution.

This would impose a condition c
(1)
1 = −f0/2d [15]. Using this condition, we can rewrite the action

(20) as

I =
1

16πG

∫

dd+1x
√
g
[

− f0
2d

(R+ d2 − d) + (c
(2)
1 R̄µνσρR̄

µνσρ + c
(2)
2 R̄µνR̄

µν + c
(2)
3 R̄2) +O(R̄3)

]

(21)
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Following [1, 2], we consider small metric fluctuations in the AdS background. Imposing the
transverse traceless gauge ∇̄µhµν = 0 and gµνhµν = 0, we can derive the linearized equations of
motion for higher curvature gravity (21) as

− αd

2
[�̄+

2

L̄2
]hµν − c

(2)
2 + 4c

(2)
1

2
[�̄+

2

L̄2
]2hµν = 8πGTµν (22)

where αd is given by

αd = − f0
2d

+ (4d− 8)c
(2)
1 . (23)

Remarkably, αd only depends on two parameters of the general higher curvature gravity (20). Note
that the second term of eq.(22) is highly suppressed near the physical pole, i.e. [�̄ + 2

L̄2 ]hµν ≃ 0.
Comparing eq.(22) with the linearized Einstein equations eq.(10), we find that the effective Newton
constant of the general higher curvature gravity (20) is Geff = G/αd. Note that the central charge
CT,E for CFTs dual to Einstein gravity is

CT,E =
d+ 1

d− 1

Γ[d+ 1]

πd/2Γ[d/2]

L̃d−1

8πG
. (24)

Thus we get

CT = αdCT,E (25)

Let us comment the above results.
Firstly, with the help of the expansions (22) we get a very simple and general expression of αd (23)

for higher curvature gravity. It agrees with eq.(8) for the holographic model (6). It is much simpler
and thus enables us to discuss the higher curvature gravity generally rather than to study them case
by case.

Secondly, thanks to the simplicity of αd (23), the physical meaning of CT (25) becomes clear. It
is the central charge related to the Weyl-squared term in the Weyl anomaly. For example, CT is
proportional to the c charge in the 4d Weyl anomaly

< T i
i >=

c

16π2
CijklC

ijkl − a

16π2
E4. (26)

Here c = π
8G (− f0

8 +8c
(2)
1 ) ∼ CT [15]. As another example, CT is proportional to the B3 charge in the

6d Weyl anomaly

< T i
i >=

3
∑

n=1

BnIn + 2AE6 (27)

where I3 ∼ Cijkl�Cijkl + ... and B3 = 1
3072πG (− f0

12 + 16c
(2)
1 ) ∼ CT [15].

Thirdly, due to the fact O(R̄3) ∼ O(h3), the O(R̄3) terms in the action (21) do not affect the
linearized E.O.M. As a result, αd and thus CT are independent of such terms. To prove the conjecture
σ/CT = π2/24 for 3d CFTs, we need to prove that the entropy from the O(R̄3) terms does not
contribute to σ.

3 The holographic entanglement entropy

In this section, we derive a formal entropy formula for the general higher curvature gravity. We utilize
this formula to prove the conjecture eq.(4) in the next section. Now let us briefly review the derivations
of the holographic entanglement entropy for higher curvature gravity [6]. We start with the regularized
conical metric in a coordinate system adapted to a neighborhood of the conical singularity [6]:

ds2 = e2A
[

dzdz̄ + e2AT (z̄dz − zdz̄)2
]

+
(

γij + 2Kaijx
a +Qabijx

axb
)

dyidyj

5



+2ie2AUi (z̄dz − zdz̄) dyi + · · · . (28)

Here xa ∈ {z, z̄} denotes orthogonal directions to the conical singularity, and yi denotes parallel
directions. The regularized warp factor is

A = − ǫ

2
log(zz̄ + b2) , ǫ ≡ 1− 1

n
, (29)

Using the replica trick, one can derive the entropy as

S = −∂ǫIreg |ǫ=0 (30)

where Ireg is the gravitational action got from the regularized metric (28). There are two kinds of
terms relevant to the entropy. The first kind is

Rzz̄zz̄ = e2A∂z∂z̄A+ ...
∫

dzdz̄∂z∂z̄A = −πǫ. (31)

It contributes to Wald entropy. The second kind is

Rzizj = 2Kzij∂zA+ ..., Rz̄kz̄l = 2Kz̄kl∂z̄A+ ...
∫

dzdz̄∂zA∂z̄Ae
−βA = −πǫ

β
. (32)

This is the would-be logarithmic term and it contributes to the anomaly-like entropy [6].
Applying eqs.(30,31,32), one can derive the holographic entanglement entropy (HEE) for general

higher curvature gravity f(Rµνσρ) [6]

SHEE =
1

8G

∫

dd−1y
√
γ
[ ∂f

∂Rzz̄zz̄
+ 16

∑

β

(
∂2f

∂Rzizj∂Rz̄kz̄l
)β

KzijKz̄kl

β + 2

]

(33)

Here β come from the formula (32), and ( ∂2f
∂Rzizj∂Rz̄kz̄l

)β are the coefficients in the expansions

∂2f

∂Rzizj∂Rz̄kz̄l
=

∑

β

e−βA(
∂2f

∂Rzizj∂Rz̄kz̄l
)β . (34)

[6] proposes to regularize Qzz̄ij as e2AQzz̄ij . Later it is found that this ansatz yields inconsistent
results for the universal terms of EE for 6d CFTs [11]. To resolve this inconsistency, [11] proposes the
following regularizations

T = e−2AT0 + T1,

Q zz̄ij = Q0 zz̄ij + e2AQ1 zz̄ij (35)

How to split M into M0 and M1 (M denotes T and Q) is the so-called the splitting problem. It
appears because one cannot distinguish r2 and r2n in the expansions of the conical metric. It is
expected that the splitting problem can be fixed by using E.O.M. This is indeed the case for Einstein
gravity [10, 11]. However, it is a highly non-trivial problem to fix the splittings for general higher
curvature gravity. Without resolution to this problem, we cannot apply the formula (33) to derive the
entropy.

To be consistent with Wald entropy on entangling surface with rotational symmetry, T0 and Q0

must be functions of the extrinsic curvatures, i.e., T0 ∼ K2 and Q0 ∼ K2 [10, 11] (This is indeed
the case for the splittings obtained from Einstein equations.) As a result, the correct entropy may
differ from the original one proposed by [6] by some O(K4) terms. It turns out that these O(K4)
terms do not contribute to the universal terms of EE for 4d CFTs on smooth entangling surfaces [15].
Although the story is a little different for universal terms of EE on singular entangling surfaces, the

6



O(K4) terms are still less important if we focus on the near smooth region. As we shall prove in the
next section, the coefficient σ defined in the smooth limit eq.(3) is indeed independent of these O(K4)
terms.

