
ORIGINAL ARTICLE

IFT81, encoding an IFT-B core protein, as a very rare
cause of a ciliopathy phenotype
Isabelle Perrault,1,2 Jan Halbritter,3,4 Jonathan D Porath,4 Xavier Gérard,1,2

Daniela A Braun,4 Heon Yung Gee,4 Hanan M Fathy,5 Sophie Saunier,2,6

Valérie Cormier-Daire,2,7 Sophie Thomas,2,8 Tania Attié-Bitach,2,8 Nathalie Boddaert,9

Michael Taschner,10 Markus Schueler,4 Esben Lorentzen,10 Richard P Lifton,11

Jennifer A Lawson,4 Meriem Garfa-Traore,2,12 Edgar A Otto,13 Philippe Bastin,14

Catherine Caillaud,15 Josseline Kaplan,1,2 Jean-Michel Rozet,1,2

Friedhelm Hildebrandt4,16

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
jmedgenet-2014-102838).

For numbered affiliations see
end of article.

Correspondence to
Professor Friedhelm
Hildebrandt, Professor of
Pediatrics, Harvard Medical
School, Director, Division of
Nephrology, Investigator,
Howard Hughes Medical
Institute, Boston Children’s
Hospital, 300 Longwood
Avenue, Boston,
MA 02115, USA;
friedhelm.hildebrandt@
childrens.harvard.edu or
Dr Jean-Michel Rozet,
Director of Research, Head,
Laboratory of Genetics in
Ophthalmology, INSERM
UMR1163, Imagine Institute of
Genetic Diseases, 24 boulevard
du Montparnasse, 75015
Paris, France;
Jean-michel.rozet@inserm.fr

These authors contributed
equally. IP and JH share first
authorship.

Received 27 October 2014
Revised 7 June 2015
Accepted 15 June 2015
Published Online First
14 August 2015

To cite: Perrault I,
Halbritter J, Porath JD, et al.
J Med Genet 2015;52:
657–665.

ABSTRACT
Background Bidirectional intraflagellar transport (IFT)
consists of two major protein complexes, IFT-A and IFT-
B. In contrast to the IFT-B complex, all components of
IFT-A have recently been linked to human ciliopathies
when defective. We therefore hypothesised that
mutations in additional IFT-B encoding genes can be
found in patients with multisystemic ciliopathies.
Methods We screened 1628 individuals with reno-
ocular ciliopathies by targeted next-generation
sequencing of ciliary candidate genes, including all IFT-B
encoding genes.
Results Consequently, we identified a homozygous
mutation in IFT81 affecting an obligatory donor splice site
in an individual with nephronophthisis and polydactyly.
Further, we detected a loss-of-stop mutation with
extension of the deduced protein by 10 amino acids in an
individual with neuronal ceroid lipofuscinosis-1. This
proband presented with retinal dystrophy and brain
lesions including cerebellar atrophy, a phenotype to which
the IFT81 variant might contribute. Cultured fibroblasts of
this latter affected individual showed a significant
decrease in ciliated cell abundance compared with
controls and increased expression of the transcription
factor GLI2 suggesting deranged sonic hedgehog
signalling.
Conclusions This work describes identification of
mutations of IFT81 in individuals with symptoms
consistent with the clinical spectrum of ciliopathies. It
might represent the rare case of a core IFT-B complex
protein found associated with human disease. Our data
further suggest that defects in the IFT-B core are an
exceedingly rare finding, probably due to its indispensable
role for ciliary assembly in development.

INTRODUCTION
Intraflagellar transport (IFT) is an ancient kinesin
and dynein-mediated bidirectional trafficking
system essential for cilium assembly and mainten-
ance. It has been conserved from green algae
(Chlamydomonas reinhardtii) to humans. There are
two major IFT subcomplexes within the cilium, A
and B. While the IFT-A complex is primarily
involved in retrograde transport from tip to base,
the IFT-B complex is mainly part of the

anterograde transport from base to tip.1 Very
recently, all six components of the IFT-A complex
have been found defective in individuals with a dis-
tinct form of nephronophthisis-related ciliopathies
(NPHP-RC), namely skeletal ciliopathies.2 Skeletal
ciliopathies primarily present with a bone-related
phenotype such as shortened long bones and ribs
(eg, in short rib-polydactyly syndromes, MIM
263510; Jeune asphyxiating thoracic dystrophy,
MIM 208500), phalangeal cone-shaped epiphyses
(eg, in Mainzer-Saldino syndrome, MIM 266920)
or dolichocephaly and hypo/microdontia (eg, in
Sensenbrenner syndrome/cranioectodermal dyspla-
sia; MIM 218330).2

