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Abstract

Decoding genomic sequences and determining their variation within populations has potential to reveal adaptive

processes and unravel the genetic basis of ecologically relevant trait variation within a species. The blue tit Cyanistes

caeruleus – a long-time ecological model species – has been used to investigate fitness consequences of variation in

mating and reproductive behaviour. However, very little is known about the underlying genetic changes due to natu-

ral and sexual selection in the genome of this songbird. As a step to bridge this gap, we assembled the first draft gen-

ome of a single blue tit, mapped the transcriptome of five females and five males to this reference, identified

genomewide variants and performed sex-differential expression analysis in the gonads, brain and other tissues. In

the gonads, we found a high number of sex-biased genes, and of those, a similar proportion were sex-limited (genes

only expressed in one sex) in males and females. However, in the brain, the proportion of female-limited genes

within the female-biased gene category (82%) was substantially higher than the proportion of male-limited genes

within the male-biased category (6%). This suggests a predominant on-off switching mechanism for the female-lim-

ited genes. In addition, most male-biased genes were located on the Z-chromosome, indicating incomplete dosage

compensation for the male-biased genes. We called more than 500 000 SNPs from the RNA-seq data. Heterozygote

detection in the single reference individual was highly congruent between DNA-seq and RNA-seq calling. Using

information from these polymorphisms, we identified potential selection signals in the genome. We list candidate

genes which can be used for further sequencing and detailed selection studies, including genes potentially related to

meiotic drive evolution. A public genome browser of the blue tit with the described information is available at

http://public-genomes-ngs.molgen.mpg.de.
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Introduction

A major goal in evolutionary ecology is to identify and

understand adaptive processes from the perspective of

genes, individuals and populations with a focus on the

individual phenotypic and genomic level (Springer et al.

2011; Diz et al. 2012). Whereas the phenotypic approach

can be used to analyse and detect ongoing processes of

adaptation and potential constraints on adaptation by

pleiotropy and plasticity, the genomic approach has the

potential to reveal adaptive processes over a longer time-

scale including past selective episodes in the population

history (Van Oers & Mueller 2010). The combined inves-

tigation of the maintenance and dynamics of phenotypic

and genomic variation in populations is important for

understanding the potential for trait evolution. However,

for many species, the knowledge about genomic evolu-

tion substantially lags behind the knowledge about phe-

notypic evolution.

The blue tit (Cyanistes caeruleus) and the closely

related great tit (Parus major) have been established as

ecological model species for more than 60 years (Kluyver

1951; Lack 1964). Since then, fitness consequences of vari-

ation in many life history and behavioural traits have

been described in the wild (Meril€a & Sheldon 1999;

Ellegren & Sheldon 2008; Clutton-Brock & Sheldon
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2010). In blue tits, a specific focus has been on extra-pair

mating behaviour (for recent publications see Vedder

et al. 2011; Schlicht & Kempenaers 2013; Arct et al. 2013).

However, only a few studies of genotype–phenotype or

genotype–fitness relationships have been performed

(Olano-Marin et al. 2011a,b; Kluen et al. 2012 and Stein-

meyer et al. 2012). This is mainly due to the paucity of

genomic information in this species; so far, only random

genomic markers – although large sets – have been

developed (e.g. Olano-Marin et al. 2010). Genome and

transcriptome sequencing will help to bridge this gap.

High-throughput (next-generation) sequencing tech-

niques enable the generation of new avian genome

databases (Zhang et al. 2014), which can then be

improved with the help of ‘reference’ genome assem-

blies such as that of the chicken (Gallus gallus) and

zebra finch (Taeniopygia guttata). These reference gen-

omes have a chromosomal scale and have been

assembled with the help of genetic linkage maps

(ICGSC 2004; Warren et al. 2010). Reference species

facilitate the assembly of new bird genomes, particu-

larly because chromosomal organization appears to be

highly conserved among avian taxa (Ellegren 2010;

Frankl-Vilches et al. 2015). Recently, bird genomes that

have attracted particular interest are those of species

with clear categories of domesticated breeds (Dalloul

et al. 2010), morphotypes (Shapiro et al. 2013) or sub-

species (Ellegren et al. 2012; Poelstra et al. 2014), or

that are adapted to extreme environments or lifestyles

(Cai et al. 2013; Huang et al. 2013; Zhan et al. 2013).

However, the publication of genome information on

ecological model species should be a helpful long-

lasting resource for micro-evolutionary studies in the

field.

The general aim of this study was to provide a

detailed description of the blue tit genome, transcrip-

tome and genetic polymorphisms in order to promote

genetic studies on ecologically relevant traits in the

field. Here, we report on (i) the assembly of the blue

tit genome, assisted by the Tibetan ground tit (Pseu-

dopodoces/Parus humilis) and chicken genome, and (ii)

the characterization of the blue tit transcriptome,

based on sequencing of different tissue samples of

five males and five females. We analysed gene

expression in the female and male gonads and brain

in comparison with the pooled remaining tissues to

(iii) describe general patterns of sex-differential gene

expression in brain and gonads and to (iv) list poten-

tial candidate genes for sexual conflict and/or rapid

evolution (Parsch & Ellegren 2013). After identifying

genomic variants in the transcribed regions, we used

their population frequencies, patterns of linkage dise-

quilibrium and functional annotation to (v) reveal

potential loci under selection.

Materials and methods

Sampling

We collected 10 adult blue tits (five males and five

females) under licence (Regierung von Oberbayern, Az.

55.1-8642.3-45-2011) from a wild population in a natural

forest reserve in southern Germany (Westerholz,

48°080N, 10°530E; for details of the area see Steinmeyer

et al. 2012). We caught all individuals inside a nestbox at

the beginning of the breeding season, between 28 March

and 3 April 2012, while they were inspecting a box or

roosting inside. Individuals were brought to the labora-

tory, sacrificed and directly dissected to extract brain,

gonads, skin, pectorals, heart, lung, liver, gizzard, spleen,

pancreas, intestine and kidney. Halves of each organ

were directly frozen or stabilized in RNAlater (Qiagen).