Take into account the splittings, the Riemann tensors near the the conical singularity z → 0 take
the form

Rµνσρ = e2[P/2]AR1µνσρ + e2([P/2]−1)A(K2)µνσρ

= e2[P/2]ARµνσρ|A=0 + (e2([P/2]−1)A − e2[P/2]A)(K2)µνσρ (36)

where P are the numbers of (z, z̄) appearing in (µνσρ), (K2)µνσρ denotes some extrinsic curvature
squared terms, Rµνσρ|A=0 are the Riemann tensors without regularization. If we allow more general
splittings for the conical metrics, i.e., we expand T, U,Q of (28) in infinite powers of e−2A. Then the
Riemann tensors (36) can be generalized as

Rµνσρ = e2[P/2]ARµνσρ|A=0 +

∞
∑

i=1

e2[P/2]A(e−2iA − 1)(K2)i µνσρ (37)

For pure AdS, it can be further simplifed as

Rµνσρ = gµρgνσ − gµσgνρ +

∞
∑

i=1

e2[P/2]A(e−2iA − 1)(K2)i µνσρ (38)

Now we are ready to derive the entropy for general higher curvature gravity (21). For pure AdS,
using eqs.(33,38), we obtain

S = − 1

4G

∫

dd−1y
√
γ
[

− f0
2d

− c
(2)
2

1

2
(trK)2 − 2c

(2)
1 trK2 +

∞
∑

m=2

λm(K2m)
]

(39)

where (K2m) denote all the possible higher extrinsic curvature terms of orderO(K2m) and λm are some
constants related the higher curvature gravity. Note that eq.(39) works in the Euclidean signature,
which differs from its Lorentzian form by a minus sign.

4 A holographic proof of the conjecture

In this section, we firstly briefly review the corner contributions to holographic entanglement entropy
for Einstein gravity, and then give a holographic proof of the conjecture eq.(4). We focus on pure
AdS4 and work in the perturbative framework for higher curvature gravity.

4.1 Einstein gravity

In this subsection, we review the corner contributions to holographic entanglement entropy for Einstein
gravity [20, 2]. Let us start with the Euclidean AdS4 in Poincare coordinates

ds2 = L̄2 dz
2 + dt2E + dρ2 + ρ2dθ2

z2
, (40)

where L̄ is the radius of AdS4 and we set it to 1 below. The holographic entanglement entropy for
Einstein gravity is given by [21, 22]

SEE =
1

4G

∫

Σ

d2y
√
γ (41)

where Σ is the bulk minimal surface which is homologous to the entangling surface on the boundary.
Let us take tE = 0, θ ∈ [−Ω/2,Ω/2] to denote the entangling surface on the boundary. It has a
sharp corner for Ω 6= π. The bulk minimal surface can be parametrized as z = z(ρ, θ). Take into

7



account the scaling symmetry of AdS, we can simplify the ansatz to z = ρh(θ). With this ansatz, the
entanglement entropy (41) becomes

SEE =
1

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ǫ

0

dθ

√

1 + h2 + (h′)2

h2
(42)

where H is the size of the entangling surface on the boundary, δ is the cutoff for z, h0 = h(0) and the
angular cut-off ǫ is defined at z = δ, i.e., ρ h(Ω/2− ǫ) = δ.

Note that there is no explicit θ dependence in eq.(42), thus the corresponding ’Hamiltonian’ is a
conserved quantity. We get

1 + h2

h2
√

1 + h2 + (h′)2
=

√

1 + h2
0

h2
0

(43)

where we have used h′
0 = 0 from symmetry. Using eq.(43), we can rewrite eq.(42) as

SEE =
1

2G

∫ H

δ/h0

dρ

ρ

∫

√
(ρ/δ)2−1/h2

0

0

dy

√

1 + h2
0(1 + y2)

2 + h2
0(1 + y2)

(44)

with y =
√

1/h2 − 1/h2
0.

Let us focus on the universal logarithmic divergence of EE. From eq.(44), it is easy to observe
that the logarithmic divergence comes from the integral dρ. To get the coefficient of the logarithmic
divergence, we need to extract the finite part from the integral dy. Take into account the boundary
behaves (y → ∞)

√

1 + h2
0(1 + y2)

2 + h2
0(1 + y2)

∼ 1 +O(1/y2), (45)

we can derive the logarithmic divergence of EE as

SEE, log = −a(Ω) log(
H

δ
) (46)

where a(Ω) is given by

a(Ω) =
1

2G

∫ ∞

0

dy[1−
√

1 + h2
0(1 + y2)

2 + h2
0(1 + y2)

] (47)

And the opening angle Ω can be obtained from

Ω = 2

∫ h0

0

dh
h2

√

1 + h2
0√

1 + h2
√

(h2
0 − h2)(h2

0 + (1 + h2
0)h

2)
(48)

For small opening angle (Ω → 0), we find

Ω =
2
√
πΓ(34 )

Γ(14 )
h0 +O(h3

0) (49)

aE(Ω) =
1

2G
Γ(

3

4
)4

1

Ω
+O(Ω) (50)

For the near-smooth case (Ω → π), we have

π − Ω =
π

h0
+O(

1

h3
0

) (51)

aE(Ω) =
1

8πG
(π − Ω)2 +O(π − Ω)4 (52)
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From the above equations, we get κE = 1
2GΓ(34 )

4 and σE = 1
8πG . Recall that CT,E = 3

π3G , we obtain

σE

CT,E
= π2/24 (53)

which agrees with the conjecture (4). In addition to eq.(53), we also have

κE

CT,E
=

π2

6
Γ(

3

4
)4 (54)

which seems to be another universal law from the holographic study of [2]. However, as we shall show
in the next section, this is not the case for general higher curvature gravity.

