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Abstract— As CMOS devices scale down to the nanoscale regime, it becomes increasingly
more desired to design systems robust to device variations due to the fabrication process. In
robust system design, uncertainty quantification plays an indispensable role. This paper con-
siders uncertainty quantification of power-MOS devices used in energy harvesting. Uncertainty
quantification of such a system is usually computationally demanding because it requires either
simulating the high-order system at many sampling points, or simulating an even larger sys-
tem. This paper uses parametric model order reduction techniques to accelerate uncertainty
quantification of electro-thermal systems. We embed the reduced model into two uncertainty
quantification methods, namely a Latin hypercube sampling method and a stochastic collocation
method. Numerical results show that for both methods, uncertainty quantification based on a
reduced model not only yields accurate results, but also achieves a significant speedup.

1. INTRODUCTION

In the nanoscale era, we have to consider uncertainty in circuit design because uncertainty is
unignorable and unavoidable. Therefore, uncertainty quantification (UQ), which quantifies the un-
certainties of the system outputs propagated from the process variations, serves as a useful tool
for robust design [11]. This paper studies efficient UQ of power-MOS devices. These devices are
commonly used in energy harvesting, where energy from external sources like light and environmen-
tal heat are collected in order to power small devices such as implanted biosensors [10]. A major
problem in UQ of power-MOS devices is the high computational cost. A finite element model of
a power-MOS device, which is derived from a fine 3D mesh of a multi-layered structure consisting
of dielectric, vias, contacts, and metal interconnection, is normally of an extremely high order.
Therefore, simulation analysis of electro-thermal systems is already computationally demanding.
The computational cost of its UQ is even higher since it requires simulating the model at many
parameter samples, or simulating a coupled system with a much higher dimension.

The goal of this paper is to use parametric model order reduction (pMOR) techniques [4], which
prove to be efficient in many application fields such as circuit simulation, acoustics, and structural
vibrations, to reduce the high computational cost in UQ of electro-thermal systems. A pMOR
method builds a parametric reduced order model (pROM) that can capture the system dynamics
regardless of parameter changes within a certain range. In this work, we use a Krylov-type pMOR
method [3], whose goal is to match the (cross-)moments of the state vector, because of its modest
requirements on system properties and low computational complexity. To reduce the computational
cost of non-intrusive UQ methods, we employ pROM-based methods, which replace the full-order
model (FOM) with the pROM in non-intrusive UQ methods. In this paper, we use pROM-based
methods to accelerate two UQ methods, namely a Latin hypercube sampling (LHS) method [7]
and a stochastic collocation (SC) method [9]. In our numerical test, the system of interest is a
nonlinear electro-thermal system with one-way coupling from the electrical part to the thermal
part. Numerical results show that a pROM of a low order exhibits high accuracy over a very
large parameter range in approximating the original high-order model, and for both UQ methods,
pROM-based UQ not only computes accurate results, but also achieves a significant speedup.

2. MATHEMATICAL FORMULATION

The model of interest in this paper is a Power-MOS device shown in Figure 1(a). The device has
three contacts: the drain, the source, and the back contact. Here we study the system behavior
within the time interval t ∈ [0 s, 10−6 s], where 10−6 s is the rise time of the source voltage. The
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(a) (b)

Figure 1: The Power-MOS device and its heat flux density on the back contact at t = 10−6 s. (a) Power-MOS
device (the back contact is not shown). (b) Heat flux density on the back contact at t = 10−6 s.

inputs of the system include the voltages (V ) and temperatures (T ) of the three contacts, namely:

Vdrain(t) = Vback(t) = 0 (V ), Vsource(t) = 107t (V ), (t ∈ [0 s, 10−6 s])
Tdrain(t) = Tsource(t) = Tback(t) = 300 (K).

As the voltage on the source rises, the chip is heated up as is shown in Figure 1(b). The outputs
we consider here include the currents (I) and thermal fluxes (φ) of the three contacts. The electro-
thermal model of the power-MOS device that we consider in this paper is

AE(p)xE(p, t) = −BE(p)u(t), (Electrical Part), (1a)
ET (p)ẋT (p, t) = AT (p)xT (p, t)+BT (p)u(t)+F (p)×2 xE(p)×3 xE(p), (Thermal Part),(1b)
xT (p, 0) = x0

T , xE(p, 0) = x0
E , (Initial Conditions), (1c)

y(p, t) = CE(p)xE(p, t) + CT (p)xT (p, t) + D(p)u, (Output). (1d)

