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Zinc crystallises in the hcp structure, but with an anomalously large c/a ratio, indicating a
strong distortion away from ideal packing. Coupled cluster calculations within the frame work of
the method of increments, improved by an embedding scheme for metals, were performed to explore
the potential energy surface of zinc with respect to the hexagonal lattice parameters. The inclusion
of the filled d -shell in the correlation treatment proved to be essential. From the exceptional shape
of the potential energy surface the existance of a zinc modification with a nearly ideal c/a ratio can
be deduced.

PACS numbers: 31.15.Ar,61.66.Bi,71.10.-w,71.15.Nc

As a rule, the hexagonally close-packed (hcp) elemen-
tal metals, even including high-pressure phases, do not
deviate from the ideal ratio of the lattice constants (c/a
= 1.63) of this structure type by more than 4%. Zn, Cd
and the high pressure modification of Hg [1], however,
constitute conspicuous exceptions, showing extreme val-
ues of c/a = 1.86 and 1.89 for Zn and Cd respectively,
deviating by 14 and 16% from the ideal value. This cor-
responds to a partitioning of the ideally equal distances
for the 12 nearest neighbors into two subsets with 6 by
10% shorter in-plane contacts compared to each three
above and below the plane (Fig. 1). This pronounced
anomaly can only originate from the electronic structures
of the respective elements, since any other constraints
that might induce such a distortion are absent. As the
reasons for the exceptional packing are not understood
so far, investigations with highly accurate computational
methods are required in order to analyze the electronic
interactions in detail.

In experimental high pressure studies addressing the
anomalous c/a ratio in Zn and Cd, irregularities in the
pressure dependence of the lattice parameters have been
found [2]. A change in the slope of the c/a vs. V/V0 curve
at c/a =

√

3 [1, 3] has been related either to the corre-
sponding special symmetry of the hcp structure both in
real and reciprocal space or to a change of the Fermi sur-
face, an electronic topological transition (ETT), which
was also discussed in connection with an abrupt change
of the Lamb-Mössbauer factor under pressure [4, 5]. The
anomalous response of the c/a ratio upon pressure, how-
ever, could not be verified experimentally when a dif-
ferent pressure medium was employed [6]. Likewise theo-
retical studies within the framework of density functional
theory (DFT) did not provide an unequivocal picture of
the c/a anomaly and its relation to an ETT, as the re-

FIG. 1: In the anisotropic hcp form known experimentally
for zinc the bonds between planes (dashed) are 10% longer
than the bonds within the close-packed planes, leading to an
enlarged ratio of the lattice parameters c/a. The grey trian-
gles represent the most dominant 3-body correlation terms as
discussed in the text.

sults depend on the functionals and the computational
parameters used [7, 8, 9, 10, 11].

Up to now the best agreement between experimental
ground state properties like cohesive energy, lattice con-
stants and bulk modulus and the corresponding DFT re-
sults were obtained with the PBE functional [12].

However in a recent survey [13] we have shown that the
anisotropy of the bonding in Zn, as reflected by the elas-
tic constants, is not described in a well-balanced manner
even with this functional. Indeed, the elastic constants
related to distortions in the a-b-plane are reproduced bet-
ter with hybrid functionals with Hartree-Fock and DFT
exchange mixed. The drawback of these latter function-
als is a worse description of the interlayer interaction,
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leading with B3LYP [14] even to a shift of the c value by
0.79 Å or 16% compared to the experiment.

The potential energy surface of Zn with respect to the
lattice constants (PES(a,c)) turned out to be very flat
along a path that corresponds to uniaxial stress along
the c axis [13]. Depending on the basis set a second min-
imum at a nearly ideal c/a (1.56) appears. In this case
the barrier is less than 0.02 eV above the minimum near
the experimental structure. The topology of the Fermi
surface is different at both minima. With the nearly ideal
structure it resembles that of Mg. Whether the ETT is
the driving force for Zn to adopt the experimental struc-
ture is, however, questionable because of the low energy
difference.

Another question raised in Ref. 13 is connected to the
role of the filled d -shell in the the intra- and inter-layer
interactions. Arguments focussing on the hybridisation
of the s and p valence bands [15] seem to be not sufficient
to describe the deviation from the ideal hcp structure.

In order to analyze different effects on the anisotropic
bonding properties in Zn in more detail, the applica-
tion of wavefunction based methods is necessary. This
has some computational cost, but the important advan-
tage that we can systematically judge the perfomance of
our calculations. As has been shown in previous stud-
ies [16, 17, 18] we believe that an accurate treatment of
electron correlation is the key to a correct description of
the underlying physics. Highly accurate methods such as
coupled cluster techniques can be used for periodic sys-
tems within the framework of the method of increments
[19, 20].