4.2 General higher curvature gravity

In this subsection, we investigate the corner contribution to EE for CFTs dual to higher curvature
gravity. Let us start with the holographic entanglement entropy for the general higher curvature
gravity f(Rµνσρ) in AdS4 (39)

S =
1

4G

∫

Σ

d2y
√
γ
[

− f0
6

− c
(2)
2

1

2
(trK)2 − 2c

(2)
1 trK2 +

∞
∑

m=2

λm(K2m)
]

(55)

where Σ denotes the extremal entropy surface, f0, c
(2)
1 , c

(2)
2 , λm are the parameters of the higher cur-

vature gravity, and (K2m) denote all the possible higher extrinsic curvature terms of order O(K2m).
Note that eq.(55) works in the Lorentzian signature which differs from its Euclidean expression (39)

by a minus sign. Following [1, 2], we work in the perturbative framework with (c
(2)
1 , c

(2)
2 , λm ≪ 1) in

order to suppress the massive modes and ghost modes in higher gravity gravity.
Let us firstly discuss the squared extrinsic curvature terms O(K2) in eq.(55). Because trK = 0 on

the extremal area surface, the minimal surface will also extremize the entropy functional
√
γ(trK)2n

(n ≥ 1). Thus, we can drop such terms in eq.(55) in the perturbative framework. Using the Gauss-
Codazzi equations in AdS4, we can rewrite

√
γT rK2 as

∫

Σ

d2y
√
γT rK2 =

∫

Σ

d2y
√
γ(−2−R+ (trK)2) = −2

∫

Σ

d2y
√
γ (56)

where R is the intrinsic curvature, and we have dropped (trK)2 and a total derivative
√
γR in the

above equation. Take into account eq.(56) and (trK)2 ∼ 0, eq.(55) becomes

S =
1

4G

∫

Σ

d2y
√
γ
[

− f0
6

+ 4c
(2)
1 +

∞
∑

m=2

λm(K2m)
]

(57)

Let us go on to study the higher extrinsic curvature terms O(K2m) with m ≥ 2. Since λm ≪ 1,
we focus on the leading order of λm below. It turns out that, at order O(λm), all the possible terms
of (K2m) are either zero or equivalent to TrK2m up to some overall factor. Note that there are only
two eigenvalues k± for the extrinsic curvature Ki

j in AdS4. Then, similar to (TrK = k+ + k− = 0),
the trace of odd powers of the extrinsic curvature

TrK2l−1 = k2l−1
+ + k2l−1

− = 0 (58)

vanishes on extremal area surfaces. As a result, we can drop all the terms including the trace of odd
powers of the extrinsic curvature. That is because there are at leat two ’odd-trace’ terms in (K2m),
and similar to (TrK)2, such terms neither change the action or E.O.M at the leading order of O(λm).

Now let us discuss the terms including only the trace of even powers of the extrinsic curvature,
i.e.,

∏n
i=1 TrK

2mi with
∑n≤m

i=1 mi = m. As we shall show below, it is equivalent to 2n−1TrK2m. To
see this, let us check the action and E.O.M at order O(λm) below.

9



For the action, we have

λm

n
∏

i=1

TrK2mi = λm2nk2m+ +O(λ2
m) = λm2n−1TrK2m +O(λ2

m) (59)

For E.O.M, it is equivalently to consider the variation of the action

λmδ(

n
∏

i=1

TrK2mi) = λm2nmk2m−1
+ (δk+ − δk−) +O(λ2

m) = λmδ(2n−1TrK2m) +O(λ2
m) (60)

Now it is clear that
∏n

i=1 TrK
2mi and 2n−1TrK2m yield the same action and E.O.M at the first order

of O(λm). Thus, we can label all the possible terms of (K2m) by one term TrK2m. Then the entropy
eq.(57) becomes

S =
− f0

6 + 4c
(2)
1

4G

∫

Σ

d2y
√
γ
[

1 +

∞
∑

m=2

λ̄mTrK2m
]

+O(λm)2 (61)

where we have rescaled λm = (− f0
6 +4c

(2)
1 )λ̄m. If the higher extrinsic curvature terms TrK2m vanish,

from eq.(61) we can easily obtain

σ = (−f0
6

+ 4c
(2)
1 )σE . (62)

Recall that CT = (− f0
6 + 4c

(2)
1 )CT,E eq.(25) for general higher curvature gravity, we get

σ

CT
=

σE

CT,E
=

π2

24
. (63)

Thus, to prove the conjecture (4), we need and only need to prove that the higher extrinsic curvature
terms TrK2m do not contribute to σ.

To proceed, let us derive the exact expression of the entropy eq.(61)

S =
− f0

6 + 4c
(2)
1

2G

∫ H

δ/h0

dρ

ρ

∫ Ω/2−ǫ

0

dθ

√
1 + h2 + h′2

h2

[

1

+

∞
∑

m=2

λ̄m

(

(
1√

h′2 + h2 + 1
)2m + (

h4 + hh′′ + 2h2 + (h′)
2
+ h3h′′ + 1

(h2 + (h′)
2
+ 1)3/2

)2m
)]

(64)

Similar to the case of Einstein gravity, there is no explicit θ dependence in eq.(64). Thus we can derive
a first integral

h2 + 1

h2

√

h2 + (h′)
2
+ 1

+

∞
∑

m=2

λ̄mFm[h, h′, h′′, h(3)] =

√

h2
0 + 1

h2
0

+

∞
∑

m=2

λ̄mFm[h0, 0, h
′′
0 , 0] (65)

where Fm[h, h′, h′′, h(3)] is a very complicated function given by eq.(127) in the appendix. Let us solve
eq.(65) perturbatively. After some algebra, we get

h′ = −
√

(h2 + 1) (h4 (− (h2
0 + 1)) + h2h4

0 + h4
0)

h2
√

h2
0 + 1

+
∞
∑

m=2

λ̄m

2
(

h2 + 1
)

3
2−2m

h4m−6h4−4m
0

√

(h2 + 1)h4
0 − h4 (h2

0 + 1) (h2
0 + 1)

3
2−m

(

−
(

h2 + 1
)2m ((

h2
0 + 2

)

m− 1
)

h4m−4h−4m
0 (h2

0 + 1)
2m−1

+
(

h4
(

h4
0m+ h2

0

(

−4m2 + 5m− 1
)

− 4m2 + 5m− 1
)

+ 2h2h4
0m(2m− 1) + h4

0m(4m− 3)
)

)
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+ O(λ̄m)2 (66)

h′′ = −h6
(

h2
0 + 1

)

+ 2h2h4
0 + 2h4

0

h5 (h2
0 + 1)

+O(λ̄m) (67)

Using eq.(66), we can express the opening angle Ω in the function of h0

Ω = 2

∫ 0

h0

dh
1

h′
= ΩE(h0) +

∞
∑

m=2

λ̄mΩm(h0) +O(λ̄m)2 (68)

where ΩE(h0) is the function eq.(48) for Einstein gravity, and it behaves as ΩE(h0) ∼ π− π
h0

for large
h0. In the smooth limit h0 → ∞, we can derive Ωm as

Ωm = − 1

h2m−1
0

∫ ∞

0

dy

4m

(

(y2+1)2m−1

y2 + (3− 4m)y2 + (2 − 4m)