With regards to the IFT-B complex, defects in
only 4 out of 14 members have been associated
with human disease to date. Those four compo-
nents are IFT80, IFT88, IFT172 and very recently
IFT27.3–6 Defects in any of them result in short
rib-polydactyly syndromes, Jeune asphyxiating
thoracic dystrophy, Mainzer-Saldino syndrome, or a
reno-oculo-hepatic ciliopathy with polydactyly
(Bardet-Biedl syndrome, MIM 209900), in the case
of IFT27. One of the possible reasons why the
IFT-B complex has not been as commonly asso-
ciated with human ciliopathy phenotypes as the
IFT-A complex, is its crucial role in ciliogenesis, as
evidenced by embryonic lethality in many
established mutant mouse models.7 8 The IFT-B
complex consists of a nine-subunit salt-stable core
(IFT88, IFT81, IFT74, IFT70, IFT52, IFT46,
IFT27, IFT25, IFT22/RABL5) and five peripheral
components (IFT172, IFT80, IFT57, IFT54/
TRAF3IP1, IFT20). Peripheral components are
characterised by dissociation from the core at NaCl
concentrations above 300 mM.9 Although first
described in Chlamydomonas, a very similar sub-
complex composition was also characterised in
mice.10 Interestingly, the previously identified
IFT-B complex components associated with ciliopa-
thies in humans, IFT80 (MIM 611177) and
IFT172 (MIM 607386), encode for non-core units,
whereas defects of core members have only been
found in a single case with an evolutionary con-
served missense mutation in IFT88 and in a single
case in IFT27 encoding a small GTPase.5 6 We
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therefore investigated in a large cohort of 1628 individuals with
NPHP-RC, retinal ciliopathies, or multisystemic ciliopathies
whether recessive mutations in genes encoding for IFT-B core
components could be detected.

METHODS
Patients
Written informed consent was obtained from 1628 individuals
with reno-ocular ciliopathies (1056 patients at University of
Michigan/Boston Children’s Hospital with NPHP-RC + 572
patients with either NPHP-RC (n=202), skeletal ciliopathies
(n=158), embryonically lethal ciliopathies (n=136), early onset
retinal dystrophies without cerebro-skeleto-renal symptoms
(n=69), and oculo-cerebro ciliopathies (n=7) at INSERM
UMR1163, Imagine Institute of genetic diseases, Paris). The
diagnosis of early onset severe retinal dystrophy and NPHP-RC
was based on published clinical criteria.11 12

Targeted and whole exome resequencing
Genomic DNA was extracted from peripheral blood samples by
standard salt precipitation methods.

Targeted amplification in the Boston cohort was performed
by multiplexed PCR using Fluidigm Access-Array technology
followed by barcoding and next-generation resequencing (NGS)
on an Illumina MiSeq platform, as previously established by our
group.13 14 Sanger DNA sequencing was further conducted for
single mutation confirmation. All coding exons and adjacent
splice sites of the following 14 IFT-B encoding genes were
screened: IFT172/SLB, IFT88, IFT81/CDV1, IFT80, IFT54/
TRAF3IP1, IFT22/RABL5, IFT52, IFT46, IFT57/HIPPI, IFT74/
CCDC2, HSPB11/IFT25, IFT20, IFT27, TTC30B/IFT70 (see
online supplementary table S1). In the Paris cohort, ‘ciliome
resequencing’ was carried out by a 5.3 Mb customised Agilent
Sureselect Target Enrichment Library capturing 32 146 exons of
1666 genes selected from CiliaProteome, Ciliadb and data from
the literature.15 In individual A3286-21, we subsequently com-
bined homozygosity mapping and whole exome resequencing
(WER) for complete mutation analysis. For genome-wide homo-
zygosity mapping, the ‘Human Mapping 250 k StyI’ array was
used. Genomic DNA samples were hybridised, and scanned
using the manufacturer’s standard protocol at the University of
Michigan core facility. Non-parametrical logarithm of odds
scores were calculated using a modified version of the pro-
gramme GENEHUNTER V.2.116 through stepwise use of a
sliding window with sets of 110 SNPs using the programme
ALLEGRO.17 Genetic regions of homozygosity by descent
(‘homozygosity peaks’) were plotted across the genome as candi-
date regions for recessive genes, as described in Gee et al.18

Disease allele frequency was set at 0.0001, and Caucasian
marker allele frequencies were used. WER in A3286-21 and
variant burden analysis was performed as described previously.19

