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Abstract

Permutation distribution clustering is a complexity-based approach to clustering time
series. The dissimilarity of time series is formalized as the squared Hellinger distance
between the permutation distribution of embedded time series. The resulting distance
measure has linear time complexity, is invariant to phase and monotonic transformations,
and robust to outliers. A probabilistic interpretation allows the determination of the
number of significantly different clusters. An entropy-based heuristic relieves the user of
the need to choose the parameters of the underlying time-delayed embedding manually
and, thus, makes it possible to regard the approach as parameter-free. This approach is
illustrated with examples on empirical data.
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1. Introduction

Clustering is an unsupervised technique to partition a data set into groups of similar objects
with the goal of discovering an inherent but latent structure. Similarity of static objects is
often formalized by embedding objects into a space by means of a suitable measure, e.g., the
city-block distance, Euclidean norm, Mahalanobis distance, or correlation. Based on a chosen
loss function, clustering algorithms find or approximate an optimal partition of these points.
Various approaches exist to construct clusters, mainly differing in whether the number of
clusters has to be specified beforehand and whether the solution is partitional or hierarchical.
Among the most common and well-understood clustering algorithms is k-means (MacQueen
1967) – or variants of it, such as k-medians or k-centroids – and agglomerative hierarchical
clustering (Johnson 1967). Whereas clustering static data is well understood, clustering time
series raises additional difficulties. Direct clustering based on the Euclidean space spanned
by the raw signals limits the approach to time series of equal length and lacks robustness by
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restricting similarity to time and shape. Therefore, most approaches reduce the time series to
a meaningful description in a low-dimensional feature space by means of geometric, algebraic
or symbolic approximations, or cluster the parameters of a model-based description (see, e.g.,
Liao 2005). A more recent empirical comparison of distance measures was performed by
Ding, Trajcevski, Scheuermann, Wang, and Keogh (2008). Fulcher, Little, and Jones (2013)
have demonstrated empirically clustering across both time series data and analysis methods.
Most clustering algorithms formalize similarity by shape, i.e., as it is apparent to the human
eye. However, clusters may arise from structural changes of the underlying dynamical system
that may well be hidden under heavy observational noise. This motivates clustering based
on the relative complexity between time series, which defines similarity based on statistical
properties of the time series instead of apparent shape similarity.
Permutation distribution clustering (PDC; Brandmaier 2012) is a complexity-based approach
to clustering time series. The main idea is to formalize similarity as small relative complexity
between two time series. As a proxy of complexity, we choose the permutation distribution
(PD). This distribution was introduced by Bandt and Pompe (2002) who interpret its en-
tropy as a measure of complexity of a univariate time series. Permutation entropy has been
successfully employed to analyze the complexity of data sets from various fields, including
medicine (Li, Ouyang, and Richards 2007; Bruzzo, Gesierich, Santi, Tassinari, Birbaumer,
and Rubboli 2008; Nicolaou and Georgiou 2011), geology (Hao and Zhao 2010) and engi-
neering (Nair, Krishna, Namboothiri, and Nampoori 2010). The importance of clustering
time series according to a complexity-based formalization of dissimilarity was also recognized
previously in a broader context (Li, Chen, Li, Ma, and Vitányi 2004; Keogh, Lonardi, and
Ratanamahatana 2004b). We use the squared Hellinger distance, a metric approximation of
the Kullback-Leibler divergence (Kullback and Leibler 1951), between the distributions of
signal permutations of embedded time series to obtain a dissimilarity matrix of a set of times
series. This then serves as input for further clustering or projection.
The PD has several properties that make it an interesting candidate for a dissimilarity mea-
sure. Firstly, it is invariant to all monotonic transformations of the underlying time series. In
particular, addition and multiplication of positive constants to the time series do not change
its PD, making the PD invariant to monotonic normalizations, e.g., standardization by sub-
tracting the mean and dividing by standard deviation. This property relieves the researcher
from deciding to normalize as a preprocessing step which often has a serious impact on the
clustering results when common metric dissimilarity measures are used, e.g., the Euclidean
distance. Another advantage arising from this property is the robustness against slow drift
in a signal (i.e., wandering baseline), which often occurs due to the physical properties of the
measurement device. In electroencephalography (EEG), amplifier drifts are observed (Fisch
and Spehlmann 1999) and a common problem in accelerometry is thermal drift of the sensors.
Drifts of these kinds can be thought of as a local offset in the sensor reading that does not
alter the PD. Furthermore, the compressed representation of PD allows the comparison of
time series of varying lengths. And last but not least, PD has phase invariance, that is, it is
not important when exactly patterns occur but only that they do occur.
PDC is available in package pdc (Brandmaier 2015) for the free statistical computing lan-
guage R (R Core Team 2015), which is available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=pdc. The package pdc provides a fast,
native implementation to calculate the permutation distribution of time series, together with
easily accessible methods to calculate dissimilarity matrices and perform clustering on them.

http://CRAN.R-project.org/package=pdc
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Importantly, it enables users to either specify meta-parameters, the embedding dimension and
time delay, manually or by using an entropy-based heuristic. The package contains secondary
functions, e.g., the leave-one-out procedure for cluster evaluation and shape tracing routines
for clustering convex shapes. Finally, plotting facilities are provided to render dendrograms
of time series. The TSclust package (Montero and Vilar 2014) provides implementations of
various clustering algorithms. Recently, TSclust had a dependency on package pdc added,
thus allowing comparing PDC to a broad range of alternative approaches. We will illustrate
this in the examples later on.
In the remainder of this article, we review the PD and derive a dissimilarity measure based on
the Kullback-Leibler divergence between two PDs. We examine a heuristic to automatically
choose parameters of the required time-delayed embedding of the time series and a heuris-
tic to determine the number of clusters in a hierarchical PD clustering. We conclude with
applications on simulated and real data, and a discussion of limitations and future work.