)

(y2 + 1)2m+1 +O(
1

h2m+1
0

)

=
ωmπ

h2m−1
0

+O(
1

h2m+1
0

) (69)

where we have substituted y =
√

1/h2 − 1/h2
0. And ωm are some finite numbers given by

ω1 = 0, ω2 = 3/2, ω3 = 195/64, ω4 = 595/128, ω5 = 103065/16384, ... (70)

Remarkably, Ωm ∼ 1/h2m−1
0 with m ≥ 2 are the subleading corrections to the angle function. Note

that we have ω1 = 0, which means that the extrinsic curvature squared term TrK2 does not modify
the angle function. That is reasonable. Recall that

√
γT rK2 is equivalent to −2

√
γ, thus the angle

function for
√
γT rK2 should be exactly the same as that for Einstein gravity. This can be regarded

as a check of our results.
Now let us study the logarithmic term of EE, i.e., −a(Ω) log(Hδ ). Substituting eqs.(66,67) into the

entropy functional (64), we obtain

a(h0) = (−f0
6

+ 4c
(2)
1 )aE(h0) +

∞
∑

m=2

λmaK,m(h0) +O(λm)2 (71)

where aE ∼ 1/h2
0 is given by eq.(47), and am(h0) can be derived as

aK,m = − 1

4G

∫ ∞

0

dy

4

(

(

4m2 + 1
) (

y2 + 1
)

−
m

(

(y2+1)2m−1
)

y2 −m
(

3y2 + 2
)

)

h2m
0 (y2 + 1)

2m+1 +O(
1

h2m+2
0

)

= − 1

4G

āmπ

h2m
0

+O(
1

h2m+2
0

) (72)

in the smooth limit h0 → ∞. Here ām are some finite numbers:

ā1 = 1, ā2 = 17/8, ā3 = 453/128, ā4 = 5189/1024, ā5 = 218285/32768, ... (73)

Similar to Ωm (69), aK,m ∼ 1/h2m
0 (m ≥ 2) are subleading terms. Thus, the higher extrinsic curvature

terms can be ignored if we focus on the leading terms of Ω(h0) and a(h0). It should be mentioned
that the equivalence between

√
γT rK2 and −2

√
γ implies ā1 = 1, which is consistent with eq.(73).

As another check of our results, we have calculated Ω(h0) and a(h0) numerically and got perfect
agreements with the exact results eqs.(68-73) for large h0.

Now we are ready to derive σ for the general higher curvature gravity. Recall that σ is defined by
a(Ω) in the smooth limit:

σ = lim
Ω→π

a(Ω)

(π − Ω)2
(74)
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From eqs.(68,69,71,72), we get

a(Ω) = (−f0
6

+ 4c
(2)
1 )aE(Ω) + λm O(π − Ω)4 +O(λm)2 (75)

Thus we have

σ = (−f0
6

+ 4c
(2)
1 )σE (76)

at least up to order O(λm). Recall that the central charge is given by

CT = (−f0
6

+ 4c
(2)
1 )CE,T (77)

We obtain

σ

CT
=

σE

CT,E
=

π2

24
. (78)

Now we finish the proof of the conjecture (4).
One may wonder what happens if we take into account the higher orders terms O(λm)n in our

perturbative approach. It turns out that these higher order terms decrease quickly as

Ω− αΩE ∼
∑

m,n

λn
m

h
(2m−2)n+1
0

(79)

a(h0)− αaE(h0) ∼
∑

m,n

λn
m

h
(2m−2)n+2
0

(80)

where α = (− f0
6 +4c

(2)
1 ). Thus, the higher order terms O(λm)n are less important than the first order

terms O(λm), and they do not change σ either. A quick ’derivation’ of the power law eqs.(79,80) is
as follows. Note that

dh ∼ dy

h′ ∼ h0

(

c0(y) +
∑

m=2

cm(y) + λm

h2m−2
0

)

L ∼ 1

h0
(81)

where we have subtracted the divergent parts in L. To see why L ∼ 1
h0
, it is helpful to note that

a(h0) ∼ L/h′ ∼ 1/h2
0. Then we get

Ω− αΩE ∼
∫

dy(
1

h′
− α

h′
E

) ∼
∑

m,n

λn
m

h
(2m−2)n+1
0

(82)

a(h0)− αaE(h0) ∼
∫

dy(
L

h′
− αLE

h′
E

) ∼
∑

m,n

λn
m

h
(2m−2)n+2
0

(83)

In the appendix, we calculate the O(λm)2 terms exactly and find that they indeed obey the power
law eqs.(79,80). We have also checked some O(λm)3 terms, which satisfy the power law eqs.(79,80)
too. Thus, similar to the smooth case, the higher extrinsic curvature terms (K2m) with m ≥ 2 can be
ignored in the smooth limit. σ is irrelevant with these terms to arbitrary order O(λn

m).
To sum up, we give a holographic proof of the conjecture (4) for the CFTs dual to the general

higher curvature gravity. We work in the perturbative framework with λm ≪ 1 in order to suppress
the massive modes and to have a well-defined extremal entropy surface for higher curvature gravity.
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4.3 Discussions

In this subsection, we discuss some interesting questions raised by [1, 2]. Firstly, we show that the
lower bound aE(Ω)/CT associated to Einstein gravity can be violated by higher curvature gravity.
Secondly, we find that, in contrast to σ/CT , κ/CT is not universal. In general, κ depends on infinite
parameters of the higher curvature gravity. Thus, it is not a good candidate for the central charge.
Let us discuss the above two problems one by one below.