In brief, genomic DNA was isolated from blood lymphocytes
and subjected to exome capture using Agilent SureSelect human
exome capture arrays (Life technologies) followed by NGS on
the Illumina sequencing platform as previously described.
Illumina’s processing software ELAND (CASAVA V.1.8.2) was
used to map reads to the human reference genome (build 19),
and SAMtools37 was used to call single nucleotide variants and
insertion/deletion at targeted bases. Variants with minor allele
frequencies <1% in the Yale (1972 European subjects), National
Heart Lung and Blood Institute Grant Opportunity (NHLBI)
GO Exome Sequencing Project (4300 European and 2202
African American subjects; last accessed November 2012),
dbSNP (V.135) or 1000 Genomes (1094 subjects of various

ethnicities; May 2011 data release) databases were selected and
annotated for impact on the encoded protein and for conserva-
tion of the reference base and amino acid among orthologs
across phylogeny. The whole exome of NCK033 was captured
using the SureSelect Human All Exon Kits V.3 (Agilent, France).
Ciliome and exome were sequenced (2×75 bp) using the
Illumina HiSeq2000 system at the Genomic Core Facility of
the Imagine Institute (Paris, France). Sequences were aligned to
the human genome reference sequence (hg19 assembly), and
SNPs were called based on allele calls and read depth using the
CASAVA pipeline (Consensus Assessment of Sequence and
Variation 1.8, Illumina). Genetic variation annotation was per-
formed by an inhouse pipeline. Only the variants whose posi-
tions were covered ≥10× were further considered. Applied
exclusion criteria further comprised (1) synonymous or intronic
variants other than those affecting the consensus splice sites; (2)
variants seen in more than 1% of an inhouse exome data set
(n=5571) from unrelated projects; and (3) variants with a
minor allele frequency greater than 0.5% in either the 1000
genomes or the exome variant server (EVS) data sets. We
hypothesised an autosomal recessive mode of inheritance and
focused our attention on homozygous variants.

Reverse transcriptase PCR
Total RNA was extracted using the RNeasy Mini Kit (Qiagen,
France) according to the manufacturer’s protocol. All samples
were DNase treated by the RNase-free DNase set (Qiagen).
Concentration and purity of total RNA was assessed using the
Nanodrop-8000 spectrophotometer (Thermo Fisher Scientific,
France). First-stranded cDNA synthesis was performed from
500 ng of total RNA extracted using Verso cDNA kit (Thermo
Fisher Scientific) with random hexamer:anchored oligo (dT)
primers at a 3:1 (vol:vol) ratio according to the manufacturer’s
instructions. A non-reverse transcriptase (RT) reaction (without
enzyme) for one sample was prepared to serve as control in
RT-qPCR experiments.

Quantitative real-time RT-PCR
Patient (n=1) and control (n=3) fibroblasts were serum-starved
for 48 h, and either exposed to a smoothened agonist (SAG,
100 nM) or negative control for 24 h. RNA was extracted separ-
ately for each condition and converted into cDNA. cDNAs were
amplified as 161, 156, 103 and 140 bp fragments using specific
primers designed from the GLI1NM_005269.2,
GLI2NM_005270.4, SMONM_005631.4 and PTCH1NM_
000264.3 sequences, respectively (see online supplementary
table S2). A 99 bp fragment of the human albumin gene (ALB,
NM_000477) was used to control the non-contamination of
cDNAs by genomic DNA. TBP, B2M, GUSB, HPRT1, RPLP0
and ALB primers have been previously reported.20 cDNAs
(5 mL of a 1:25 dilution in nuclease-free water) were subjected
to real-time PCR amplification in a buffer (20 mL) containing
SYBR® Green Master mix (Applied Biosystems) and 300 nmol/L
of forward and reverse primers, on a mastercycler realplex2
(Eppendorf). Data were analysed using the realplex software
(Eppendorf). For each cDNA sample, the mean of quantification
cycle (Cq) values was calculated from triplicates (SD<0.5 Cq).
GLI1, GLI2, SMO and PTCH1 expression levels were normalised
to the ‘normalisation factor’ obtained from the geNorm software
for Microsoft Excel21 which uses the most stable reference genes
and amplification efficiency estimates calculated for each primer
pair using fourfold serial dilution curves (1:5, 1:25, 1:125,
1:625). Absence of amplification when using mRNA (non-RT)
and water (W) as templates, and non-contamination of cDNAs
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by genomic DNA (ALBh) were controlled in each run (Cq values
W=undetermined, non-RT >40 and ALBh >40).The quantita-
tive data are the means±SEM of three independent experiments
and these are presented as ratio among values for individual
mRNAs. The significance of variations among samples was esti-
mated using the protected least significant difference of Fisher
according to the significance of analysis of variance test (Statview
Software, V.5; SAS Institute, Cary, North Carolina, USA).