A blood sample of one of the male birds (reference bird

BT333_1) was stored in Queen’s lysis buffer (Seutin et al.

1991) for DNA extraction.

DNA/RNA extraction and sequencing

DNA was extracted from the blood sample with the

Nucleospin Blood QuickPure kit (Macherey-Nagel) and

RNA was extracted from the organ samples with RNeasy

Mini kits (Qiagen) according to the manufacturer’s rec-

ommendations. In each sample, we measured RNA con-

centration with a Bioanalyzer (Agilent Technologies).

RNA samples were pooled into three tissue groups per

individual for sequencing: total brain, gonads and all

other remaining organs (equal RNA amounts).

The genome of the single male reference blue tit

(BT333_1) was sequenced by the Illumina HiSeq 2000

technique using a 500-bp and a 1000-bp insert paired-

end library with 101-bp read length. The transcriptome

samples of the 10 blue tit individuals (three tissue sam-

ples per individual) were separately prepared and fil-

tered for RNAs with poly-A tails using Illumina’s

TruSeq RNA Sample Preparation Kits before sequencing

by the Illumina HiSeq paired-end technique with read

lengths of 50 or 101 bp (for the reference individual

BT333_1) and an insert size of about 200 bp. For sequenc-

ing details including barcodes for each sample and SRA

accession numbers see Table S1 (Supporting informa-

tion).

Genome assembly and gene annotation

We filtered and trimmed the whole genome shotgun raw

sequences of blue tit BT333_1 to obtain high-quality

nonduplicate read pairs. This was achieved by a custom

script that extracted only the largest parts of reads that

were longer than 32 bp and contained no base with
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Phred quality score lower than 11 (Frankl-Vilches et al.

2015). We compared the first 32 bp of each read in a pair

to those of other read pairs and kept only one pair if the

same sequence was found more than once (deduplica-

tion). The reads were assembled by a hybrid strategy

which involved (i) the assembly of all short reads by a

‘de Bruijn graph’ assembler using IDBA-UD v1.1.1 (Peng

et al. 2012), and (ii) assembling the resulting contigs and

a subset of the short read data by a ‘overlap layout con-

sensus’ long read assembler using CELERA ASSEMBLER v7

(Myers et al. 2000). For more details regarding parame-

ters applied see Appendix S1 (Supporting information).

Some putative interchromosomal missassemblies were

identified by whole genome alignment using LAST V266

(Kielbasa et al. 2011; Appendix S1, Supporting informa-

tion) with the Tibetan ground tit (Pseudopodoces/Parus

humilis; Cai et al. 2013; GenBank Accession no.

ANZD00000000). First, the Tibetan ground tit scaffold

identifiers were assigned to chicken chromosomes by

whole genome alignment. The so identified missassem-

blies were removed by splitting the corresponding blue

tit scaffolds. Superscaffolds were subsequently estab-

lished by colinearity with the Tibetan ground tit genome

as described in Frankl-Vilches et al. (2015). The final blue

tit assembly was compared with the chicken assembly

using LAST to assign putative chromosome IDs to the

superscaffolds. Additionally, we assigned the blue tit

superscaffolds to zebra finch chromosomes (Table S2,

Supporting information) in order to take into account the

characteristic chromosome splits in the passerine lineage

(e.g. on chromosomes 1 and 4).

Protein-coding sequences in the blue tit genome were

annotated by aligning all avian protein sequences of the

NCBI and Ensembl protein database (reference date: 19

May 2014) using SPALN v2.1.2 (Gotoh 2008; Appendix S1,

Supporting information; see track ‘Aligned Proteins’ in

the genome browser). A single best protein match for

each cluster of gene predictions in the genome was

selected according to the best SPALN alignment score

(which summarizes alignment length and identity of a

match, thus preferring more complete predictions from

less diverged species). We used two steps to remove

redundant transcripts that had lower SPALN scores

based on genomic location. First, we removed transcripts

with strand-specific exact overlap of single exons

between two or more transcript models. Second, we

removed residual redundant transcripts that had strand-

specific, but not exact, overlaps (see track ‘Best Protein

Match’ in the genome browser). Gene names were

assigned by these alignments. We further refined the

coding gene annotation – in particular the UTR annota-

tion – by merging SPALN predictions (which had been

converted to gtf format) with the RNA-seq/Cufflinks-

derived transcript models of the male BT333_1 using

Cuffmerge (Trapnell et al. 2010). As coding sequence

annotation is lost during this step, we used TransDe-

coder r20131117 (https://transdecoder.github.io/) to

reassign ORF information for protein translation (see

‘Protein Coding Genes’ track in the genome browser).

Transcriptome mapping and assembly

The transcriptome sequence reads (RNA-seq) of each tis-

sue sample from each individual were mapped to the

genome sequence using TOPHAT2 V2.0.9 (Kim et al. 2011;

Appendix S1, Supporting information), with support of a

splice-junction database from earlier versions of genome

annotations (we used predicted exon/intron boundaries

from the SPALN protein alignments as well as exon/in-

tron boundaries from the first round of TOPHAT using the

101-bp RNA-seq reads from BT333_1). Parsimonious sets

of transcripts for each tissue type were assembled using

CUFFLINKS v2.1.1 (Trapnell et al. 2010; Appendix S1, Sup-

porting information). This step provides a complete pic-

ture of the transcriptome, because it takes the

untranslated regions of genes into account, and considers

differential splicing and poly-adenylated long noncoding

RNA and miRNA precursors (Guttman et al. 2009; Nec-

sulea & Kaessmann 2014; Philippe et al. 2014). The Cuf-

flinks-predicted exons mapped to the genome were first

merged across the three tissues within each individual

using Cuffmerge and then intersected across groups of

individuals using BEDTOOLS V2.19.1 (Quinlan & Hall 2010)

to reveal the following four groups: (i) exons common to

all males for the comparison of RNA-seq and DNA-seq

variants in the single reference male, (ii) exons common

to all individuals, (iii) exons common to all females (but

not found in all males) and (iv) exons common to all

males (but not found in all females). According to the

three last groups, we categorized SNPs identified from

the transcriptome as common to both sexes or as

detected exclusively in the female- or male-specific tran-

scriptome.