A many-body expansion of the correlation energy of
the solid in terms of local entities allows us to write that
Etot = EHF +Ecorr, where the Hartree-Fock energy EHF

may be calculated for the periodic system in the stan-
dard way, and the Ecorr may be calculated within the
incremental expansion

Ecorr =
∑

i

εi +
∑

i<j

∆εij +
∑

i<j<k

∆εijk + . . .

The summation over i includes all orbitals in the refer-
ence cell, while j and k extend over the entire system.
In terms of the correlations considered, the one-body in-
crement involves all excitations from the orbitals i lo-
cated within the reference cell, while the two-body incre-
ment includes the non-additive excitations summed over
orbitals i and j; that is ∆εij = εij − (εi + εj). Sim-
ilarly the three-body contributions may be written as
∆εijk = εijk − (∆εij + ∆εjk + ∆εki) − (εi + εj + εk).
In the limit of an infinite sum over i, j, k as well as over
orders of increments, one would obtain the exact corre-
lation energy per unit cell of the infinite system. Due to
the local nature of correlation, the incremental expansion
converges swiftly with distance, although the exact con-
vergence behaviour must be tested for any real system.

The neglect of four-body and higher terms is possible
even in metals if a carefully designed embedding scheme
is applied [21]. Moreover, this provides a physical envi-
ronment that does not exhibit surface charging of finite
metal clusters, and has a disappearing band gap even at
small sizes.

In order to be able to investigate a wider area of the
potential energy surface with respect to the hexagonal
lattice parameters, PES(a,c), a compromise had to be
found between computational expense and accuracy by
further limiting the number of two- and three-body terms
in the incremental expansion. We include the first 7 two-
body increments (up to a distance of 2a in the experimen-
tal structure) and the first 10 three-body increments that
have one bond at the nearest or second nearest neighbour
distance and a maximum bond length of 2a. This turned
out to be a balanced choice of intra- and inter-layer incre-
ments, as well as of positive and negative 3-body terms
[22]. At each point of the PES(a,c) we consistently in-
clude the same increments as ordered at the experimental
lattice structure, rather than reordering the increments.
This topological approach is important because the sign
of the contribution of the three-body terms depends on
the angle, and thus a strict distance cutoff to truncate
the sum over three-body terms would introduce small
discontinuities in the total energy.

The Hartree-Fock energy was evaluated by peri-
odic mean-field calculations using the program package
CRYSTAL06 [23]. The chemically inactive [Ne] core
of the Zn atom was simulated by an energy-consistent
scalar-relativistic pseudopotential [24]. The basis sets
used are contracted Gaussian type orbital (CGTO) sets
obtained from the Dunning-type cc-p-vTZ basis sets [25],
optimised for the 20-valence electron pseudopotential [24]
and modified [22] to meet the requirements of the CRYS-
TAL code. We performed a counterpoise correction using
24 neighbours in the solid to correct the crystal basis set
for the atomic energy at any point of the potential energy
surface.

The incremental correlation energies were computed
with the coupled cluster code as implemented in MOL-
PRO [26] with single, double and perturbative triple exci-
tations (CCSD(T)) [27, 28], using the aug-cc-p-vTZ basis
set with additional decontraction of the exponents [25].
Separate calculations with and without inclusion of the
d -orbitals in the coupled cluster treatment allow for an
investigation of the influence of the filled d -shell on the
correlation energy and thus on the bonding properties.

The contributions of HF and of the 1-body, 2-body
and 3-body terms to the binding energy are represented
separately in Fig. 2. At the HF level zinc is not bound,
being expressed by a positive binding energy of 0.09 eV,
at the experimental lattice parameters. As is natural
for a purely repulsive potential this value increases with
decreasing distance (Fig. 2a). The negative gradient
points to smaller c/a ratios.
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FIG. 2: Contributions to the binding energy of Zn in eV: a)
HF; b) 1-body increments; c) 2-body increments; d) 3-body
increments. The increments include d -correlation. Note the
different scales of the contour plots.