2. Method

2.1. Permutation distribution

In the following, the calculation of the PD and the construction of a dissimilarity measure
between time series based on their PD representation is described. In brief, the PD assigns
a probability to the occurrence of certain patterns of the ranks of values in a time series
(see Bandt and Pompe 2002). To this end, the time series is partitioned into subsequences
of a fixed length, m, which is also referred to as embedding in m-space. To calculate the
PD on coarser time scales, the embedding can be time-delayed with delay t, such that only
every tth element is regarded when forming subsequences. For each subsequence, the ranks
of the values are calculated, for instance, as by-product of sorting the observed values. The
permutation distribution is obtained by counting the relative frequency of the distinct rank
patterns, also referred to as ordinal patterns. Each possible rank pattern can be identified
by a permutation of the values 0 to m − 1 and hence the name permutation distribution.
The reliance on ranks is a distinct feature of the PD as the distribution is determined by the
observed values relative to each other instead of their absolute values. Figure 1 illustrates
ordinal patterns for an embedding of m = 3.
Given a time series X = {x(i)}Ti=0, sampled at equal intervals with x(i) ∈ R, the time-
delayed embedding of this time series into an m-dimensional space with time delay t, is
X ′ = {[x(i), x(i + t), x(i + 2t), ..., x(i + (m − 1)t)]}T ′

i=0 with a total of T ′ = T − (m − 1)t
elements. The ordinal pattern for an element x′ ∈ X ′ can be obtained by computing the
permutation of indices from 0 to (m − 1) that puts the m values into sorted order. If two
elements x′(i), x′(j), i 6= j have the same value, they will keep their original order relative to
each other1. There are m! unique permutations of length m, and, thus, m! distinct ordinal
patterns.
The permutation distribution of a time series is obtained by counting the frequencies of the
distinct observed ordinal patterns of the elements x′ ∈ X ′. Let Π (x) be the permutation that

1If ties are frequent, adding a small amount of noise to the data can help to avoid bias towards specific
ordinal patterns representing these ties.
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0-1-2 0-2-1 1-0-2 

1-2-0 2-0-1 2-1-0 

Figure 1: Each time series segment (blue arrows) is a representative of one of the six distinct
ordinal patterns for an embedding size of three. For example, the first ordinal pattern (0-1-2)
encompasses all patterns for which the first value of the segment is the smallest, and the last
one is the largest, irrespective of the actual observed values.

an element x ∈ Rm undergoes when being sorted. The permutation distribution of X ′ is

pπ = # {x′ ∈ X ′|Π (x′) = π}
T ′

. (1)

In the PD, the temporal order of the ordinal patterns is discarded and the distribution solely
represents the frequency of unique patterns in the time series. The permutation entropy of
order m > 2 as introduced by Bandt and Pompe (2002) is defined as the Shannon entropy of
the probability distribution P :

H(P ) = −
∑
π∈Sm

pπ log pπ (2)

with Sm being the set of all m-permutations.
The dissimilarity between two time series can be formalized as a dissimilarity of their re-
spective permutation distributions. The Kullback-Leibler (KL) divergence, also known as
relative Shannon entropy, is often employed as a measure of divergence between probabil-
ity distributions and represents a natural expansion of the entropy as a complexity index
to calculate relative permutation entropy as a relative complexity index. However, the KL
divergence violates the triangle inequality and, thus, is not a metric. Therefore, we employ
the squared Hellinger distance instead to embed the permutation distributions of time series
into a metric space. Metric spaces open up the possibility to improve runtime considerably
(Chávez, Navarro, Baeza-Yates, and Marroquín 2001; Elkan 2003; Moore 2000). Up to scal-
ing, the squared Hellinger distance is equal to the Euclidean norm of the difference of the
square root vectors of the discrete probability distributions. Let P = (p1, p2, . . . , pn) and
Q = (q1, q2, . . . , qn) be two permutation distributions. The squared Hellinger distance is:

D (P,Q) = 1√
2

∥∥∥√P −√Q∥∥∥2

2
.

The squared Hellinger distance can be derived by means of a Taylor approximation of the
KL divergence (see Appendix A). It is a metric since it satisfies the triangle inequality, is
symmetric and non-negative, and bounded between zero and one.