Sex-specific expression analysis

We tested for sex-differential expression of the 67 359

Cufflinks-predicted genes in the three tissue samples

using Cuffdiff (Trapnell et al. 2013; Appendix S1, Sup-

porting information). This algorithm estimates expres-

sion as FPKM (fragments per kilobase of transcript per

million mapped reads) at transcript/isoform-level

resolution and controls for variability across replicates

(five males and five females). We allowed a false discov-

ery rate of 0.05. Among the genes that showed sex-biased

expression, we discriminated between those that were

expressed in both sexes and those that were only

expressed in either males or females (sex-limited
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expression; FPKM <= 0.0001 in one sex). The proportion

of annotated genes in the sex-biased and unbiased

category was estimated by the relative number of

Cufflinks-predicted genes, which showed positional

overlap with best protein hit regions, using BEDTOOLS.

Variant calling and annotation

After removing duplicate reads (using PICARD V1.122,

Appendix S1, Supporting information), we called SNPs

and indels (insertions/deletions) and assigned individ-

ual genotypes from both the single-individual DNA-seq

data and the 10-individual RNA-seq data using the

HaplotypeCaller of GATK v3.2 (DePristo et al. 2011;

Appendix S1, Supporting information). The genotypes of

the RNA-seq data were determined for each of the 10

individuals in a single step following GATK best prac-

tices (Van der Auwera et al. 2013; Appendix S1, Support-

ing information). The variant sets of both the DNA-seq

and RNA-seq data were then filtered according to fixed

rules from the GATK best practices recommendations

(Van der Auwera et al. 2013; Appendix S1, Supporting

information) and to coverage (included if read depth per

individual > 6). We also excluded high-coverage vari-

ants (read depth > 99th percentile of base coverage) from

the genomic set to avoid variant calls from duplicated

genome regions. To filter out potential false-positive calls

due to mapping errors, we allowed a maximal indel

length of 10 bp.

Variants were functionally annotated according to the

gene position using SNPEFF v3.5 (Cingolani et al. 2012).

Here, gene position was defined by the refined protein

annotation (‘Protein Coding Genes’ track in genome

browser).

Scan for selection signatures

We applied three different methods for the detection of

potential selection signals in the RNA-seq SNP data. Our

focus was on methods which are able to detect ongoing

selection in small genomic regions, but also included a

standard selection scan of allele frequency spectra. Only

SNPs that were scored in all 10 individuals were used,

because allele and haplotype frequencies need to be esti-

mated, and SNPs located in the homologous region of

chromosome Z were excluded due to its hemizygotic

nature in females. In all tests, we applied a window size

of 25 kb, which is close to the average size of avian genes

(see e.g. chicken genome at genome.ucsc.edu). The genes

identified as candidates for selection were tested for

functional enrichment in gene ontology (GO) categories

using g:Profiler (Reimand et al. 2011) with the 11 827

annotated G. gallus Ensemble genes as background/null

distribution (Ensemble genomes 22). P-values were

corrected for multiple testing by the native method

implemented in g:Profiler.

1 Tajima’s D based on unphased genotypes was calcu-

lated for all adjacent 25-kb windows within each chro-

mosome/scaffold using VCFTOOLS v0.1.11 (Danecek

et al. 2011). Clusters of a minimum of two adjacent

windows with |D| > 1.96 were considered interest-

ing. This test is mostly sensitive to historical selective

sweeps and balancing selection.

2 All SNPs were phased and imputed within each chro-

mosome/scaffold based on the physical sequence

reads and population frequency information using

SHAPEIT v2.790 (Delaneau et al. 2013). This method is

based on the Gibbs’ sampling scheme in which each

individual’s haplotypes are sampled conditionally on

both the current estimates of all other individuals and

the phase-informative sequencing reads of the individ-

ual (Delaneau et al. 2013). The latter increases the relia-

bility of the estimated short-distance haplotypes. The

estimation of long-distance haplotypes, however, is

more error-prone given our small sample of 10

individuals, particularly across regions with no

SNPs. After phasing, we calculated the standardized

log-ratio of the integrated extended haplotype

homozygosities of both alleles at each SNP (iHS

according to Voight et al. 2006) using the R package

REHH V1.11 (Gautier & Vitalis 2012). The iHS test statis-

tic should be mostly independent of local variation in

recombination rates, because both the reference and

the alternate allele are located at the same genomic

position. It is standardized within the frequency

classes of the minor allele in 5% bins between 10% and

50%. SNPs with minor allele frequency <10% were

excluded. The iHS statistic has an approximately stan-

dard normal distribution and provides a measure of

how unusual the haplotype extensions around a given

SNP are, relative to the haplotype frequencies. As sim-

ulations have shown that selection produces clusters

of extreme iHS values (Voight et al. 2006), we consid-

ered a minimum of 10 absolute iHS values > 3.09

(0.1% level) within any window of 25 kb indicative for

a partial selective sweep.

3 For the annotated gene regions, we also considered

clusters of common nonsynonymous SNPs (NS-SNPs)

as interesting; that is, we determined all cases of at

least seven NS-SNPs with minor allele fre-

quency > 0.35 within any 25 kb window. Such cases

might indicate balancing selection maintaining high

structural protein variation or ongoing (partial) selec-

tive sweeps on haplotypes with strong impact on

structural variation.