The positive 1-body terms of the valence shell are can-
celled out after including the d -shell in the correlation
treatment, leading to rather low negative contributions
(Fig. 2b). The by far largest part of the correlation en-
ergy is due to 2-body increments. Within the area of the
PES(a,c) regarded here, this contribution to the bind-
ing energy increases monotonically with decreasing lat-
tice constants (Fig. 2c). The gradient is not closely par-
allel to lines of constant c/a, favouring larger c/a ratios.
When omitting the d-correlation the monotonic shape re-
mains the same, but the absolute values are 23 % smaller
and, moreover, the gradient is smaller by more than a
factor of two. Thus, without d -correlation, the repulsive
HF potential cannot be compensated adequately, leading
to a considerably larger a-parameter (Fig. 3b). In this
case no minimum is found at the experimental lattive
constants, and the binding energy is only -0.8 eV.

Compared to the monotonic behaviour of the other
terms, the 3-body contributions depend in a complex
manner on the lattice constants (Fig. 2d). In the whole
area the 3-body values are positive. They are higher at
low a- and c-parameters, partially balancing the attrac-
tive nature of the 2-body terms. The most dominant in-
dividual 3-body increments are coming from the smallest
triangles in the lattice, in-plane, denoted 3a’ and 3a” in
Fig. 1, and out-of-plane, denoted 3d. (Although 3a’ and

a) b)

FIG. 3: Total binding energy of Zn with respect to the lat-
tice constants (in eV), with (a) and without (b) d -correlation.
Note the different scales of the contour plots. The blue di-
amonds in the left diagram mark the lattice constants mea-
sured by Takemura [1] under high pressure.

3a” are based on an equivalent correlated cluster, they
vary due to different crystallographic positions and thus
due to different embedding.) All three increments are
positive and the repulsion increases with shrinking lat-
tice constants. An increase of the in-plane terms, forced
by the highly attractive 2-body contributions, however,
can be compensated by a decrease of the out-of-plane
term at a larger c-parameter. The compensation is one
of the reasons for the anisotropic crystal structure of zinc.

The PES including valence- and d -correlation is pre-
sented in Fig. 3a. The cohesive energy at the minimum
called ’expt-like’ in Tab. I matches the experimental one.
The corresponding a-parameter deviates by -2%, the c-
parameter by less than 1%. One reason for the overbind-
ing in the a-b-plane may be the neglect of the correlation
contributions of the semi-core orbitals (3s,3p). They were
computed for a few points on the PES and lead to a re-
duction of the binding energy by 0.01 to 0.02 eV. The
effect is smaller at larger lattice constants.

In contrast to other elements like Mg [18], Zn has a
much more complex energy landscape. Behind a barrier
of 0.02 eV height towards smaller c-parameters it fea-
tures two valleys separated by a ridge. The correspond-
ing minima are called ’ideal-like’ and ’min-3’ in Tab. I.
This exceptional shape is the consequence of the complex
interplay of the 3-body terms as discussed above. The
’ideal-like’ minimum with a nearly ideal c/a ratio even
exhibits a slightly larger binding energy than the ’expt-
like’ one. This fact raises the question why the ’ideal-
like’ minimum thus far has not been accessible via high
pressure experiments. The reason is given by the special
shape of the energy landscape. Due to the hydrostatic
conditions in the experiments that prevent a significant
expansion of the a-b-plane, the system moves through
the left valley. Taking into account that our calculations
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TABLE I: Lattice constants (Å), cohesive energies (eV) and
cell volumes (Å3) for minima on the potential energy surface
PES(a,c) of zinc.

a c c/a Ecoh V

expt a 2.67 4.95 1.86 -1.35 30.4

this work expt-like 2.61 4.98 1.91 -1.35 29.3

ideal-likeb 2.72 4.34 1.60 -1.39 27.8

min-3b 2.61 4.70 1.80 -1.35 27.7

GGA(PBE) [13] expt-like 2.65 5.12 1.93 -1.00 31.1

ideal-like 2.82 4.40 1.56 -0.99 30.3

aLattice constants [29], cohesive energy [30]
bData points in the computed grid with high binding energy

slightly overestimate the binding in the hexagonal plane,
the high pressure data of Takemura [1] fit very well to
our PES (Fig. 3a). The additional local minimum in
the left valley (’min-3’ in Tab. I) is another indication
for the strong bond in the hexagonal planes and may
further explain the anomalies observed in high pressure
experiments under certain conditions.

Using the methods of increments we have been able
to draw a detailed picture of the hcp structure of zinc.
Besides the analysis of the PES and its relation to exper-
imental data, mechanisms for the anisotropy are worked
out, that lead to a layered structure. We emphasize the
necessity of including the filled d -shell in the treatment of
the electronic correlation. The existence of a zinc modi-
fication with a nearly ideal c/a ratio is possible.
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