Cilia abundance and ciliary length measurements
Serum-starved primary cultured fibroblasts from four human
controls and patient (NCK033) were fixed with methanol 100%
and blocked with bovine serum albumin (BSA) 3% and triton
0.1% in phosphate buffered saline (PBS). Ciliary axoneme and
basal bodies were stained overnight at 4°C using mouse mono-
clonal antiacetylated α-tubulin (Sigma Aldrich; 1:1000) and
rabbit polyclonal antipericentrin (1:1000, Abcam) antibodies,
respectively. Primary antibodies were labelled for 1 h at room
temperature using AlexaFluor 594 goat antimouse (Molecular
probe; 1:1000) and AlexaFluor 488 goat antirabbit (1:1000
Invitrogene) secondary antibodies. Images were recorded from
Zeiss LSM700 microscope (×40 magnification, Carl Zeiss).
Mean numbers of ciliated cells were calculated from 973 patient
cells and 895 cells from four individual controls, in two inde-
pendent experiments. Cilia lengths were measured from the
same immunofluorescent images. Mean numbers of cilia <3 μm
and >3 μm in length were determined from 100 and 150
patient and control cells, respectively. Data from patient and
control cells were compared using the Protected Least
Significant Difference of Fisher (PLSD) of Fischer according to
the significance of the Student’s t test.

Immunofluorescence analysis of IFT81 cilia localisation
Patient and control fibroblasts were cultured and prepared as
described previously. IFT81 was stained overnight at 4°C with,
centrioles, ciliary axoneme or subdistal appendages using rabbit
polyclonal anti-IFT81 (1:200, Proteintech), goat monoclonal
γ-tubulin (1:200; Santa Cruz), mouse monoclonal antiacetylated
α-tubulin (1:1000; Sigma Aldrich) or mouse monoclonal
anti-ODF2 (1:100, Novus) antibodies. Secondary antibodies
were used as described above. Images were recorded from a
Gated STimulated Emission Depletion (STED) Leica SP8. The
intensity of IFT81 staining at the cilia base and at the tip was
quantified by using imageJ software. Average fluorescent inten-
sities were determined from the region of interest drawn around
the cilium from maximum intensity Z projection images.
Centriolar and tip intensities and ratio of one to the other were
compared in patient and control cell lines.

Immunofluorescence staining of IFT22, IFT25, IFT46, IFT88,
GLI1, GLI2 and SMO
Patient and control fibroblasts were prepared as described previ-
ously. Ciliary axoneme and IFT22, IFT25, IFT46, IFT88, GLI1,
GLI2 or SMO were stained overnight at 4°C using mouse mono-
clonal antiacetylated α-tubulin (1:1000, Sigma Aldrich), rabbit
polyclonal anti-IFT22, (1:200, Sigma Aldrich), rabbit polyclonal
anti-IFT25 (1:100, Thermo Scientific); rabbit poly/monoclonal
anti-IFT46 (provided by Frédéric Mallein-Gerin); rabbit poly/
monoclonal anti-IFT88 (provided by Chantal Desdouets); rabbit
polyclonal anti-GLI1 (1:50, Abcam), goat polyclonal anti-GLI2N,
(1:50, Santa Cruz) or rabbit polyclonal anti-Smoothened (1:100,
Abcam) antibodies. Secondary antibodies were used as described
above. Fluorescent images were obtained with a Zeiss LSM700
(Carl Zeiss SAS) laser scanning microscope.

RESULTS
Phenotypes and genotypes
To identify disease-causing mutations, we independently applied
different targeted candidate gene amplification methods with
consecutive NGS to a two-centre cohort of 1628 (1056+572)
individuals with ocular, neurological, skeletal and/or renal symp-
toms consistent with the diagnosis of ciliopathy. We first con-
ducted a candidate gene screening of all 14 genes encoding
IFT-B complex proteins (see online supplementary table S1) in
1056 individuals with NPHP-RC. In a 5-year-old girl of consan-
guineous Egyptian descent (A3286-21), who clinically presented
with polydactyly, intellectual disability and NPHP, we detected a
homozygous mutation affecting an obligatory donor splice
site in IFT81 (intraflagellar transport 81 homologue
Chlamydomonas; RefSeq accession number: NM_014055.3,
MIM 605489) (c.1188+1G>A) (table 1 and figure 1A–D). This
variant was absent from all publicly available SNP databases and
is predicted to be pathogenic by inframe skipping of exon 11
(−100% predicted change by MaxEnt/NNSPLICE/HSF).
Familial segregation analysis was consistent with biallelism
(table 1). At birth the affected individual displayed postaxial
polydactyly of the feet (figure 1Aa). At age of 1.5 years, bilateral
hyperechogenic kidneys with loss of corticomedullary differenti-
ation and small medullary cysts were detected by renal ultra-
sound (figure 1Ab). Kidney function, however, as measured by
serum creatine, was still preserved at the age of 5 years.
Intellectual disability was moderate and comprised delayed
speech and an IQ of 70 (∼2 SDs below the mean). Cerebral
MRI was not available to assess the presence of correlating mor-
phological brain abnormalities. Funduscopic eye examination
revealed normal retinal morphology at an age of 5 years, but
electroretinographic (ERG) recordings were not performed.