All these selection scans are restricted to genomic

regions transcribed in both sexes. However, the
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detection power might still depend on the local tran-

scriptome coverage and therefore SNP density in

these regions. To assess the severity of this potentially

confounding factor, we tested the strength of the cor-

relations between Tajima’s D or mean absolute iHS

values and transcript coverage across all neighbouring

25-kb windows. Transcript coverage and SNP density

in these windows were correlated (r = 0.42; 95% CI:

0.41–0.44).

Results

Genome

DNA sequencing yielded more than 54 Gb in 543 million

high-quality reads. The resulting draft assembly com-

prised about 1099 Mb in 54 108 contigs with an N50

length of 85.7 kb, or – after reference-assisted scaffolding

– in 29 311 scaffolds with an N50 length of 16.8 Mb.

Median base coverage of the assembly was 479 (5th per-

centile: 159; 95th percentile: 689).

Ninety-one per cent of the blue tit assembly (394

superscaffolds) could be mapped to chicken chromo-

somes or linkage groups. All chromosomes or linkage

groups of the assembled chicken genome aligned with

the blue tit genome except the smaller chromosome 32

and the sex chromosome W. The latter was not

sequenced with our single male blue tit.

We found 21 434 best protein gene hits on the

genome, which comprised 37% of the genome size (in-

cluding introns). Alignment sites of these hits (180 549

protein-coding exons) covered 2.6% of the genome size

(for comparison see e.g. chicken genome at genome.

ucsc.edu). Using our transcriptome data, we obtained

complete gene annotations including UTRs for 17 062 of

the coding genes defined above, which increased the

annotated genome size to 43% (6% in exons).

The public blue tit genome browser can be found

at http://public-genomes-ngs.molgen.mpg.de. Figure 1

shows an example screen shot of the browser at the gene

end of MKI67. Known protein-coding genes are anno-

tated in the ‘Best Protein Match’ and ‘Aligned Proteins’

track and transcribed regions can be inferred from the

‘TRANSCRIPTOME’ tracks. By combining the informa-

tion of these tracks, as done in the ‘Protein Coding

Genes’ track, one can identify UTRs. The ‘MAF2’ track

shows the alignments with the ground tit, medium

ground finch (Geospiza fortis) and zebra finch. The cur-

rent chromosome naming refers to chicken chromo-

somes. Assignments to zebra finch chromosomes can be

found in Table S2 (Supporting information). Identified

SNPs are visible in the ‘SNP’ tracks. The browser has the

characteristic functionalities of a UCSC browser (geno-

me.ucsc.edu) including BLAT searches, DNA sequence

extraction and table browser. Use the help button for fur-

ther information.

Fig. 1 Example screen shot of the blue tit browser showing the 30 end of gene MKI67.
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Transcriptome

RNA sequencing yielded between 91 and 195 million

high-quality reads per individual and tissue sample

(brain, gonads and pooled other organs). Merging all

Cufflinks transcript predictions of all individuals and tis-

sues revealed 67 359 predicted genes/transcribed

regions (including coding and noncoding ‘genes’, see

Necsulea & Kaessmann 2014) and 209 472 isoforms.

Most (82%) of the best protein hits overlapped one of the

Cufflinks-predicted genes. However, only 33% of the

Cufflinks-predicted genes overlapped with best protein

hits, leaving a substantial number of transcripts nonan-

notated and/or nonprotein coding.

In addition, we report the overlapping/intersecting

genomic regions of Cufflinks-predicted exons common

to both sexes, specific to females and specific to males.

This is useful for filtering SNPs for which genotype

information is available for all 10 individuals or only for

a single sex. A total of 155 340 exons (58.5 Mb) were

common to all individuals, 18 813 exons (7.5 Mb)

were specific to females, and 37 477 exons (17.2 Mb)

were specific to males.

Sex-specific expression

As expected, a high number of genes were differentially

expressed between testis and ovaries: 22 389 of 42 128

expressed genes showed a significant sex bias (53%,

including sex-limited genes; Table 1; Fig. 2). More genes

showed a higher or exclusive expression in males than in

females (Table 1). The proportion of Z-chromosomal vs.

autosomal location was larger for the male-biased (8%)

than for the female-biased (4%) genes (v2 = 176.8,

d.f. = 1, P < 0.0001). A relatively low proportion of the

genes expressed in gonads overlapped best protein hits

in both the unbiased (52%) and sex-biased genes (56%),

indicating that a high number of genes expressed in the

gonads remain nonannotated.

In the brain, we found 603 of 24 431 tested genes that

were expressed differentially between the sexes (2.5%;

Table 1; Fig. 3). Although there was no difference in the

number of genes with male-biased vs. female-biased

expression (v2 = 3.55, d.f. = 1, P = 0.059), the number of

genes that were expressed only in females (227) was

significantly larger than the number of genes exclusively

expressed in males (20; v2 = 350.0, d.f. = 1, P < 0.0001).

Thus, most of the genes with male-biased expression

belong to the group of genes which are expressed in

both sexes (see Fig. 3). Of the 603 genes that showed

sex-biased expression in the brain, 229 were found on

the Z-chromosome. The majority of these genes (206)

showed a male-biased expression (sex difference:

v2 = 344.4, d.f. = 1, P < 0.0001). Those genes that

showed a sex-biased expression were less likely to be

annotated with best protein hits (52%) than the unbiased

genes (71%). This difference was due to the very low

annotation rate among genes with female-biased expres-

sion (14% vs. 85% for male-biased genes).