For the first problem, we set λm = 0 with m ≥ 3 for simplicity. This means that we focus on the
higher curvature gravity including at most the cubic curvature terms. Using eqs.(68-73), we obtain

a(Ω)

CT
− aE(Ω)

CT,E
= − 5

96
λ̄2(π − Ω)4 +O(π − Ω)6 (84)

Now it is clear that a(Ω)
CT

with positive λ̄2 = λ2/α3 is smaller than aE(Ω)
CT,E

near Ω ∼ π 1. Thus, the lower

bound aE(Ω)/CT associated to Einstein gravity can indeed be violated by higher curvature gravity.
Now let us go on to discuss the second problem. Recall that κ is defined in the small angle limit

of a(Ω):

κ = lim
Ω→0

a(Ω) Ω (85)

Following the approach of last subsection, we can express the opening angle Ω as eq.(68)

Ω = ΩE(h0) +

∞
∑

m=2

λ̄mΩm(h0) +O(λ̄m)2 (86)

with Ωm(h0 → 0) given by

Ωm =

∫ ∞

0

dy
2
(

2(1− 2m)r20 + 2r4m−2
0

(

(2m− 1)r40 + 2m(4m− 3)r20y
2 +m(4m− 3)y4

) (

r20 + y2
)−2m

)

y2 (2r20 + y2)
3/2

(r20 + y2)−1/2

+O(
1

r30
)

= ω̂mπ3/2h0 +O(h3
0). (87)

Here we have substituted r0 = 1/h0 and ω̂m are some finite numbers given by

ω̂1 = 0, ω̂2 =
128

√
2

15Γ
(

− 3
4

)2 , ω̂3 =
2176

√
2

135Γ
(

− 3
4

)2 , ω̂4 =
644

√
2

195Γ
(

1
4

)

Γ
(

5
4

) , ω̂5 =
956

√
2

221Γ
(

1
4

)

Γ
(

5
4

) , ... (88)

From eqs.(49,86,87), we obtain

Ω =

(

2
√
πΓ(34 )

Γ(14 )
+

∞
∑

m=2

λ̄mω̂mπ3/2 +O(λ̄m)2
)

h0 +O(h3
0) (89)

Remarkably, all the higher curvature terms contribute to the leading term of Ω in the singular limit.
Similarly, we can derive a(h0) as eq.(71)

a(h0) = (−f0
6

+ 4c21)

(

aE(h0) +
∞
∑

m=2

λ̄maK,m(h0) +O(λ̄m)2
)

(90)

with aK,m(h0 → 0) given by

aK,m = − 1

4G

∫ ∞

0

dy
4
(

r4m0
(

(2m− 1)r40 + 2(m(4m− 3) + 1)r20y
2 + (m(4m− 3) + 1)y4

)

− (2m− 1)r40
(

r20 + y2
)2m

)

y2 (2r20 + y2)
3/2

(r20 + y2)
2m− 1

2

1We notice that λ̄2 is proportional to t4, which is the parameter of three point functions for the stress tensor. We
have a constraint −4 ≤ t4 ≤ 4 from the positivity of energy [25]. Thus, λ̄2 ∼ t4 can indeed be positive.
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+O(
1

r0
)

= − 1

4G

âmπ3/2

h0
+O(h0) (91)

where r0 = 1/h0 and âm are some finite numbers:

â1 =
4Γ

(

3
4

)

πΓ
(

1
4

) , â2 = − 12
√
2

5Γ
(

− 3
4

)

Γ
(

5
4

) , â3 =
2624

√
2

135Γ
(

− 3
4

)2 , â4 =
2884

√
2

195Γ
(

1
4

)2 , â5 =
66112

√
2

1989Γ
(

− 3
4

)2 , ... (92)

From eqs.(50,89,90,91), we obtain

a(Ω) = (−f0
6

+ 4c
(2)
1 )

(

Γ
(

3
4

)4

2πG
+

∞
∑

m=2

λ̄m

π2Γ
(

− 1
4

)

(âm − ω̂m)

8GΓ
(

1
4

) +O(λ̄m)2
)

1

Ω
+O(Ω) (93)

Thus, κ depends on all the parameters of the higher curvature gravity. As a result, κ/CT is not a
universal ratio:

κ

CT
=

1

6
π2Γ

(

3

4

)4

+
∞
∑

m=2

λ̄m

π5Γ
(

− 1
4

)

(âm − ω̂m)

24Γ
(

1
4

) +O(λ̄m)2. (94)

The holographic models studied by [1, 2] imply that κ/CT seems to be a universal ratio. However, as
we have shown here, this is not the case for general holographic models. Our results explain the field
theoretical mismatch of the ratio κ/CT between free scalar (4.17945) and free fermion (3.8005) [2].
Eq.(94) shows that κ

CT
crucially depends on the parameters of the holographic models, or equivalently,

the details of CFTs. Thus, there is no reason to expect κ
CT

to be the same for scalars and fermions.

5 New conjectures for CFTs in higher dimensions

In this section, we investigate the universal contributions to EE from high-dimensional cones. On the
gravity side, we focus on the following AdS metric

ds2 =
dz2 + dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2

d−3)

z2
(95)

where θ ∈ [0,Ω] with Ω ≤ π and dΩ2
d−3 is the metric of unit (d − 3)-sphere. According to [23, 24],

the universal terms of EE are logarithmic terms −ad(Ω) log(H/δ) and squared logarithmic terms
−ad(Ω) log

2(H/δ) in odd dimensions and even dimensions, respectively. Similar to the 3d CFTs, we
have ad(Ω) = ad(π − Ω) and the following asymptotic behaviors

ad(Ω → π/2) ≃ σd(π/2− Ω)2, ad(Ω → 0) ≃ κd/Ω (96)

By studying the holographic models, we find that

σd

CT
=

σd,E

CT,E
(97)

is a universal ratio. Here CT are the central charges defined in the two point function eq.(5) and E
denotes Einstein gravity.

5.1 CFTs in even dimensions

5.1.1 4d CFTs

In this subsection, we study the universal terms of EE from sharp corners for 4d CFTs. For simplicity,
we firstly consider gravity theories with at most squared curvatures and then generalize our discussions
to general higher curvature gravity.
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From eq.(39), we get the entropy for curvature-squared gravity as

S =
1

4G

∫

dd−1y
√
γ
[

− f0
2d

− c
(2)
2

1

2
(trK)2 − 2c

(2)
1 trK2

]

(98)

As argued in [1, 2], we can drop (trK)2 near the minimal surface. Take into account the scaling
symmetry of AdS, we can parameterize the extremal entropy surface as z = ρ h(θ). Now the entropy
functional becomes

S =
Ωd−3

4G

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh
sind−3(θ)

h′hd−1

√

1 + h2 + (h′)2
(

− f0
2d

− 2c
(2)
1

(

k2+ + k2− + (d− 3)k20
)

)

(99)

where k±, k0 are the eigenvalues of the extrinsic curvature Ki
j :

k+ =
1

√

h2 + (h′)
2
+ 1

, (100)

k0 =
h2 + hh′ cot(θ) + 1
√

h2 + (h′)
2
+ 1

, (101)

k− =
h4 + hh′′ + 2h2 + (h′)2 + h3h′′ + 1

(

h2 + (h′)
2
+ 1

)3/2
(102)

Now let us consider the case d = 4. Firstly, we derive E.O.M of h(θ) from the entropy functional
(99). Then we change the variable y = sin(θ) = y(h). Finally, we solve E.O.M of y(h) perturbatively.
After some tedious calculations, we obtain

y = sin(Ω)− 1

4
cos(Ω) cot(Ω)h2 + y0h

4 − 1

64
(cos(2Ω)− 3) cot2(Ω) csc(Ω)h4 log(h) + O(h6) (103)

where y0 is a constant that can be fixed by using the fact that y(h) has an extrema at h = h0.