For the whole system, p represents parameter(s), u(t) ∈ Rl is the input vector and y(p) ∈ Rm

is the output vector. In the electrical part governed by algebraic Equation (1a), AE(p) ∈ RnE×nE

is the system matrix, BE(p) ∈ RnE×l is the input matrix and xE ∈ RnE is the state vector. In the
thermal part governed by ordinary differential Equation (1b), which is a set of ordinary differential
equations, BT (p) ∈ RnT×l is the input matrix, xT (p) ∈ RnT is the state vector, AT (p), ET (p) ∈
RnT×nT are system matrices. The tensor F (p) ∈ RnT×nE×nE , which can be considered as nT slices
of nE by nE matrices Fi(p) ∈ RnE×nE , i = 1, . . . , nT , represents the nonlinear coupling from the
electrical part to the thermal part. Denoting the i-mode tensor-matrix product by ×i [2, 8], the
product F (p)×2xE(p)×3xE(p) is a vector of length nT , whose i-th component is the standard vector-
matrix-vector product xE(p)T Fi(p)xE(p). In the output part (1d), D ∈ Rm×l represents the feed
through, and CE(p) ∈ Rm×nE and CT (p) ∈ Rm×nT represent the output matrices corresponding
to the electrical part and the thermal part, respectively. In this formulation, some weak factors are
ignored, e.g., the Joule heating related to the input variables and the coupling from the thermal
part to the electrical part. System (1b) shows that the system has a one-way coupling from the
electrical part to the thermal part through the tensor F (p), and the coupling the other way round
is ignored. All parametric matrices in system (1) are of the form

Y (p) = Yc + pYv, Y ∈ {AE , AT , BE , BT , CE , CT , D, ET , F} . (2)

In our numerical tests, p represents a single parameter σ, the conductivity of the third metal layer.
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3. KRYLOV-TYPE PMOR METHODS

Krylov-type pMOR methods belong to projection-type pMOR methods. To reduce a general para-
metric linear system of order n:

(G0 + p1G1 + p2G2 + . . . + pqGq) X = Pu, (3)

where Gi ∈ Rn×n (0 ≤ i ≤ q), P ∈ Rn×l and u ∈ Rl, a projection-type pMOR method generates a
basis V ∈ Rn×k for an order-n system, with which we can build an order-k pROM of the form

(
Ĝ0 + p1Ĝ1 + p2Ĝ2 + . . . + plĜq

)
X̂ = P̂ u, (4)

where Ĝi = V T GiV and P̂ = V T P [4]. Different projection-type pMOR methods vary in the way
of constructing V . In this paper, we use the Krylov-type method proposed in [3], which matches
the dominant multi-moments to a certain order implicitly in a numerically stable manner.

To reduce the electro-thermal system (1), we need to conduct pMOR on both (1a) and (1b).
Since system (1a) can easily be rearranged into form (3), Krylov-type pMOR methods can be di-
rectly applied to compute a basis VE and the corresponding pROM. To reduce system (1b), however,
we have to conduct the Laplace transform first to obtain a frequency domain representation. Fol-
lowing the approach presented in [6], we first ignore the nonlinear part in system (1b) and conduct
the Laplace transform to obtain its frequency domain representation

(A1 + σA2 − sE1 − (σs)E2)X =
[
B1 B2 A1x

0
T A2x

0
T

] [
−UT − σUT −1

s

−σ

s

]T

, (5)

where X and U represent the Laplace transforms of the state vector xT (p, t) and the input vector u,
respectively, and s and σ denote the radial frequency and the conductivity, respectively. System (5)
can be reduced by the pMOR method in [3] with G0 ← A1, G1 ← A2, G3 ← −E1, G4 ← −E2,
p1 ← σ, p2 ← s, p3 ← σs, and P = [B1 B2 A1x

0
T A2x

0
T ]. Denote the basis built for (5) by VT .

To obtain a pROM for (1b), we approximate xE by VE x̂E and xT by VT x̂T , and then force the
approximation error to be orthogonal to the range of VT . The resulting pROM is

ÊT (p) ˙̂xT (p, t) = ÂT (p)x̂T (p, t) + B̂T (p)u + F̂ (p)×2 x̂E(p)×3 x̂E(p), (6)

where ÊT (p) = V T
T ET (p)VT , ÂT (p) = V T

T AT (p)VT , B̂T (p) = V T
T BT (p), F̂ (p) = F (p)×1VT ×2VE×3

VE . To obtain the reduced tensor F̂ (p), we first approximate xE(p) in the range of VE , and then
project the approximation onto the test subspace VT , i.e., the tensor product F̂ (p)×2 x̂E(p)×3 x̂E(p)
equals V T

T [F (p)×2 (VE x̂E(p))×3 (VE x̂E(p))]. The advantage of the tensor formulation for the ROM
is that using the reduced tensor, evaluating the ROM does not require computations with quantities
of the order of the FOM. In our actual computations, the parametric matrices in the ROM are
computed by

Ŷ (p) = Ŷc + pŶv, Ŷ ∈
{

ÂT , B̂T , ĈT , ÊT , F̂
}

, (7)

where Ŷc and Ŷv are pre-computed at the construction of the pROM.