In the pooled samples from the other organs, as

expected, only few genes (286 of 22 761 tested genes)

Table 1 Number of differentially expressed genes in the three

tissue samples of blue tits. Percentages within the respective

higher level group are given in brackets

Gonads Brain

Pooled

other tissues

Expressed genes

(total)

42 128 24 431 22 761

Male-biased 12 071 (29%) 325 (1.3%) 84 (0.4%)

Male-limited 2183 (18%) 20 (6%) 19 (23%)

Z-chromosomal 926 (8%) 206 (63%) 8 (10%)

Female-biased 10 318 (24%) 278 (1.1%) 202 (0.9%)

Female-limited 1025 (10%) 227 (82%) 141 (70%)

Z-chromosomal 363 (4%) 23 (8%) 13 (6%)
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Fig. 2 Sex-specific expression of 42 128 genes in the gonads of

blue tits. Genes with low numbers of read alignments in both

sexes (<10 fragment alignments) were not tested (lower left cor-

ner in plot). The lowest expression in a single sex was set to

0.0001 FPKM [=�4 log(FPKM), fragments per kilobase of tran-

script per million mapped reads] and indicates genes with sex-

limited expression. Significant male-biased expression is shown

in blue and significant female-biased expression in red. The dot-

ted line indicates equal expression. Nonsignificance can also be

due to large variance in expression between individuals of one

sex.
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showed sex-differential expression (1.3%; Table 1;

Fig. 4). Among these, genes with female-biased expres-

sion were more common than genes with male-biased

expression (v2 = 48.2, d.f. = 1, P < 0.0001). There is no

evidence for enrichment of Z-chromosomal genes within

the male-biased gene group in comparison with the

female-biased one (v2 = 0.8, d.f. = 1, P = 0.36). Again,

genes that showed sex-biased expression were less likely

to be annotated with best protein hits (39%) than the

unbiased genes (75%). And again, this difference was

mainly driven by the low annotation rate among

genes with female-biased expression (27% vs. 68% for

male-biased genes).

Characterization of variants

After filtering, we identified 3 964 922 heterozygous sites

of single nucleotide changes (SNPs) from the genomic

sequences in the single male blue tit BT333_1. This trans-

lates to one SNP every 277 base pairs. As expected from

the general gene size and structure in birds (UCSC brow-

ser chicken), 43% of the polymorphisms were located in

genic regions (exons and introns; Table 2). There are

more 30 UTR than 50 UTR SNPs, as expected because of

the larger size of 30 UTRs. The nonsynonymous SNPs,

with potentially strong functional impacts, sum up to

13 973 SNPs.

We identified 530 500 heterozygous occurrences of

insertions or deletions (indels) based on the genomic

sequence in the reference bird (Table 2). The distribution

across exons, introns and intergenic regions appears to

be similar to that of the SNPs, except that the number of
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Fig. 3 Sex-specific expression of 24 431 genes in the blue tit

brain. Genes with low numbers of read alignments in both sexes

(<10 fragment alignments) were not tested (lower left corner in

plot). The lowest expression in a single sex was set to 0.0001

FPKM [=�4 log(FPKM), fragments per kilobase of transcript per

million mapped reads] and indicates genes with sex-limited

expression. Significant male-biased expression is shown in blue

and significant female-biased expression in red. The dotted line

indicates equal expression. Nonsignificance can also be due to

large variance in expression between individuals of one sex.
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Fig. 4 Sex-specific expression of 22 761 genes in the pooled

sample of other organs of blue tits. Genes with low numbers of

read alignments in both sexes (<10 fragment alignments) were

not tested (lower left corner in plot). The lowest expression in a

single sex was set to 0.0001 FPKM (= �4 log(FPKM), fragments

per kilobase of transcript per million mapped reads) and indi-

cates genes with sex-limited expression. Significant male-biased

expression is shown in blue and significant female-biased

expression in red. The dotted line indicates equal expression.

Nonsignificance can also be due to large variance in expression

between individuals of one sex.

Table 2 Genomic variants determined from DNA-seq data of

the reference blue tit according to their location and functional

type. Variants can appear in multiple exonic subcategories due

to overlapping and nested gene structure. Percentages of the

main categories are given in brackets

Variant type SNPs Indels

Intergenic 2 243 928 (57%) 308 270 (58%)

Exon 167 551 (4%) 19 251 (4%)

Nonsynonymous 13 973

Synonymous 44 553

Frameshift 693

Nonframeshift 386

50 UTR 24 184 2987

30 UTR 103 150 15 601

Intron (rest) 1 553 443 (39%) 202 979 (38%)

© 2015 John Wiley & Sons Ltd
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indels in coding regions is relatively low (only 6% of exo-

nic indels). This is probably due to selection against

indels with strong impact on the protein structure (local

codon changes and/or frame shifts).

Based on the transcriptomic sequences, we detected

435 143 SNPs in the Cufflinks regions which are common

to both sexes. The majority of these SNPs were located in

annotated exons and most of these are in the 30 UTR, in

agreement with relatively large 30 UTRs (Table 3). The

high proportion of annotated SNPs was also due to the

fact that annotated genes were often larger than nonan-

notated ones. Still, a substantial number of SNPs (70 204)

were located distally to known exons, that is in currently

nonannotated transcripts. A total of 46 741 and 20 387

SNPs were detected in the male- and female-specific Cuf-

flinks regions, respectively. Notably, the majority of sex-

specific SNPs were located in nonannotated transcribed

regions. Also, within the annotated regions, the propor-

tion of nonsynonymous SNPs is relatively high among

the sex-specific SNPs (Table 3).

Comparison between genomic and transcriptomic
variant calling

We identified variants (heterozygotes) for the reference

male bird (BT333_1) both from DNA and RNA

sequences and were thus able to compare the calling suc-

cess from the two different sources. We identified

235 006 SNPs from the DNA sequence data in compar-

ison with 211 269 SNPs from the RNA sequence data in

the common male Cufflinks regions (187 370 exons

across 82.9 Mb). Eighty per cent of the genomic SNPs

were also found in the transcriptomic SNP set and 89%

of the transcriptomic SNPs were validated by genomic

SNPs. The called genotypes were identical in 99.99% of

the overlapping SNP set, indicating a high mapping con-

gruence between RNA-seq and DNA-seq data.