Beyond family A3286, no further biallelic variants were con-
sidered ‘disease-causing’ in the remaining cohort of 1056
patients. Although mutations in genes known to be associated
with NPHP once mutated (NPHP1-NPHP13) had been previ-
ously excluded, we further assessed A3286-21 for competing
deleterious variants by combining WER with homozygosity
mapping.13 22 In concordance with our previous finding, the
IFT81-splice site variant (c.1188+1G>A) was ranked the most
likely pathogenic allele, residing within a stretch of homozygos-
ity on chromosome 12q (non-parametrical LOD score >2) (see
online supplementary figure S1).

Second, we performed targeted resequencing of 1666 ciliary
genes (‘ciliome resequencing’) in another 572 individuals with
NPHP-RC, retinal or multisystemic ciliopathies. As a result, in
an individual with retinal dystrophy and intellectual disability
(NCK033), we found a homozygous deletion of five nucleotides
in IFT81 resulting in a loss-of-stop codon and extension of the
predicted protein by 10 amino acids (c.2015_2019del
(p.Asp672Alafs*15)). For complete mutation analysis, consecu-
tive WER was performed in NCK033. Thereby, nine additional
rare homozygote variants were identified (see online supplemen-
tary figure S1), including a missense change (c.733G>A
(p.Gly245Arg)) in the gene PPT1 encoding the palmitoyl-
protein thioesterase (NM_000310.3; MIM600722). Familial
segregation analysis demonstrated biallelism of the IFT81 and
PPT1 changes (figure 1D and table 1). The PPT1 enzyme activ-
ity in the blood of the affected individual was strikingly
decreased (5% of residual activity) confirming the clinical diag-
nosis of neuronal ceroid lipofuscinosis-1 (MIM 265730). None
of the patients’ two brothers inherited both IFT81 mutant
alleles but one of them (NCK033, 23) inherited both PPT1
mutant alleles (figure 1D). The affected individual (NCK033) is
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the first of three children of first-cousin Algerian parents (table
1 and figure 1A–D). He was born at term after unremarkable
pregnancy and delivery. At an age of 4 years, the affected indi-
vidual presented with visual loss, speech delay, mild intellectual
disability and balance problems despite a reportedly normal
cerebral MRI. Ophthalmological examination at the age of
7 years showed abnormal ocular movements, hemeralopia and
poor vision. Retinography further revealed a degenerative
aspect at the fundus (figure 1Ac), and ERG showed severely
altered photopic and scotopic traces (see online supplementary
figure S2), supporting early onset rod-cone dystrophy. Update of
ophthalmological data at the age of 11 years revealed complete
blindness with no residual light perception. Detailed neuro-
logical examination at age 9.5 years demonstrated an extrapyr-
amidal and pyramidal syndrome with deep tendon and bilateral
Babinski reflex. He also exhibited stereotypies, poor speech and
echolalia. Repeated cerebral MRI showed diffuse cerebellar
atrophy without molar tooth sign. In addition, axial flair images
evidenced unusual major signal enhancements in the periven-
tricular and subcortical white matter (figure 1Ad–f ). Recently,
he manifested with night enuresis, polyuria and polydipsia, but
renal imaging and function still presented normal. Body mea-
sures and radiological bone examination were unremarkable.

Neither of the two IFT81 mutations has previously been
reported in SNP databases (1000 genomes, dbSNP, EVS).
Moreover, inspection of IFT81 for reported loss-of-function
variants (splicing, nonsense and frameshifts) in the EVS data set
revealed no homozygous but 10 heterozygous truncating var-
iants (c.190C>T, p.Arg64*; c.297C>G, p.Tyr99*; c.365T>A,
p.Leu122*; c.359_360insT, p.Leu122Phefs5*; c.648_649del2,
p.Glu219Argfs41*; c.1195C>T, p.Arg399*; c.1441C>T,
p.Arg481*; c.1534C>T, p.Arg512*; c.1876C>T, p.Arg626*;
and c.249-1G>A), all of which had a minor allele frequency of
less than 0.04% out of 13 000 alleles from individuals with
European and African–American ancestry. These observations
indicate that IFT81 does not accumulate loss-of-function var-
iants in the general population, suggesting that its disruption is
consistent with causing a recessive disease.