Journal of Statistical Software 5

The pairwise squared Hellinger distances between the set of permutation distributions form
a distance matrix that can be fed to a clustering algorithm of the researcher’s choice. In this
article, sequential agglomerative hierarchical non-overlapping clustering (Johnson 1967) was
chosen as the clustering method. Initially, each time series is assigned to a cluster. Based on
a dissimilarity measure, clusters are constructed by iteratively merging clusters until there is
only a single top cluster left. This leads to a hierarchy of clusters. If not stated otherwise,
distances between sets of time series are calculated by the complete linkage method, which is
defined as the dissimilarity between two clusters Ci and Cj :

dcomplete (Ci, Cj) = max
x∈Ci,y∈Cj

D(x, y). (3)

The resulting binary tree is typically visualized in a dendrogram depicting the tree with
branch heights that reflect the distance between clusters.

2.2. Entropy heuristic
The choice of parameters m (embedding dimension) and t (time delay) for the time-delayed
embedding is crucial for the performance of the clustering. The choice of the embedding di-
mension necessitates the consideration of two counter-acting effects: the larger the embedding
dimension, the larger the representational power (that is, the more distinct ordinal patterns
we are able to detect). However, we expect to find fewer observations of each permutation
and, thus, the estimate of the frequency will be increasingly unreliable. In the following, we
formalize these observations in a heuristic that guides researchers in choosing an embedding
dimension if no prior information is available. The heuristic aims at choosing an embedding
dimension that is maximally expressable, that is, the PD should be maximally dissimilar to
a uniform distribution. This notion is captured by the permutation entropy. Let P be a
permutation distribution of embedding dimension m. Let log0(x) be 0 if x = 0, and log(x)
otherwise. The normalized entropy of the permutation distribution is

eP (m) = −
∑
π∈Sm pπ log0 pπ

log (m!) .

The normalization bounds the estimated entropy between zero and one independently of the
embedding dimension. A white-noise time series yields a uniform permutation distribution
and an entropy of one. Let P be a set of permutation distributions of embedding dimension
m. The heuristic chooses the embedding dimension with the lowest average, normalized
permutation entropy

arg min
m

∑
P∈P

eP (m) .

In order to find the appropriate embedding dimension for clustering a set of time series, we
calculate the average normalized entropy of a set of distributions. In a similar vein, different
choices of the time delay t can be selected. An illustration of a grid-search on the parametersm
and t to determine differences between two autoregressive moving average (ARMA) processes
is given in Figure 2. The corresponding code can be found in Section 3.

2.3. Heuristic to determine the number of clusters
PDC offers the possibility to employ a heuristic for the determination of the number of distinct
clusters. This is achieved by a top-down procedure subsequently testing null hypotheses of
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Figure 2: A graphical representation of the average entropy estimates for varying time delays
and embedding dimensions on a data set with prototypes generated from two different ARMA
processes.

equal PDs in the hierarchy of clusters. Only if it is very unlikely that data were observed under
the null hypothesis, the decision to split the cluster into distinct groups is made, and testing
is recursively continued. We regard the statistical model of a cluster as a multinomial PD
and the model of its two subclusters as a joint model of two multinomial distributions. Since
these models are algebraically nested, the likelihood ratio test can be applied. Under the null
hypothesis that two codebooks that are to be merged are drawn from the same distribution
and the clusters are fixed in advance, the log-likelihood ratio (LLR) is χ2-distributed with
m!−1 degrees of freedom. In this framework, we reject the null hypothesis if we find extremely
unlikely values of the χ2-test statistic. Note that clusters are created depending on the chosen
dissimilarity measure and linkage method, which may lead to biased results.
Assume two clusters with respective permutation distributions P and Q. Let R be the joint
codebook of P and Q representing a fusion of the two clusters. The LLR between a model
of two individual clusters and a model of a single joint cluster is given by the following (also
see Appendix B)

LLR (P,Q|R) = 2N
∑
π∈Sm

pπ log
(
rπ
pπ

)
+ 2N

∑
π∈Sm

qπ log
(
rπ
qπ

)
.

Notably, the LLR function coincides with the sum of the KL divergences between P and R,
and between Q and R up to a scaling factor of 2N , with N being the number of time series.

2.4. Implementation
The naive implementation for determining the PD of a time series is based on shifting a
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window of size m over the time series, determining the permutation of the elements within the
window by a sorting algorithm, and applying a canonical bijective mapping from permutations
to integer indices that are employed to count the frequency of the respective patterns in an
array structure. The bijection is provided by Lehmer codes (Lehmer 1960) that are based on
a factorial numbering system. The asymptotic time complexity for finding the distribution of
a time series of length T is then O (T ·m logm) with a space complexity of O (m!) for storing
the array of codeword counts. However, a tremendous gain in processing speed can be gained
by optimizing this procedure based on the fact that the actual sorting of items is not needed.
Therefore, we use an explicit implementation of a sorting algorithm as a tree of if-clauses
with each inner node being a pairwise comparison of items and each leaf having a unique
integer label between 0 and m! representing the permutation index. This implementation is
more efficient because no items actually have to swap places, no subroutines are called, and
no extra memory is required to be reserved on the stack or the heap. Since the typically
reasonable embedding dimensions range between 3 and 9, the respective code blocks can
be pre-generated. For all larger embedding dimensions, a code generator can generate the
necessary code snippets on demand. The code generator works in a recursive fashion. An
m ×m matrix H, which is initialized with zeroes, is used to store the transitive closure of
the smaller relation between the m items of a pattern x ∈ Rm. Matrix elements indicate the
following relation:

Hij =


1 xi > xj ,

−1 xi ≤ xj ,
0 relation yet unknown.