We identified 27 586 indels in the common male Cuf-

flinks regions from the genomic data and 17 913 indels

from the transcriptomic data. Forty-one per cent of the

genomic indels were also found in the transcriptomic

indel set and 63% of the transcriptomic indels were

detected in the genomic set. Indels identified in both

sequence sets had identical genotypes in 92% of the

cases. Due to this low cross-validation rate between

genomic and transcriptomic indels and the relatively low

number of transcriptomic indels in comparison with the

SNPs, we excluded indels from further selection analy-

ses.

Selection signatures in the transcriptomic regions

Mean Tajima’s D across all 16,489 informative 25-kb win-

dows (with > 2 SNPs) was �0.53, indicating an overall

excess of low-frequency variants (Fig. S1, Supporting

information). This most likely represents a signal of puri-

fying selection in the transcriptomic regions, but in the-

ory could also be due to population expansion. There

was no association of Tajima’s D with transcript cover-

age (r = �0.01; 95% confidence interval CI: �0.02 to

0.004) across 25-kb windows. Only four clusters of strong

negative Tajima’s D (2 adjacent windows with

D < �1.96) were identified as potential regions for his-

torical selective sweeps: chr2_9:750 000–775 000 (gene

SNRNP48), chr4_6:3 775 000–3 800 000 (genes PHKA1,

HDAC8), chr14_1:16 775 000–16 800 000 (gene KCTD5)

and chr21_1:4 625 000–4 650 000 (genes SLC35E2B,

CDC2L1, MMP23B). This gene list is not enriched for any

GO category. No clusters of strong positive Tajima’s D,

indicative of balancing selection, were detected.

Relative extended haplotype homozygosities mea-

sured as iHS values are shown across all informative

chromosomes and scaffolds (with > 4 SNPs) in Fig. S2

(Supporting information). There was a weak, but signifi-

cant, negative association of iHS means with transcript

coverage (r = �0.05; 95% CI: �0.06 to �0.03) across all

25-kb windows, indicative of a weak confounding effect.

Based on our definition of clusters of extreme iHS values

(see Materials and methods), we identified 15 regions

with unusual haplotype structure (Table 4). The most

extreme SNPs within these clusters are mostly common

30 UTR SNPs or SNPs from nonannotated regions, except

for two common nonsynonymous SNPs in the MKI67

and DNMT3A gene. The haplotype breakdowns of the

SNP type Both sexes Male-specific Female-specific

Exon 343 649 (79%) 15 576 (33%) 5002 (25%)

Nonsynonymous 35 920 3247 1020

Synonymous 91 896 4565 1827

50 UTR 14 722 3052 405

30 UTR 201 111 4712 1750

Nonannotated 91 494 (21%) 31 165 (67%) 15 385 (75%)

Up/downstream (5 kb off exon) 21 290 5653 3041

Non-up-/downstream 70 204 25 512 12 344

Table 3 Transcriptomic SNPs in blue tits

according to their location and functional

type in the reference protein annotation

for the three Cufflinks categories (tran-

scripts expressed in both sexes, expressed

in males only and expressed in females

only). Percentages of the main categories

are given in brackets

© 2015 John Wiley & Sons Ltd
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two alleles at the five SNPs with the highest iHS values

are shown in Figs S3–S7 (Supporting information). The

major or relatively common minor allele of these SNPs

extends in an unusually frequent haplotype (see

extended haplotype homozygosity (EHH) plots and

bifurcation plots S3–S7). The genes listed in Table 4 are

not enriched for any GO category.

We found 2695 common nonsynonymous SNPs with

a minor allele frequency of more than 0.35. Some of these

common NS-SNPs formed clusters of 7 SNPs within

25 kb (Table 5). It appears that the clusters show a gen-

eral enrichment in NS-SNPs (common and noncommon).

Interestingly, one of the clusters with a high density of

NS-SNPs overlaps with one of the extreme iHS clusters

and represents the MKI67 gene (Fig. 1). The genes associ-

ated with common NS-SNP clusters are enriched for the

GO category ‘centrosome localization’ (P = 0.027; genes

ASPM and SYNE2). All NS-SNPs within the three clus-

ters of the mentioned genes (MKI67, ASPM, SYNE2) do

not show heterozygote excess, are in regions of average

genomic coverage and in regions of perfect alignment

with known proteins, indicating a high reliability of

annotation.

Discussion

We characterized the genome sequence and transcrip-

tome of a common songbird, the blue tit. The data –
available via a genome browser – can be used for studies

on the genetic architecture and evolutionary potential of

ecologically relevant traits. Information and patterns

solely based on sequences can be utilized to identify

genomic regions of interest, which might then be linked

to the evolution of ecologically relevant traits via trait

mapping or the analysis of functional pathways. Detect-

ing signals of ongoing selection is of particular interest

for micro-evolutionary processes on an ecological time-

scale (Vitti et al. 2013). An additional approach for the

detection of interesting genes in the context of sexual

selection and sex-specific behaviour is the analysis of

sex-biased expression, because genes that show sex-bi-

ased expression are known to evolve rapidly (Parsch &

Ellegren 2013).

Genome and sex-specific transcriptome characterization

In a first step, we assembled the blue tit genome with

high sequence continuity, that is with large superscaf-

folds (N50 of 16.8 Mb). This was possible because a

high-quality draft genome of the related ground tit was

available (Cai et al. 2013; Qu et al. 2013). Similar to the

ground tit, a high proportion of the blue tit genome

(91%) could be mapped to all chicken chromosomes

except two smaller chromosomes. This is not unexpected

given the general high synteny observed among bird

species (Ellegren 2013).

In a second step, the transcriptome of five female

and five male birds was assembled and mapped to the

reference genome. Whereas the majority (52–75%) of the

predicted genes that expressed at similar levels in both

Table 4 Genomic windows with clusters of strong iHS selection signals identified from SNPs in the transcripts common to both sexes.