4. PROM-BASED UQ

UQ methods can be categorized into non-intrusive methods and intrusive methods [9]. Non-intrusive
methods conduct UQ by solving the original deterministic system, e.g., system (1), at various
parameter points. Intrusive methods, however, require building a large-scale coupled system, which
is often of a much higher order than the original deterministic system. In this paper, we focus on
non-intrusive methods since the pROM of the original deterministic model (FOM) can be directly
used to replace the FOM in UQ. We embed our pROMs into two UQ methods, namely the Latin
hypercube sampling (LHS) method and the stochastic collocation (SC) method.

• LHS [7]. To obtain n samples, LHS divides the input distribution into n intervals of equal
probability, and selects one sample randomly in each interval. The mean and standard devia-
tion of the samples are used to approximate those of the original continuous model. Compared
to the standard Monte-Carlo sampling, LHS ensures a set of evenly distributed samples.
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• SC [9]. Since the mean and the standard deviation can be computed via numerical inte-
gration, SC uses a quadrature rule to present the relevant integrals as a weighted sum of
the corresponding function values at the collocation points. As we conduct UQ on a single
normally-distributed random variable, we use the Gauss-Hermite quadrature rule.

The computationally dominant part of both LHS and SC is the simulation of the high-order FOM
at all sampled points pi. Since our pROMs are highly accurate for these simulations as we will
show in §5, pROM-based UQ replaces the FOM (1) with pROMs for these simulations to achieve
a significant speedup.

5. NUMERICAL TESTS

In this section, we test the effectiveness and efficiency of pROM-based UQ. All codes are im-
plemented in MATLABr. For the SC method, we use the SGMGA library [5] to compute the
quadrature rule. For tensor computations, we use the Tensor Toolbox [1, 2].

First, we check the quality of the pROMs in a simulation analysis. For (1), we build an order-2
pROM for the order-1660 FOM of the electrical part (1a), and an order-50 pROM for the order-
11556 FOM of the thermal part (1b). Both pROMs are built at the interpolation point σ =
3× 107 S/m with the radial frequency shifts si = (i−1)×108

9 rad/s (i = 1, 2, . . . , 10). Figure 2 shows
the relative error for thermal fluxes for σ = 10S/m and σ = 1011 S/m, which are extreme points
far away from the interpolation point σ = 3× 107 S/m. When the system starts, the relative errors
are high because: 1) the thermal fluxes are close to zero since the system is hardly heated up; 2)
the thermal outputs are dominated by modeling error and numerical error at the starting stage:

(a) (b)

(c)

Figure 2: The evolution of the relative errors of the thermal outputs for extreme σ’s at t = 10−6 s. (a)
Relative error of the thermal flux on the drain. (b) Relative error of the thermal flux on the source. (c)
Relative error of the thermal flux on the back contact.
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the outputs of the FOM also oscillate slightly around zero even when the temperature is the same
everywhere and no voltage excitation is imposed. However, as time elapses, the relative errors
decrease to the order of 10−4 and therefore, the dominant dynamics are accurately captured over
a large parameter range.

Now we apply the pROMs to UQ analysis of the electro-thermal system (1). Here we conduct
UQ on the outputs at t = 10−6 s. We assume that the conductivity obeys the normal distribution
N (3 × 107, (107)2). The numerical results in Table 1 show that for both UQ methods, pROM-
based UQ computes highly accurate means (E(·)). For the nontrivial electrical outputs Idrain and
Isource, which are sensitive to the change in the conductivity with the same coefficient of variation
(CV) of 33.23%, the standard deviations (σ(·)) are also computed with high accuracy. The thermal
outputs φdrain, φsource and φback, however, are insensitive to the change in the conductivity with
CV’s of 3.77e-07, 4.4138e-07 and 2.3483e-08, respectively. Although the standard deviations to
these insensitive thermal outputs are not of so high accuracy, the relative orders are correct.

Table 1: UQ results for the outputs at t = 10−6 s.

LHS using FOM LHS using ROM SC using FOM SC using ROM
E(Idrain) 7.4621e-04 7.4621e-04 7.4602e-04 7.4602e-04
σ(Idrain) 2.4794e-04 2.4794e-04 2.4867e-04 2.4867e-04
E(Isource) −7.4621e-04 −7.4621e-04 −7.4602e-04 −7.4602e-04
σ(Isource) 2.4794e-04 2.4794e-04 2.4867e-04 2.4867e-04
E(Iback) 0 0 0 0
σ(Iback) 0 0 0 0
E(φdrain) 5.8479e-04 5.8478e-04 5.8479e-04 5.8479e-04
σ(φdrain) 1.5838e-10 1.5677e-10 1.5985e-10 1.5719e-10
E(φsource) 4.1977e-04 4.1975e-04 4.1977e-04 4.1977e-04
σ(φsource) 1.8528e-10 9.1986e-11 4.6370e-11 9.2124e-11
E(φback) 6.6781e-07 6.6773e-07 6.6781e-07 6.6781e-07
σ(φback) 1.5682e-14 1.7778e-14 1.1199e-14 1.6189e-14

Number of sampled points 100 100 11 11
CPU time 6001.14 s 94.19 s 733.64 s 30.51 s
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