Remarkably, the solution (103) is independent of the parameter c
(2)
1 up to O(h4). This means that

the minimal surface is a good approximation for the extremal entropy surface near the boundary of
AdS. Using the solution (103) together with h′ =

√

1− y2/y′(h) and h′′ = −(yy′2 + (1− y2)y′′)/y′3,
we find the integrand of eq.(99) behaves as

sind−3(θ)

h′hd−1

√

1 + h2 + (h′)2
(

− f0
2d

− 2c
(2)
1 trK2

)

=
f0
8

sin(Ω)

h3
+ (−f0

8
+ 8c

(2)
1 )

cos(Ω) cot(Ω)

8h
+O(h)(104)

According to [23], the universal squared logarithmic term can only come from the (1/h) term in the
integrand (104). Substituting eq.(104) into entropy functional (99), we get the universal term of EE
as

− a4(Ω) log
2(H/δ) = − π

32G
(−f0

8
+ 8c

(2)
1 ) cos(Ω) cot(Ω) log2(H/δ) (105)

Now let us generalize our above discussions to general higher curvature gravity. It turns out that
the general holographic models give the same result as eq.(105). The reasons are as follows. Near the
boundary h → 0, the asymptotic solution y(h) takes the form

y = sin(Ω) + c1h
2 + ...+ hd(cd/2 + b log(h)) + ... (106)

Thus, we have h′ =
√

1− y2/y′(h) ∼ 1/h and h′′ = −(yy′2 + (1 − y2)y′′)/y′3 ∼ 1/h. Substituting
h′ ∼ 1/h and h′′ ∼ 1/h into the eigenvalues of the extrinsic curvature (100), we find that

(K2m) ∼ h2m (107)
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Thus, the entropy functional for higher extrinsic curvature terms (K2m) behaves

∫

dρ

ρ

∫ δ/ρ

dh
sind−3(θ)

h′hd−1

√

1 + h2 + (h′)2 (K)2m ∼
∫

dρ

ρ

∫ δ/ρ

dh
(

h2m−d+1 + ...
)

(108)

where ’...’ denotes higher order terms. Now it is clear only the terms (K2m) with m ≤ (d − 2)/2
contribute to the squared logarithmic terms. That is because only the 1/h terms in the integrand are
related to the universal term of EE [23]. For d = 4, we get m ≤ 1. Thus, besides TrK2, there is no
need to consider other higher extrinsic curvature terms for 4d CFTs.

Using eq.(105) together with CT = (− f0
8 + 8c

(2)
1 )CT,E for d = 4, we find that

a4(Ω)

CT
=

a4,E(Ω)

CT,E
(109)

is a universal ratio for all the CFTs dual to higher curvature gravity. Note that we have not only
σ4/CT but also a4(Ω)/CT universal for 4d CFTs.

5.1.2 6d CFTs

Now let us study the universal terms of EE from sharp corners for 6d CFTs. As discussed below
eq.(108), to derive a6(Ω), we only need to consider three extrinsic curvature terms, i.e., TrK2, TrK4

and (trK2)2 in the entropy functional (39). Note that, similar to (trK)2, (trK)(trK3) and (trK)4 are
less important near the boundary of AdS, where the extremal entropy surface becomes the minimal
surface approximately.

Let us firstly consider TrK2. The corresponding entropy functional is given by eq.(99). Following
the approach of last subsection, we obtain the asymptotic solution

y = sin(Ω)− 3

8
cos(Ω) cot(Ω)h2 − 3 cot2(Ω) csc(Ω)((104λ+ 11) cos(2Ω) + 168λ+ 19)

1024(8λ+ 1)
h4

+y0h
6 − 3 cos(Ω) cot(Ω)

(

(112λ− 15) csc4(Ω) + 2(48λ− 7) csc2(Ω) + 48λ− 3
)

4096(8λ− 1)
h6 log(h)

+O(h8) (110)

For simplicity, we have set − f0
2d = 1 and λ = −2c

(2)
1 in the above equation. Substituting the solution

(110) into the entropy functional (99) and picking the 1/h terms in the integrand, we derive

a6(Ω) =
Ω3

8G

9 cos(Ω) cot(Ω)((1 − 16λ) cos(2Ω) + 240λ− 31)

4096
(111)

σ6 = −Ω3

8G

9

128
(1− 8λ) (112)

Let us go on to discuss the effects from TrK4 and (trK2)2. From the experience of 3d and 4d CFTs,
it is expected that TrK4 and (trK2)2 do not change σ6. Instead, they only modify the subleading
terms of a6(Ω) in the smooth limit Ω → π/2. As we shall show below, this is indeed the case. Adding
λ2(1)trK

4+λ2(2)(trK
2)2 to the the entropy functional (98) and following the above approach, we find

that trK4 and (trK2)2 only modify a6(Ω) at the subleading order O(Ω− π
2 )

4

δa6(Ω) =
Ω3

8G
(Ω− π

2
)4
(

− 21

64
λ2(1) −

9

16
λ2(2)

)

+O(Ω− π

2
)6 (113)

Thus, the coefficient of (Ω − π
2 )

2, i.e., σ6 (112), remains the same. Now from eq.(112) and CT =
(1 − 8λ)CT,E , it is clear that

σ6

CT
=

σ6,E

CT,E
(114)

is indeed a universal ratio for the CFTs dual to general higher curvature gravity.
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5.1.3 2n-dimensional CFTs

Now let us investigate the universal term of EE from sharp corners for general even-dimensional
CFTs. The higher the dimension is, the more terms we need to consider in order to derive ad(Ω).
In general, we need to study all the extrinsic curvature terms (K2m) with m ≤ (d − 2)/2 for ad(Ω).
The experiences of 4d and 6d CFTs imply that only trK2 contribute to σd and the other higher
extrinsic curvature terms only modify the subleading terms of ad(Ω). For simplicity, we only consider
the curvature-squared gravity in this sub-section.