Entries are ordered according to max |iHS|. Although the search for high iHS clusters was performed across all possible 25-kb win-

dows, the size indicated here is the restricted window in which all SNPs with iHS > 3.09 were located

Position Size (bp) Genes

Proportion of

SNPs with

|iHS| > 3.09 Max |iHS| (position)

Frequency of

major allele

Chr2_2 (3 267 143–3 269 466) 2323 – 12/34 6.94 (3 267 266) 0.60

Chr2_5 (11 793 224–11 798 603) 5379 FAM135B 17/85 �6.41 (11 798 568, 30 UTR) 0.55

Chr2_1 (18 761 958–18 763 148) 1190 TPK1 12/27 6.04 (18 761 958, 30 UTR) 0.60

Chr2_6 (10 958 063–10 961 897) 3834 – 10/24 5.94 (10 961 620) 0.60

Chr6_1 (23 739 440–23 741 191) 1751 MKI67 11/19 �5.66 (23 739 768, CDS, NS) 0.65

Chr1_1 (4 124 737–4 128 617) 3880 Hypothetical

protein; micro

RNA cluster

20/34 �5.42 (4 127 210, intron; flanking) 0.70

Chr2_3 (4 397 557–4 400 396) 2839 C2H8ORF37 13/34 �5.25 (4 400 333, 30 UTR) 0.55

Chr1_9 (1 000 981–1 002 289) 1308 ETNK1 14/21 �5.22 (1 001 189, 30 UTR) 0.55

Chr1_4 (19 825 405–19 828 229) 2824 PRKX 14/34 �5.15 (19 825 991, 30 UTR) 0.75

Chr5_1 (24 999 583–25 000 364) 781 DNMT3A 11/18 �5.01 (25 000 298, CDS, NS) 0.55

Chr14_1 (4 254 439–4 255 759) 1320 – 10/21 4.74 (4 255 757) 0.85

Chr2_1 (32 895 288–32 898 683) 3395 SLC35B3 13/38 �4.71 (32 895 723, 30 UTR) 0.70

Chr1_3 (376 895–378 471) 1576 TMEM139 10/13 �4.63 (376 895, 30 UTR) 0.50

Chr1_3 (26 867 588–26 871 222) 3634 N6AMT1 11/14 4.54 (26 867 588, intron or 30 UTR) 0.55

Chr5_1 (14 687 758–14 690 266) 2508 – 13/33 �4.30 (14 689 424) 0.70

© 2015 John Wiley & Sons Ltd
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sexes could be mapped to annotated protein-coding

genes, only 39–56% of the genes showing sex-biased

expression were annotated with aligned protein

sequences. This could indicate that sex-biased expression

often involves noncoding, regulatory elements of the

genome, such as long noncoding RNAs (Reinius et al.

2010; Buckberry et al. 2014) or microRNAs (Marco 2014).

If this is true, the vast majority of studies on sex-biased

gene expression, which only focus on protein-coding

genes (Ellegren & Parsch 2007), may represent only a

part of the sex-biased transcriptome. Given that some

differentially spliced isoforms might have been missed

during the annotation process, it could also mean that

some of the sex-biased transcripts represent alternatively

spliced exons. Such sex differences in splicing are wide-

spread in the adult human brain (Trabzuni et al. 2013).

The regulatory system behind sex-specific expression

certainly represents an open field for further studies

(Mank et al. 2013).

In contrast to the pooled organ sample which showed

only 1.3% of genes with sex-biased expression, a high

proportion of genes expressed in testes and ovaries

showed a significant sex bias (53%). Similarly high per-

centages of genes with sex-biased expression have been

observed in the adult reproductive tissues of other

organisms, including chicken (Ellegren & Parsch 2007;

Mank et al. 2010). Whereas there was little difference in

the number of genes with male- vs. female-biased

expression across all autosomes, male-biased genes were

significantly enriched on the Z-chromosome. This find-

ing is consistent with incomplete dosage compensation

in the homogametic (ZZ) males (Storchova & Divina

2006; Parsch & Ellegren 2013). However, the majority of

genes with sex-biased expression appear to be located on

the autosomes and hence require a different mechanism

for sex-specific expression.

The brain transcriptome also showed a higher propor-

tion of genes with sex-biased expression (2.5%) than the

transcriptome from the pooled other organs. This pro-

portion is similar to what has been found in the zebra

finch and common whitethroat (Sylvia communis) brain

(Naurin et al. 2011). Among the 325 genes with male-

biased expression, which comprise about half of the

genes with sex-biased expression, the majority (63%) was

linked to the Z-chromosome. In contrast, only a small

number of genes with female-biased expression was

Z-linked (8%). Interestingly, most of the genes with

female-biased expression in the brain were female-lim-

ited (expressed exclusively in females), whereas the

majority of genes with male-biased expression were

expressed in both sexes. This pattern across both auto-

somes and the Z-chromosome shows some similarity

with the expression pattern on the Z-chromosome found

in the zebra finch and the common whitethroat brain,

where Z-linked male bias in gene expression increased

with mean expression level across the sexes (Naurin

et al. 2012). Male bias can positively correlate with over-

all expression level when female-limited genes (i.e. with

a negative male bias) are included. We thus hypothesize

that the sexual dimorphism in gene expression in the

avian brain is based on two distinct components: a quali-

tative female-limited expression of mostly ncRNA genes

and a quantitative male-biased expression of mostly

Table 5 Genomic windows with clusters of common (>0.35)
nonsynonymous SNPs (NS-SNPs) identified from all SNPs in

the transcripts common to both sexes. Entries are ordered

according to number of common NS-SNPs. Although the search

for common NS-SNP clusters was performed across all possible

25-kb windows, the size indicated here is the restricted window

in which all common NS-SNPs were located

Position Size (bp) Genes

Number of

common

NS-SNPs/

noncommon

NS-SNPs/

S-SNPs

Chr3_5 (1 020 415–1
034 835)

14 420 GVINP1 44/124/122

Scaffold1812_1

(4334–8810)
4476 LOC101806664 30/22/50

Chr17_1 (8 312

834–8 320 044)