That is, the permutation index of x can be uniquely determined if the relation between
all pairs is known, that is, only if the lower triangle of H is non-zero. Therefore, we iterate
through the lower-triangle matrix, e.g., using the Cantor function, and perform the respective
pairwise comparisons. After each update of an element in H, we update H to represent the
transitive closure, e.g., with the Floyd-Warshall algorithm (see Cormen, Leiserson, Rivest, and
Clifford 2004). After each new determination of an entry in Hij , the algorithm recursively
calls itself with a copy of H, once having Hij = 1, and once having Hij = −1. The algorithm
terminates when the lower triangle of H contains no more zeroes. This algorithm can be used
to create a tree of if-clauses that compares elements of x. The recursive calls correspond to
the if-else blocks of the pairwise comparisons, whereas the termination points correspond to
the returning of unique integer indices. A sample output of this algorithm can be found in
Appendix C.

3. Code examples

3.1. Clustering of autoregressive time series

As a first example, we generate two ARMA processes using arima.sim. For the first one,
we choose auto-regressive coefficients ar = (0.8897,−0.4858) and moving-average coefficients
ma = (−0.2279, 0.2488), and for the second one, ar = (−0.71, 0.18), ma = (0.92, 0.14). We
create five time series from each condition with a length of 500 samples each.

R> set.seed(69266)
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R> grp1 <- replicate(5, arima.sim(n = 500, list(
+ ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)), sd = sqrt(0.1796)))
R> grp2 <- replicate(5, arima.sim(n = 500, list(
+ ar = c(-0.71, 0.18), ma = c(0.92, 0.14)), sd = sqrt(0.291)))
R> X <- cbind(grp1, grp2)

In a second step, we perform PDC with an automatic selection of the embedding dimension.

R> clustering <- pdclust(X)
R> clustering

Permutation Distribution Clustering

Embedding dimension: 5
Time delay : 1
Number of objects: 10
Clustering method: complete

R> truth.col <- rep(c("red", "blue"), each = 5)
R> plot(clustering, cols = truth.col)

The cutree command returns the group memberships of the time series for a desired number
of clusters, in our case two clusters. We note that the result perfectly matches the expected
memberships.

R> cutree(clustering, k = 2)

[1] 1 1 1 1 1 2 2 2 2 2

Using loo1nn, which implements a leave-one-out crossvalidation scheme, we estimate the
predictive accuracy of the clustering (Keogh and Kasetty 2003), i.e., the proportion of obser-
vations closest to the true class member, and obtain an accuracy of 100%.

R> loo1nn(clustering, truth.col)

[1] 100

As we see from the summary of the clustering object, the embedding dimension was auto-
matically set to 5. The following code yields a graphical representation of the average entropies
by embedding dimension and time delay, which are used to determine the hyper-parameters
automatically. The resulting plot is shown in Figure 2.

R> mine <- entropyHeuristic(X, t.max = 8)
R> summary(mine)

Embedding dimension: 5 [ 3,4,5,6,7 ]
Time delay: 1 [ 1,2,3,4,5,6,7,8 ]
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Figure 3: Hierarchical clustering of five time series from two different ARMA models each.
Group membership is color-coded in red and blue. The top-level clustering reflects the differ-
ences in the generating models.

R> plot(mine)

The dendrogram of the hierarchical clustering is shown in Figure 3. The top-level cluster-
ing perfectly reflects the differences in the generating models. Note that the robustness of
PDC to long-term trends can be further explored by adding deterministic or stochastic trend
components to the ARMA model.

3.2. A comparison to UCRTSA

Keogh et al. (2004b) presented an important data set for the evaluation of clustering al-
gorithms. The authors collected 18 pairs of time series from the University of California
Riverside (UCR) Time Series Archive (Keogh and Folias 2002) that largely differ in their
characteristics. Their ad-hoc Q-measure counts the number of correctly retrieved pairings at
the lowest clustering level divided by the total number of pairs. Thus, the measure evaluates
the known structure of the lowest clustering level without regarding the unknown higher-level
structure. The authors report that more than three quarters of the clustering approaches
that they tested yielded the worst possible score of Q = 0. The best results were achieved by
the simple Euclidean distance with Q = 0.27, dynamic time warping with Q = 0.33, piecewise
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Figure 4: Dendrogram of 18 pairs of time series originating from the UCR Time Series
Archive. The clustering retrieves the sources very well. Pairs of time series that are not
clustered together at the bottom level are marked with an asterisk.

linear approximation with Q = 0.33, linear predictive coding (LPC) cepstra, autocorrelation
with Q = 0.16, and longest common subsequence with Q = 0.33. The authors report that
compression-based clustering is superior on the data set, yielding a Q = 1.0.
PDC with an automatically determined m = 5, t = 1 (see Figure 4 for the dendrogram) can
keep up very well with 13 out of 18 time series in perfect pairs at the lowest levels (Q = 0.72).
The resulting clustering does not perfectly reproduce the pairs on the lower level but, as can
be seen in the illustration, similar time series are very close to each other.
This first example shows that PDC can indeed cluster time series that differ in the structure
of the generating process. The data set was also made available in package TSclust. The
following code shows how to obtain the clustering of the data set using package pdc.