Using the entropy functional (99) and following the approach of sect. 5.1.1, we obtain

σd =
Ωd−3

8G

(

− f0
2d

+ (4d− 8)c
(2)
1

)

βd (115)

where Ωd−3 = 2π(d−2)/2

Γ((d−2)/2) is the volume of the unit (d− 3)-sphere, βd are some numbers given by

β4 =
1

8
, β6 = − 9

128
, β8 =

25

512
, β10 = − 1225

32768
, β12 =

3969

131072
, ... (116)

We notice that βd are the expansion coefficients of complete elliptic integral of the first kind:

K(−x) =
π

2
− π

∞
∑

n=2

β2n xn−1 (117)

βd = (−1)
d
2
23−2dΓ[d− 1]2

Γ[d2 ]
2

(118)

Comparing σd (115) with CT = (− f0
2d + (4d− 8)c

(2)
1 )CT,E , we find that

σd

CT
=

Ωd−3

8G

βd

CT,E
= (−1)

d
2
(d− 1)(d− 2)πd−1Γ[d−1

2 ]2

2Γ[d2 ]
2Γ[d+ 2]

, (d even) (119)

is a universal ratio for even-dimensional CFTs 2. Although we only checked eq.(119) by studying the
curvature-squared gravity, we expect that it is a universal law for the CFTs dual to general higher
curvature gravity in space-time (95). It should be mentioned that ad(Ω) is not conformally invariant
for even CFTs [23]. To derive eq.(119), we assume that the boundary metric is

ds2 = dt2E + dρ2 + ρ2(dθ2 + sin2 θdΩ2
d−3) (120)

which is dual to the bulk metric (95). By a singular Weyl transformation, we can obtain a new
boundary metric [23]

ds2 = dY 2 + dξ2 + sin2 ξ(dθ2 + sin2 θdΩ2
d−3) (121)

which is dual to the bulk metric

ds2 =
1

1 +R2
dR2 + (1 +R2)dY 2 +R2[dξ2 + sin2 ξ(dθ2 + sin2 θdΩ2

d−3)] (122)

It turns out that ad(Ω) derived from (95) and (122) differ by a factor 2. This mismatch can be
regarded as an anomaly from the singular conformal transformation [23]. Thus, by saying σd/CT

(119) is universal for even-dimensional CFTs, we mean the case when all the CFTs live in the same
boundary space-time.

2Note that the definition of σd of this paper differs from the one of [17] by a factor 4(−1)
d
2 . Thus, eq.(119) agrees

with the results of [17].
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5.2 CFTs in odd dimensions

Now let us study the universal term of EE from sharp corners for CFTs in odd dimensions. In contrast
to 3d and even-dimensional cases, it is difficult to derive the exact formula of σd for odd-dimensional
CFTs. We leave the discussions of odd-dimensional CFTs to future work. Below we proceed as far as
we can. For simplicity, we take 5d CFTs as an example.

Let us start with the entropy functional (39) with d = 5, −f0/10 = 1 and λ = −2c
(2)
1 .

S =
Ω2

4G

∫ H

δ/h0

dρ

ρ

∫ δ/ρ

h0

dh
sin2(θ)

h′h4

√

1 + h2 + (h′)2
(

1 + λtrK2 +

∞
∑

m=2

λm(K2m)

)

(123)

where trK2 =
(

k2+ + k2− + 2k20
)

with k given by eq.(100), and (K2m) denote all the possible higher
extrinsic curvature terms. Following the approach of sect.5.1.1, we can derive the asymptotic solution

y = sin(Ω)− 1

3
h2 cos(Ω) cot(Ω)− h4

(

cot2(Ω) csc(Ω)((5λ + 1) cos(2Ω) + 11λ+ 4)
)

54(2λ+ 1)
+O(h6) (124)

Remarkably, the higher extrinsic curvature terms (K2m) with m ≥ 2 do not affect the asymptotic
solution up to order O(h4). That is because (K2m) ∼ h2m are subleading terms near the boundary.
This is a sign that these higher extrinsic curvature terms are irrelevant to σ5.

Substituting the above solution into the integrand of the entropy functional (123), we find

sin2(θ)

h′h4

√

1 + h2 + (h′)2
(

1 + λtrK2 +
∞
∑

m=2

λm(K2m)

)

= − sin(Ω)

h4
− 2(3λ− 2) cos2(Ω)

9h2
+ O(1) (125)

To derive the universal term of EE −a5(Ω) log(H/δ), we need to extract the finite part of the above
integrand. We obtain

a5 =
π

G
(
sin(Ω)

3h3
0

+
2(3λ− 2) cos2(Ω)

9h0
)

+
π

G

∫ h0

0

dh

(

sin2(θ)

h′h4

√

1 + h2 + (h′)2
(

1 + λtrK2 +

∞
∑

m=2

λm(K2m)
)

+
sin(Ω)

h4
+

2(3λ− 2) cos2(Ω)

9h2

)

(126)

Unlike the 3d case, it is difficult to derive an analytical solution of h(θ) and thus a5 due to the
appearance of sin(θ) in the entropy functional (123). We leave the careful numerical study of this
problem to future work [26].

6 Conclusions

By applying the general higher curvature gravity, we give a holographic proof of the conjecture [1] for
3d CFTs. We find that, similar to the smooth case, the cubic and higher terms in the expansions of
the action (20) around the ’background-curvature’ are less important, i.e., they do not change either σ
or CT . Besides, we have clarified some interesting problems. Firstly, we find that, unlike σ/CT , κ/CT

is not a universal ratio. On the contrary, it crucially depends on the details of the CFTs. Secondly,
we find that the lower bound aE(Ω)/CT associated to Einstein gravity can be violated by higher
curvature gravity. Last but not least, we find that there are similar universal laws in the smooth limit
for CFTs in higher dimensions. We give a holographic proof of the universal laws for 4d and 6d CFTs
which are dual to the general higher curvature gravity and check the higher even-dimensional cases by
studying curvature-squared gravity. As for the odd-dimensional CFTs (d > 3), it is difficult to derive
the analytical results. However there are hints that the higher extrinsic curvature terms do not affect
σ. Therefore it is expected that, similar to the 3d CFTs, σd/CT,d are also universal ratios for the
CFTs in higher odd-dimensional space-times. We leave the careful numerical study of this problem
to future work [26]. Based on the holographic results, we can trust these new conjectures in higher
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dimensions at least for strongly coupled CFTs. It is interesting to test whether these universal laws
are obeyed by weakly coupled CFTs. It is also interesting to find a field theoretical proof of these
universal ratios. Finally, we want to mention that, for simplicity, we focus on the CFTs dual to the
general higher curvature gravity f(Rijkl) in this paper. It is expected that our discussions can be
naturally generalized to the cases of most general higher derivative gravity f(Rijkl ,∇mRijkl, ...). Now
work is in progress in this direction.
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A Some formula