7210 LOC101816715 13/48/21

Chr2_4 (11 718

875–11 754 418)

35 543 CEP192 11/31/46

Chr6_1 (23 729

867–23 739 961)

10 094 MKI67 10/42/24

Chr14_1 (2 639

521–2 648 307)

8786 SLX4 9/12/6

Chr8_1 (8 994

539–9 012 440)

17 901 ASPM 9/52/35

Chr1_1 (41 521

487–41 527 470)

5983 DDIAS 8/23/16

Chr2_1 (22 790

125–22 800 493)

10 368 KIAA0947 8/33/11

Chr3_2 (8 800

604–8 821 307

20 703 MIA3 8/11/24

Chr7_3 (290

285–294 282)

3997 LOC101820543 8/7/6

Chr1_12 (1 793

558–1 800 896)

7338 SON or

LOC101920289

7/48/57

Chr11_6 (1873–5970) 4097 (HYDIN) 7/2/2

Chr19_1 (5 727

003–5 734 228)

7225 SPAG5 7/21/13

Chr2_3 (2 390

388–2 391 459)

1071 FBXO43 7/1/4

Chr3_1 (5 467

340–5 483 714)

16 374 MDN1 7/30/21

Chr5_1 (7 033

045–7 045 444)

12 399 SYNE2 7/16/21

Chr6_1 (5 727 574

–5 732 587)

5013 CYP2W1 7/8/10

© 2015 John Wiley & Sons Ltd
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coding genes. The male-biased expression is Z-linked

and most likely represents chromosomal dosage differ-

ences. The exclusive expression of genes in females could

provide an explanation for their higher evolutionary

rates in comparison with genes with male-biased expres-

sion as observed in the chicken brain (Mank et al. 2007).

Selection signals in polymorphism data

Identifying genomic variants from RNA-seq data is seen

as an important add-on to transcriptome assembly and

expression analysis, but it also poses a challenge because

of the intrinsic complexity in the transcriptome (Piskol

et al. 2013; Quinn et al. 2013). We called the RNA-seq

variants according to the best practice suggestions of the

genome analysis toolkit GATK (Van der Auwera et al.

2013 and associated web pages) and were able to evalu-

ate them with the variants identified from DNA-seq data

on the same individual. The cross-validation of our

RNA-seq and DNA-seq SNP calling suggests that the

reliability was sufficiently high (more than 80% of SNPs

called from one data set were also called in the other

data set and the identified genotypes were nearly identi-

cal in the overlapping SNP set). The difference in called

SNPs from RNA-seq and DNA-seq data can be due to

different procedures in mapping, duplicate removal,

splice-site alignment and variant filtering, but can

also result from differences in read coverage between

RNA-seq and DNA-seq data. We assume that allele-

specific expression bias is of minor importance in indi-

vidually called genotypes and does not influence allele

frequency estimates. However, the indels identified by

RNA-seq and DNA-seq data were quite different. Indel

calling is sensitive to local realignment steps, and the

guidelines for indel calling from RNA-seq data are still

preliminary. We thus disregarded the indels for further

analyses on selection signals.

We utilized different polymorphism information to

identify selection signals in the genome: allele frequency

spectra, EHH and common nonsynonymous coding

SNPs. The test statistics (Tajima’s D and iHS) appeared

to be only weakly confounded by local genomic features

such as the density of transcribed regions. However,

because iHS is partly based on error-prone long-distance

haplotype estimations, we suggest that the identified

genomic regions and genes only serve as candidates for

further evaluating studies on recent or ongoing adaptive

processes in blue tit populations. The gene lists obtained

through the first two approaches were not enriched for

any specific functional annotation compared to the com-

plete gene composition. However, the list of genes with

clusters of common nonsynonymous SNPs was function-

ally enriched for the term ‘centrosome localization’. The

products of the identified genes ASPM and SYNE2 play

important roles in the establishment and maintenance of

centrosome localization in the cytosol during mitosis and

meiosis. The dynamic evolution of meiotic drive of self-

ish gene elements predicts rapid evolution of proteins

associated with chromosome movements during meiosis

(Henikoff et al. 2001; Axelsson et al. 2010). The enrich-

ment of common nonsynonymous SNPs could thus indi-

cate an ongoing or partial selective sweep of structural

variants in genes associated with chromosome separa-

tion, for which centrosome positioning plays a role. The

observation of incomplete selective sweeps is not unli-

kely if repeated selective events related to the evolution

of meiotic drive are predicted. However, it could also

indicate balancing selection among different structural

variants of the genes. For the ASPM gene, which shows

positive selection during primate evolution (Mekel-Bo-

brov et al. 2005), functions like the regulation of brain

and gonad development have been reported (Pulvers

et al. 2010).

One gene (MKI67) was identified in two different

approaches and showed clusters of extreme EHH at

common nonsynonymous SNPs. It is therefore a good

candidate for a partial selective sweep on structural vari-

ants. The gene product of MKI67 is a well-known marker

for cell proliferation in cancer medicine, but little is

known about its molecular function (Scholzen & Gerdes

2000). Because of its centromere localization during

specific stages in the mitotic and meiotic cell cycle (Traut

et al. 2002), it might also have an important function dur-

ing meiotic chromosome movements, similar to ASPM

and SYNE2. It therefore represents another candidate for

repeated meiotic drive evolution.
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The blue tit genome browser is available at http://pub-

lic-genomes-ngs.molgen.mpg.de/. The raw sequences

are deposited at the NCBI/SRA archive under bioproject

no. PRJNA284903. Individual accession numbers are

listed in Table S1. Files of annotated SNPs, sex-differen-

tial expression results and selection scans can be found

under Dryad doi:10.5061/dryad.dc56b.
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Fig. S4 (A) Breakdown of EHH over physical distance for both
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breakdown on both sides of the focal SNP: major allele (55%) in
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Fig. S5 (A) Breakdown of EHH over physical distance for both
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