IFT81 consists of 19 exons (figure 1B), which encodes a
676-residue protein, containing four coiled-coil domains, and a
recently characterised calponin-homology NDC80 NUF2
Calponin Homology (NN-CH) domain at its N-terminus.23 The
NN-CH motif constitutes a tubulin-binding site required for cilia
assembly and maintenance. The coiled-coil domains were shown
to mediate interaction with IFT74, IFT52 and the IFT27/IFT25
complex.24 Very recently, a linker region between the two
N-terminal and C-terminal coiled coils was mapped to constitute
a binding site for the small GTPase IFT22/RABL5 (figure 1C).25

Functional allele testing—decreased ciliation though
unchanged ciliary localisation of IFT81
To assess whether IFT81 mutant alleles affect cilia abundance,
morphology or the subcellular localisation of IFT81, we per-
formed immunofluorescence microscopy in primary skin fibro-
blasts of individual NCK033 and 4 healthy controls upon 48 h
of serum starvation. The abundance of ciliated fibroblasts was
significantly reduced in cells from the affected individual
compared with controls (mean mutant cells vs mean control
cells: 69.9% vs 83.9%, p=0.000026; mean control cells in
the 83.6%±3.6% control range),20 indicating that the
p.Asp672Alafs*15-protein variant causes defects in ciliogenesis
and/or cilia maintenance (figure 2A, B). Overall, ciliary length
of mutant cells appeared smaller than that of controls further
supporting this hypothesis (figure 2C).

In ciliated fibroblasts from the affected individual (NCK033),
however, IFT81 showed no difference compared with controls
in terms of protein abundance as determined by western blot
analysis (see online supplementary figure S3) as well as ciliary
localisation (same predominant localisation to the tip and base
at a distance from the centriole) and staining intensity as deter-
mined by immunocytochemistry analysis (figure 3A). To further
address the question, whether the extended IFT81 protein
would lead to impaired ciliary trafficking of other IFT-B core
components, we stained for the IFT81-interactors IFT25 and
RABL5/IFT22.25 Signals of IFT25 and RABL5/IFT22 were not
decreased in the mutant fibroblasts (see figure 3B and online
supplementary figure S4C). Likewise, staining for IFT88 and
IFT46 which form a ternary subcomplex with IFT5226 27 was
similar in the control and the fibroblasts from the affected indi-
vidual (see online supplementary figure S4A, B).

Functional allele testing—GLI2 expression and localisation
The role of primary cilia and IFT in sonic hedgehog (Shh) sig-
nalling is well established.7 To evaluate the impact of human
IFT81 mutations on Shh signalling, we performed quantitative
real-time PCR with primers specific to GLI1 (MIM 165220),
GLI2 (MIM 165230), PTCH1 (MIM 601309) and SMO (MIM
601500). Interestingly, mRNA expression of the Shh-effector
GLI2, but none of the other pathway components was signifi-
cantly increased in the IFT81 mutant cell line (c.2015_2019del)
compared with three different controls, when stimulated with a
smoothened agonist for 24 h (SAG, 100 nM) (figure 4). We sub-
sequently analysed the endogenous subcellular localisation of
these Shh pathway components. By immunostaining, however,
no major differences in ciliary localisation of SMO, GLI1 and
GLI2 were detected before and after SAG stimulation in control
and patient fibroblasts (see online supplementary figure S5).

Table 1 Mutations of IFT81 and PPT1 in two families with a ciliopathy phenotype

Family-individual/
age Gene

Nucleotide
alteration†

Deduced protein
change

Exon/intron
(zygosity)

Parental
consanguinity

Renal disease
(age of onset)

Eye disease
(age of
onset)

Additional clinical
features

A3286-21/5 year IFT81 c.1188+1G>A 50 splice site 11 (Hom)
m: het/p: ND

Yes NPHP (1.5 year) None Speech delay with mild
intellectual disability,
polydactyly (feet)

NCK-033/9.5 year IFT81 c.2015_2019del p.Asp672Alafs*15 20 (Hom)
m: het/p: het

Yes Polyuria/
Polydipsia
(9.5 year)

RD (4 year) Speech delay with mild
intellectual disability,
cerebellar atrophyPPT1 c.733G>A p.Gly245Arg 8 (Hom)

m: het/p: het

†cDNA mutations are numbered according to human cDNA reference sequence NM_014055.3, isoform 1 (IFT81) and NM_000310.3, isoform 1 (PPT1), where +1 corresponds to the A
of ATG start translation codon.
het, heterozygous; Hom, homozygous; IFT, intraflagellar transport; m, maternal; ND, no data; NPHP, nephronophthisis; p, paternal; RD, retinal dystrophy.