Fm =
h2 + 2m (h′)2 + 1

h2
(

h2 + (h′)2 + 1
)m+ 1

2

+

(

h2 + 1
)2 (

(h− 6hm)h′′ + h2 + 1
)

+ 2
(

2h2 + 3
)

m (h′)
4
+
(

h2 + 1
) (

2
(

5h2 + 3
)

m+ 1
)

(h′)
2

h2
(

h2 + (h′)2 + 1
)3m+ 1

2
(

(h2 + 1) (hh′′ + h2 + 1) + (h′)2
)1−2m

+
2m

(

(

h2 + 1
) (

hh′′ + h2 + 1
)

+ (h′)
2
)2m−2

h2
(

h2 + (h′)
2
+ 1

)
1
2−3m

×
(

2h
(

h2 + 1
)3

h′′
(

hh′′ + h2 + 1
)

−
(

h2 + 3
)

(h′)
6

+
(

h2 + 1
)

(h′)
4 (

h4(8m− 5) + h
(

h2(6m− 4)− 3
)

h′′ + 2h2(m− 4)− 6
)

+
(

h2 + 1
)2

(h′)
2 ((

h2 + 1
) (

2h2(m− 2)− 3
)

− hh′′
(

3h(2m− 1)h′′ + 6h2m+ 1
))

+
(

h3 + h
)2

h(3)(2m− 1) (h′)
3
+ h2h(3)

(

h2 + 1
)3

(2m− 1)h′

)

(127)

B Corner entropy at the second order

In this appendix, we give some results for the logarithmic terms of EE at order O(λm)2 for 3d CFTs.
Solving eq.(65) to the second order of λm and then substituting the solution into the entropy functional
eq.(64), we can derive

a(h0) = (−f0
6

+ 4c21)aE(h0) +

∞
∑

m=2

(

λmaK,m(h0) + λ2
maK,(2)m(h0)

)

+O(λm)3 (128)

where a(2)m(h0 → ∞) are given by

aK,(2)m = − 1

2G

∫ ∞

0

dy

h4m−2
0

2m2

y2 (y2 + 1)
4m+1

(

512m4
(

y2 + 1
)2

y4 + 123y8 + 312y6

−64m3
(

22y2 + 3
) (

y3 + y
)2 − 4y2

(

(

y2 + 1
)2m − 12

)

+ 9
(

(

y2 + 1
)4m − 1

)

+ y4
(

246− 4
(

y2 + 1
)2m

)

−4m
(

(

y2 + 1
)2m

+ 6
(

y2 + 1
)4m − 2y2

(

(

y2 + 1
)2m − 28

)

− 3y4
(

(

y2 + 1
)2m − 102

)

+ 173y8 + 416y6 − 7
)

+16m2
(

(

y2 + 1
)4m − y2

(

(

y2 + 1
)2m − 24

)

− y4
(

(

y2 + 1
)2m − 143

)

+ 92y8 + 210y6 − 1
)

)

= − 1

2G

ā(2)mπ

h4m−2
0

+O(
1

h4m
0

). (129)
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Here ā(2)m are some finite numbers:

ā(2)1 = 0, ā(2)2 = −2825

32
, ā(2)3 = −21845619

32768
, ā(2)4 = −657678125

262144
, ā(2)5 = −14523464909675

2147483648
, ...(130)

Similarly, we can derive the opening angle Ω as

Ω = 2

∫ 0

h0

dh
1

h′
= ΩE(h0) +

∞
∑

m=2

(

λ̄mΩm(h0) + λ̄2
mΩ(2)m(h0)

)

+O(λ̄m)3 (131)

In the smooth limit h0 → ∞, we have

Ω(2)m =
2

h4m−3
0

∫ ∞

0

dy
4m2(2m− 1)

y2 (y2 + 1)
4m+1

(

4(m− 1)
(

y2 + 1
)4m

+
(

(3− 4m)y2 − 1
) (

y2 + 1
)2m+1

+
(

y2 + 1
)2 (

(4m− 3)(16m(2m− 3) + 17)y4 − 2(8m(3m− 5) + 15)y2 − 4m+ 5
)

)

+O(
1

h4m−1
0

)

=
2ω(2)mπ

h4m−3
0

+O(
1

h4m−1
0

) (132)

with ω(2)m given by

ω(2)1 = 0, ω(2)2 = −1359

16
, ω(2)3 = −10742535

16384
, ω(2)4 = −325720423

131072
, ω(2)5 = −7216252470675

1073741824
, ...(133)

Note that eqs.(129,132) obey the power law eqs.(79,80). Remarkably, the higher order terms O(λn
m)

behave as O(1/h4mn
0 ) which are much smaller than the first order terms O(λm) in the smooth limit

h0 → ∞. Thus it is sufficient to consider only the first order of λm for the proof of the conjecture (4).
To end this section, let us comment the higher order terms O(λn

m). At the first order O(λm), all the
possible terms of (K2m) are equivalent to trK2m up to some factor. For the second order λ2

m, (K2m)
can be classified by at most three equivalence classes, i.e., trK2m, trK2trK2m−2 and trK4trK2m−4.
Similarly, more and more equivalence classes need to be considered for (K2m) terms at higher order
O(λn

m). It is expected that all the equivalence classes obey the same power law eqs.(79,80) as trK2m.
To see this, recall that there are two eigenvalues k± for the extrinsic curvature Ki

j in AdS4. Thus, we
have

2n−1trK2m ≥
n
∏

i=1

TrK2mi ≥ trK2m, with

n
∑

i=1

mi = m

2n−1(k2m+ + k2m− ) ≥
n
∏

i=1

(k2mi
+ + k2mi

− ) ≥ (k2m+ + k2m− ). (134)

Clearly,
∏n

i=1 TrK
2mi are lower and higher bounded by trK2m with some factors. So it is expected

that
∏n

i=1 TrK
2mi obey the same power law eqs.(79,80) as trK2m.

Let us take the (K4) terms of order O(λ2
2) as an example. These terms are associated to the cubic

curvature gravity. There are two equivalence classes trK4 and (trK2)2. We have studied trK4 above.
For (trK2)2, similar to eqs.(129,132), we obtain

a′K,(2)2 =
1801

16G

π

h6
0

+O(
1

h8
0

) (135)

Ω′
(2)2 = −847π

2h5
0

+O(
1

h7
0

) (136)

which indeed obey the same power law as trK4. One can further check that trK4 and (trK2)2 also
obey the same power law eqs.(79,80) at the next order O(λ3

2).
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