R> library("TSclust")
R> data("paired.tseries", package = "TSclust")
R> truth <- rep(1:18, each = 2)
R> clust <- pdclust(paired.tseries)
R> plot(clust, timeseries.as.labels = FALSE,
+ labels = names(colnames(paired.tseries)))

The Q-measure can be obtained by counting the proportion of clusters that are merged at
the bottom level:

R> merges <- clust$merge[apply(clust$merge < 0, 1, all), ]
R> merges <- merges[(abs(merges[, 1] - merges[, 2]) == 1), ]
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R> merges <- -merges[(merges[, 1] %% 2 == 1), ]
R> num.labels <- length(clust$labels)
R> Q <- nrow(merges) * 2 / num.labels
R> cat("Q = ", round(Q, 2), "\n")

Q = 0.72

Package TSclust allows us to easily compare2 other clustering approaches to PDC. For ex-
ample, to obtain an estimate of clustering performance of dynamic time warping, correlation-
based clustering, partial autocorrelation-based clustering, autocorrelation-based clustering,
complexity-invariant clustering and PDC (see Montero and Vilar 2014, for details):

R> methods <- c("DWT", "COR", "PACF", "ACF", "CID", "PDC")
R> D.list <- lapply(methods, function(x) diss(t(paired.tseries), x))
R> acc <- data.frame(t(sapply(D.list, loo1nn, truth)))
R> names(acc) <- methods
R> round(acc, 1)

DWT COR PACF ACF CID PDC
1 38.9 30.6 69.4 69.4 44.4 72.2

We obtain that in this case the crossvalidated accuracies of the dissimilarity matrices are all
inferior to PDC.

3.3. Clustering EEG data

Permutation entropy has been applied to biomedical signals in previous work, e.g., it was
used as a feature in a supervised learning task to predict absence seizures (Li et al. 2007) or
the fetal behavioral state from biomagnetic recordings (Frank, Pompe, Schneider, and Hoyer
2006). In this section, we apply PDC on resting state EEG recordings from participants who
were recorded once with their eyes open and once with their eyes closed. PDC was previously
applied to cluster EEG data (Brandmaier 2012) but the data set could not be made available
to the public. Therefore, a data set of recordings of brain electrical activity from a study
by Andrzejak, Lehnertz, Mormann, Rieke, David, and Elger (2001) was obtained, which
is freely available to download (Andrzejak 2014). For the following illustration, we used
data sets A and B, each containing 100 single-channel electroencephalographic recordings
of 23.6s duration, sampled at 173.61Hz, and resulting in time series of 4096 samples each.
The sets correspond to segments from five healthy participants each during eyes-open (A)
and eyes-closed (B) conditions. Generally, power in the 8–12Hz frequency band (α-power) is
suggested as a measure of resting-state arousal (Barry, Clarke, Johnstone, Magee, and Rushby
2007). We examined whether PDC can find partitions of the underlying dynamics of the two
conditions. The following code blocks assume the data sets to reside in path in respective
subfolders A-EyesClosed and B-EyesOpen. For purposes of illustration, we load only the first
10 instances of each class.

2The set of reasonable candidate algorithms should be influenced by the researchers’ prior knowledge about
the time series, e.g., some algorithms might be considered appropriate for aligned shapes only.
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R> tmp <- tempdir()
R> files.A <- paste(tmp, "setA.zip", sep = "/")
R> files.B <- paste(tmp, "setB.zip", sep = "/")
R> download.file("http://ntsa.upf.edu/system/files/download/Z.zip", files.A)
R> download.file("http://ntsa.upf.edu/system/files/download/O.zip", files.B)
R> instances.each <- 10
R> X <- matrix(NA, nrow = 4097, ncol = instances.each * 2)
R> for (i in 1:instances.each) {
+ z <- unz(files.A, paste("Z", formatC(i, width = 3, flag = "0"), ".txt",
+ sep = ""))
+ X[, i] <- as.numeric(readLines(z))
+ close(z)
+ z <- unz(files.B, paste("O", formatC(i, width = 3, flag = "0"), ".txt",
+ sep = ""))
+ X[, instances.each + i] <- as.numeric(readLines(z))
+ close(z)
+ }
R> colnames(X) <- rep(c("closed", "close"), each = instances.each)

We calculate the entropy heuristic for time delays up to 10 and across the default embedding
dimensions. We perform the clustering and plot the entropy surface using the plot command
and plot the clustering dendrogram.

R> mine <- entropyHeuristic(X, t.max = 10)
R> clust <- pdclust(X)
R> cols <- rep(c("red", "blue"), each = instances.each)
R> plot(mine)
R> plot(clust, cols = cols)

The following code allows us to compare the clustering accuracy over different methods.

R> library("TSclust")
R> methods <- c("DWT", "COR", "PACF", "ACF", "CID", "PDC")
R> D.list <- lapply(methods, function(x) diss(t(X), x))
R> acc <- data.frame(t(sapply(D.list, loo1nn, cols)))
R> names(acc) <- methods
R> acc

DWT COR PACF ACF CID PDC
1 60 55 65 70 55 90

We obtain a leave-one-out accuracy of 90% for PDC. This is in line with the previous find-
ing of Brandmaier (2012), who reported an average accuracy of 92% averaged across five
participants, and again seems to be superior to the set of candidate clustering approaches.