660 Perrault I, et al. J Med Genet 2015;52:657–665. doi:10.1136/jmedgenet-2014-102838

New loci

group.bmj.com on October 22, 2015 - Published by http://jmg.bmj.com/Downloaded from 

http://jmg.bmj.com/
http://group.bmj.com


DISCUSSION
Here, we report the identification of human mutations of IFT81
in two unrelated individuals with multisystemic symptoms con-
sistent with ciliopathy phenotypes. Unlike many other IFT
encoding genes, no mouse model has been reported for Ift81.
However, an ift81 zebrafish mutant (hi409/larry) was first iden-
tified in a genetic screen for fish with cystic kidney disease.28

Somite-stage gene expression showed enrichment along

classically ciliated organs; notochord, otic vesicle, pronephric
duct, and around the cerebral ventricles, pointing towards an
essential role of IFT81 in embryonic development of kidneys
and brain.28 This is consistent with the view that IFT81 muta-
tions can cause a ciliopathy in humans.

Mechanistically, our findings indicate altered Shh-signalling
for at least one of our alleles (c.2015_2019del) (figure 4). The
importance of GLI2 and the hedgehog pathway for limb

Figure 1 Identification of recessive mutations of IFT81 in two consanguineous families with a ciliopathy phenotype. (A) Clinical features of
A3286-21 and NCK033. (a) postaxial polydactyly of the feet (A3286-21); (b) renal sonography showing hyperechogenic kidneys with loss of
corticomedullary differentiation, and small medullary cysts (arrow) (A3286-21); (c) retinophotography showing salt and pepper aspect of the fundus
with mild attenuation of retinal vessels (NCK033); (d–f ) Axial FSE T2, axial FLAIR and sagittal 3DT1 FSGR brain MRI weighted images showing (d
and e) hyperintensities of the periventricular and subcortical white matter (arrows), and (f ) cerebellar atrophy (arrow) (NCK033). (g), (h), (i), ( j), (k)
show control renal sonography, retinophotography and age-matched axial FSE T2, axial FLAIR and sagittal 3DT1 FSGR brain MRI weighted images,
respectively. (B) Exon structure of IFT81 cDNA (NM_014055.3). Positions of start codon (ATG) and stop codon (TGA) are indicated. (C) Domain
structure of IFT81 protein. IFT81 contains an N-terminal calponin homology-domain (CH), four coiled-coil domains (CC) and a linker region for
binding of IFT22/RABL5 (purple), separating the two N-terminal coiled-coils from the two C-terminal coiled-coils.23 25 (D) Relation of two
homozygous (H) mutations to exons and protein domains is indicated by black arrows. Pedigrees and chromatograms of mutant-alleles (MT) are
shown above wild type controls (WT). M: mutant IFT81 alleles; M1: mutant PPT1 alleles. IFT, intraflagellar transport; FSE, fast spin echo;
FSGR, fast spin gradient echo.

Perrault I, et al. J Med Genet 2015;52:657–665. doi:10.1136/jmedgenet-2014-102838 661

New loci

group.bmj.com on October 22, 2015 - Published by http://jmg.bmj.com/Downloaded from 

http://jmg.bmj.com/
http://group.bmj.com


development in mammals is well established as postaxial poly-
dactyly is a common feature in individuals with GLI2 muta-
tions29 and aberrant Shh-signalling has long been shown to
result in clinical abnormalities of digit number and identity.30

Correct anterior-posterior digit patterning underlies secretion of
Shh by posterior mesenchymal cells in the zone of polarising
activity.31 Digital malformations in IFT mutant mice were
observed in states of hypoactive (wimple, polaris) and hyper-
active (alien, sopb) Shh-signalling, indicating that different