3.4. Shape complexity
Shape clustering is a fundamental problem in computer vision, e.g., for speeding up database
retrieval or automatic labeling of objects (Shen, Wang, Bai, Wang, and Latecki 2013). In
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the following, we illustrate the potential usefulness of PDC for clustering objects with pla-
nar shapes. Shape signatures of objects can be created by unrolling their contour around
its centroid across “time” (Gonzalez and Woods 1992; Keogh, Wei, Xi, Vlachos, Lee, and
Protopapas 2009; Batista, Wang, and Keogh 2011). The resulting time series represents
distance-to-center of points on the contour versus radial angle. The length of the resulting
time series N is related to the angular resolution ∆φ = 2π/N in radians. To this end, package
pdc provides the function traceImage.
In order to be applicable, object descriptions must be invariant with regard to translation,
rotation, and scale, and should have low computational complexity (Gonzalez and Woods
1992; Zhang and Lu 2004). Permutation distribution clustering of such shapes fulfills all of
these requirements. The computational complexity is linear in the length of the time series
and, thus, in the sampling rate that is used to trace the objects’ shapes. If objects are centered,
e.g., by positioning them on their center of mass, linear changes in scale of an object result in
a linear rescaling of the time series. In a similar vein, rotations of an object will phase-shift
the time series on the x-axis with parts exceeding 360◦ reappearing at 0◦ and vice versa. That
is, with minimal deviations attributable to discretization errors, the permutation distribution
will be invariant to object scale, rotation, and location.
We illustrate our considerations with a small data set of two shapes, a four-point and a five-
point regular star, that were created each in two sizes (100% and 150%) and in two rotations
(0◦ and 45◦). The shapes were discretized to time series with an angular resolution of 3.6◦ per
time point. In agreement with our expectations, each of the two top clusters found when PDC
is applied represents one of the two classes of stars (see Figure 5, on the left). The clustering
reflects the fact that the rotation leads to slightly more discretization errors than the scaling,
that is, scaled versions of the same shape are clustered nearly perfectly, while there is a small
inter-cluster variance between different rotations. We set a larger minimum time-delay of 5
to increase robustness over discretization errors when searching for the optimal delay. The
embedding dimension was automatically selected to be m = 4 and the time-delay to be t = 9.
The following code loads the data set containing the eight star shapes, shows how the time
series representation of these plots can be converted to the original shape using a polar plot
from package plotrix (Lemon 2006), and how clustering accuracy and a textual dendrogram
can be obtained.

R> data("star.shapes", package = "pdc")
R> library("plotrix")
R> oldpar <- polar.plot(star.shapes[, 1])
R> par(oldpar)
R> ent <- entropyHeuristic(star.shapes, t.min = 5, t.max = 10)
R> clust <- pdclust(star.shapes, m = ent$m, t = ent$t)
R> truth <- sapply(colnames(star.shapes), function(x) substr(x, 1, 1))
R> loo1nn(clust, truth)
R> str(clust)

[1] 100

--[dendrogram w/ 2 branches and 8 members at h = 1.18]
|--[dendrogram w/ 2 branches and 4 members at h = 0.025]
| |--[dendrogram w/ 2 branches and 2 members at h = 0]
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| | |--leaf "4-2-1"
| | `--leaf "4-2-2"
| `--[dendrogram w/ 2 branches and 2 members at h = 0.00605]
| |--leaf "4-1-1"
| `--leaf "4-1-2"
`--[dendrogram w/ 2 branches and 4 members at h = 0.371]

|--[dendrogram w/ 2 branches and 2 members at h = 0.00389]
| |--leaf "5-2-1"
| `--leaf "5-2-2"
`--[dendrogram w/ 2 branches and 2 members at h = 0.00477]

|--leaf "5-1-1"
`--leaf "5-1-2"

Package pdc also contains the raw image data, which can be used to plot a dendrogram
augmented by the images instead of the time series. To this end, the package provides the
rasterPlot function

R> data("star.shapes.raw", package = "pdc")
R> rasterPlot(clust, star.shapes.raw$images, aspect = 0.5)

To further illustrate the potential usefulness, another data set including objects of three
different classes was created: glasses, bottles, and fish. The files were selected from http:
//openclipart.org/. The resulting clustering is shown in Figure 5 (on the right). PDC
perfectly retrieves the object classes in the top three clusters within the created taxonomy.
Shape signatures of glasses and bottles are similar because the glasses’ shapes are merely
bottles with a waistline; this is reflected in the clustering. Also, not surprisingly, the intra-class
variance of the fish cluster is larger than in any of the other two reflecting the larger difference
between the fish prototypes in comparison to the other two classes. These theoretical and
empirical results promise a new efficient approach to shape signature clustering under location,
scale, and rotation invariance.

R> data("complex.shapes", package = "pdc")
R> ent <- entropyHeuristic(complex.shapes, t.min = 5, t.max = 10)
R> summary(ent)

Embedding dimension: 3 [ 3,4,5,6,7 ]
Time delay: 5 [ 5,6,7,8,9,10 ]

R> clust <- pdclust(complex.shapes, m = ent$m, t = ent$t)
R> truth <- rep(c("fish", "bottle", "glasses"), c(5, 4, 5))
R> loo1nn(clust, truth)
R> data("complex.shapes.raw", package = "pdc")
R> rasterPlot(clust, complex.shapes.raw$images)

The following snippet illustrates a projection of the dissimilarity matrix obtained from PDC
onto two components by minimizing a loss function called "strain." This is also known as
multidimensional scaling or principal coordinates analysis. Also, the convex hull of each
cluster is plotted as shaded area in the principal coordinate space. The resulting plot is
shown in Figure 6 and can be created using the command mdsPlot provided by package pdc.

http://openclipart.org/
http://openclipart.org/
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Figure 5: PDC of shape complexities. Left: A four-point and a five-point star, each in
four different transformations of scale and rotation are correctly clustered into two different
clusters. Right: Three different object categories: bottles, glasses, and fish.

R> mdsPlot(clust, truth, col = c("lightgray", "lightblue", "lightgreen"))

4. Discussion
Clustering plays a central role in deriving knowledge from data and can serve as a tool for data
reduction, hypothesis generation, hypothesis testing, and prediction based on the resulting
group structure (Halkidi, Batistakis, and Vazirgiannis 2001). To find a formalization of
dissimilarity which accounts for task-specific invariances is crucial for successful clustering.
We introduced a dissimilarity measure between time series that is based on a complexity-based
divergence of the time series. We proposed applying this measure in a hierarchical clustering
scheme to obtain tree-like partitions of a set of multivariate time series. In a unified framework,
PDC combines criteria for selecting representational complexity that determines the number
of distinct ordinal patterns by which a time series is represented, as well as the number of
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Figure 6: Multidimensional scaling of the dissimilarity matrix of the complex shapes data
sets including pictures of bottles, fish, and glasses. Gray, blue, and green polygons illustrate
the convex hulls of clusters.

distinct clusters. The proposed dissimilarity measure is invariant to the phase of the time
series, invariant to monotonic transformations of the time series, particularly constant shifts
and linear scalings, and is robust under drift and to outliers. Furthermore, it naturally allows
the comparison of time series of differing length. Last, but not least, the runtime complexity
is linear in the length of the time series and, thus, a highly efficient measure.
The (dis)similarity measure of PDC can be interpreted in two major ways. From a pat-
tern recognition perspective, time series are similar if their local patterns of up- and down-
movements match, irrespective of when and in what order these patterns occur. From an
algorithmic-complexity point of view, time series are reduced into a lossy compressed repre-
sentation, and time series are deemed similar if their compressed version is similar.
Time series segmentation is a challenging problem in many domains. Beyond clustering a set
of different time series, clustering algorithms can be employed to detect anomalies in time
series (Keogh et al. 2004b) or segment time series into similar and different parts. This can
be achieved by sliding a window over the time series and treating the resulting segments as
independent time series (Keogh, Chu, Hart, and Pazzani 2004a). Alternatively, top-down
and bottom-up approaches or combinations thereof can be used (Keogh et al. 2004a). The
window approach adds another parameter, the window size w, to the algorithm. Preselecting
an appropriate window size is often considered as feasible (Keogh et al. 2004b).
Beyond taking a statistical approach, information-theoretic criteria can be employed to de-
termine the number of clusters. As far as these criteria are likelihood-based, such as the
well-known Akaike information criterion (AIC; Akaike 1973) or the Bayesian information cri-
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terion (BIC; Schwarz 1978), the criteria can be seen as automatic choices of the significance
threshold of the likelihood ratio test. The decision of how many distinct clusters appear to
be in the data is then seen as a sequential and nested model selection problem. Future work
must examine whether the application of such criteria is beneficial for clustering.
The main limitation of PDC is its weakness in clustering time series with similarity in time
and, less so, with similarity in geometry. Most time series clustering approaches aim to match
similar shapes, trends, seasonality, or other algebraic basis functions of the time series. If dif-
ferences really lie in crude shape patterns, PDC will perform less well than an algorithm
that explicitly considers geometric-visual similarity. For example, if the moments of the time
series are thought to represent discriminative information about time series, this information
is discarded by PDC. Although this can be advantageous for some problems, it might be
problematic for others. A prominent example is the synthetic control chart data set (Alcock
and Manolopoulos 1999). The data sets consist of six noisy prototypical patterns: a constant,
a cyclic pattern, an increasing trend, a decreasing trend, a sudden upward shift, and a sudden
downward shift. The final patterns are obtained by mixing white noise to the basic pat-
terns. In principle, PDC can succeed in determining the constant, the cycle, and the trends.
However, both patterns with a sudden shift in either direction are by definition not captured
by PDC. In domains where such a shift is considered irrelevant information, for example, if
arising from a sensor misreading, this property is clearly beneficial. Whenever information
of the moments should be preserved, nothing speaks against taking into account multiple
features for clustering that capture the specific definition of similarity in the idiosyncratic
context. The dissimilarity function can also be extended to include further features, like the
signal’s mean and the variance. Wang, Smith, Hyndman, and Alahakoon (2004) present such
a feature-based approach, which also included complexity measures, but they did not use the
PD. It would be highly interesting to examine the extent to which PDC can improve their
cluster results.
PDC depends on the choice of two parameters, the embedding dimension and the time delay.
We presented a heuristic that aims at selecting an embedding with maximal representational
power. Of course, we cannot exclude cases in which the heuristic chooses a parameter that
leads to a more discriminative representation between time series that does not match the
intention of the researcher. This addresses a fundamental problem in clustering. Different
researchers have different objectives. A sociologist is likely to expect a different clustering on
a socio-economic panel than a banker who is granting loans. In this vein, different domains
might necessitate different heuristics to choose embedding parameters. Our heuristic is meant
to be a first take at automatically determining the parameters without prior information.
Whenever there is some known ground-truth, the analysis paradigm shifts to semi-supervised
analysis, and parameters can be chosen to maximize the performance on available labeled
training data.
Fast and efficient searching in large databases is important for prediction, hypothesis testing,
and rule generation (Faloutsos, Ranganathan, and Manolopoulos 1994). This is why lower
bounding has become important. Lower bounding allows the creation of efficient, low-memory
approximations of complex objects that can be held in main memory to allow efficient search
and retrieval. By construction, the permutation distribution is a highly compressed version
of the original time series and there is no need for further lower bounding and, thus, efficient
search and retrieval is possible. Generally, observing time series for a longer time raises
statistical power as this increases the precision with which codebooks and differences between
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them can be estimated. Statistical power to detect differences can in principle be simulated
when hypotheses about the true effect size can be formed. Calculating the PD for time series
in the range of millions of observations is still feasible on current desktop computers, e.g.,
a time series with 100 million observations is typically (based on a 1.6GHz Intel Core i7
processor) processed in a couple of seconds.
Clearly, the selection of the distance measure is the most important choice for a successful
clustering. In this spirit, PDC is not meant to replace existing techniques; it merely adds
another tool to the researcher’s toolbox that promises success whenever similarity is expected
regarding the complexity of time series, respectively regarding differences in the complexity
of the underlying generators. Whenever researchers hypothesize that differences of dynamic
processes pertain to specific properties like, e.g., trends or seasonality, these need to be in-
corporated in the decision of what clustering to use.
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A. Squared Hellinger distance approximating KL divergence
The squared Hellinger distance is the second-order approximation of the KL divergence:
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pπ log
√
qπ
pπ