mechanisms lead to disruption of physiological pathway func-
tion.7 8 32–34 As fibroblasts of A3286-21 were not available for
our study, we have to speculate that defective GLI2 and
Shh-signalling, might also be a mechanistic reason for postaxial
polydactyly and intellectual deficits in the respective patient, car-
rying the obligatory splice-site mutation. On the other hand,
absence of skeletal defects in patient NCK033 suggests that the
modification of the C-terminus of IFT81 due to the
c.2015_2019del mutation might alter hedgehog signalling
during brain patterning but not during skeletal development.
Furthermore, genetic modifiers may have contributed to these
phenotypical variations. In the mouse Gli2 has been shown to
be required for the full extent of growth and elaboration of the
cerebellar lobes.35 In addition, truncating GLI2 mutations have
been reported to cause holoprosencephaly with and without
pituitary hormone deficiencies and craniofacial features.29 The
alteration of GLI2 expression in fibroblasts from NCK033 is
consistent with the cerebellar atrophy in this individual. Cilia of
mutant mice and human fetal samples have revealed a pivotal
role of hedgehog signalling for the proliferation of granule cell
progenitors. In addition, a direct correlation between
Shh-signalling disruption, defective granule cell progenitor pro-
liferation, and cerebellar hypo/aplasia in individuals with
Joubert and Meckel syndrome has been described.34 36 While
the cerebellar involvement is consistent with the cilia defect, the
major signal enhancements in the periventricular and subcortical
white matter (figure 1Ad–f ) is not usually seen in patients with
ciliopathies. From this point of view, it is important to stress
that in addition to defective ciliogenesis, the activity of the
PPT1 enzyme in the blood of NCK033 was dramatically low.
PPT1 enzyme deficiencies are known to cause neuronal ceroid
lipofuscinosis-1 (MIM 265730). This fatal neurological condi-
tion includes early onset severe retinal dystrophy and marked
brain lesions. Importantly, segregation analysis of IFT81 and
PPT1 variants showed that the younger of the two brothers is
homozygous for PPT1 but heterozygous for the IFT81 mutation
(figure 1D). While the index patient, NCK033, manifested at
4 years with visual loss, speech delay and ataxia, his 4-year-old
brother currently has no overt retinal or neurological problems.
In the absence of ERG and brain MRI from NCK033’s non-
affected brother, a clinical follow-up will help to clearly discern
the respective roles of PPT1 and IFT81 defects in the disease
expression.

Considering kidney involvement, only the younger of the two
individuals (A3286-21) had structural lesions, albeit with pre-
served renal function. However, the age of onset of renal mani-
festation has been shown to vary considerably between and
within genetic subtypes of renal ciliopathies.37 Thus, it is diffi-
cult to anticipate whether the second individual (NCK033), age
10 years, is at risk for developing renal failure or whether the
mutation extending the C-terminus of IFT81 does not affect
kidney function. Recently he manifested symptoms of night
enuresis, polyuria and polydipsia which might either be due to
the neurological dysfunction or constitute first signs of a struc-
tural kidney disease.38 Similarly, retinal dystrophy in individual
NCK033 only manifested at age 4 years, thus leaving it open
whether the younger individual (A3286-21) may develop retinal
dystrophy later in life. In addition, retinal involvement in indivi-
duals with other IFT mutations was also shown to be quite vari-
able and is difficult to diagnose at an early stage without
available ERG recordings, such as in A3286-21.15

In summary, we here identify mutations in IFT81 and suggest
that they represent an exceedingly rare cause of a ciliopathy
phenotype in humans. The relatively mild clinical presentation

Figure 2 Cilia abundance and ciliary length. Immunofluorescence
staining was performed in cultured human fibroblasts from four healthy
controls and affected individual NCK033 (p.Asp672Alafs*15). (A) Cilia
axonemes were stained using mouse monoclonal antiacetylated
α-tubulin. (B) The mean number of ciliated cells in the sample from the
affected individual is significantly decreased compared with control
samples: 69.9% vs 83.9% calculated from two independent
experiments (n=973 patient cells and n=895 control cells (C1: n=524;
C2: n=131 and C3: n=240 cells)); ***p value=0.000026. (C) The
proportion of cells with cilia length ≤3 μm is similar in the affected
individual and control cell lines. Conversely, the proportion of cilia
>3 μm is significantly lower in cells from the affected individual
compared with the controls. *p Value=0.017 calculated from 100
patient cells and 296 control cells (C1: n=150, C2: n=78, C3: n=68).
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together with insights from functional analysis indicates that
both alleles constitute hypomorphs. IFT81 contains coiled-coil
domains mediating its interaction with IFT74, and an
N-terminal NN-CH domain, which is part of a tubulin-binding
module. We suspect that neither of the detected human muta-
tions would disrupt the IFT81-IFT74 complex.23 The inter-
action with IFT22/RABL5, however, was mapped to the linker
region of IFT81 that localises just the C-terminal of the region
encoded by exon 11 that is presumably skipped in A3286-21
(figure 1C, D).25 This may result in alteration or even abroga-
tion of physical interaction between IFT22/RABL5 and IFT81.
Extension of IFT81 by 10 amino acids (NCK033) does not lead
to mislocalisation of IFT81 within the cilium, but to reduced
ciliation, and alteration of Shh-signalling (figure 4), thereby pos-
sibly explaining some of the brain malformation. In contrast to
other IFT-related phenotypes, major skeletal abnormalities were
absent in the two individuals with IFT81 mutations. The low
number of identified individuals and the additional PPT1 muta-
tion in one of them, however, makes it difficult to draw
genotype-phenotype correlations. As IFT81 represents the hub
of the IFT-B core, more severe IFT81 defects may only be
found in disease phenotypes that are incompatible with life.
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