= 2
∑

pπ log
[
1 +

(√
qπ
pπ
− 1

)]

∼= 2
∑

pπ

[(√
qπ
pπ
− 1

)
− 1

2

(√
qπ
pπ
− 1

)2
]

= 2
∑

[√qπpπ − pπ]−
∑

pπ

(√
qπ −

√
pπ√

pπ

)2

= 2
∑

(√pπqπ)− 2−
∑

(√qπ −
√
pπ)2

=
(
2−

∑
(√qπ −

√
pπ)2

)
− 2−

∑
(√qπ −

√
pπ)2 = −2

∑
(√qπ −

√
pπ)2

B. Likelihood-ratio between codebooks
Let L (x|P ) be the multinomial likelihood of model P given observations x:

L(x|P ) =
(

N !∏
π∈Sm xπ

) ∏
π∈Sm

pxππ = N !
∏
π∈Sm

pxππ
xπ! .

The log-likelihood is thus:

−LL(x|P ) = − log(N !)−
∑
π∈Sm

xπ log (pπ) +
∑
π∈Sm

log (xπ!) .

The log-likelihood ratio is:

Λ(x|P,Q) = log
(−L (x|P )
−L (x|Q)

)
= (−LL (x|P ))− (−LL (x|Q))

= − log(N !)−
∑
π∈Sm

xπ log (pπ) +
∑
π∈Sm

log (xπ!)

+ log(N !) +
∑
π∈Sm

xπ log (qπ)−
∑
π∈Sm

log (xπ!)

=
∑
π∈Sm

xπ log (qπ)−
∑
π∈Sm

xπ log (pπ) = −
∑
π∈Sm

xπ log
(
qπ
pπ

)
=

∑
π∈Sm

xπ log
(
pπ
qπ

)

C. Permutation index
The following fragment shows explicit, nested if-clauses for retrieving the permutation index
of an array of size 3, implemented in the Python language.
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function y = get_codeword(x)
if x(3) < x(1)

if x(2) < x(1)
if x(3) < x(2)

y=1;
else

y=2;
end

else
y=3;

end
else

if x(2) < x(1)
y=4;

else
if x(3) < x(2)

y=5;
else

y=6;
end

end
end

Affiliation:
Andreas M. Brandmaier
Center for Lifespan Psychology
Max Planck Institute for Human Development
Lentzeallee 94
14195 Berlin, Germany
E-mail: brandmaier@mpib-berlin.mpg.de
URL: http://www.brandmaier.de/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2015, Volume 67, Issue 5 Submitted: 2014-02-25
doi:10.18637/jss.v067.i05 Accepted: 2014-12-28

mailto:brandmaier@mpib-berlin.mpg.de
http://www.brandmaier.de/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v067.i05

	Introduction
	Method
	Permutation distribution
	Entropy heuristic
	Heuristic to determine the number of clusters
	Implementation

	Code examples
	Clustering of autoregressive time series
	A comparison to UCRTSA
	Clustering EEG data
	Shape complexity

	Discussion
	Squared Hellinger distance approximating KL divergence
	Likelihood-ratio between codebooks
	Permutation index

