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Abstract
We introduce a family of strongly-correlated spinwave functions on arbitrary spin-1 2 and spin-1
lattices in one and two dimensions. These states are lattice analogues ofMoore–Read states of particles
atfilling fraction q1 , which are non-Abelian fractional quantumHall states in 2D.One parameter
enables us to perform an interpolation between the continuum limit, where the states become
continuumMoore–Read states of bosons (odd q) and fermions (even q), and the lattice limit.We
shownumerical evidence that the topological entanglement entropy stays the same along the
interpolation for some of the states we introduce in 2D,which suggests that the topological properties
of the lattice states are the same as in the continuum,while the 1D states are critical states.We then
derive exact parentHamiltonians for these states on lattices of arbitrary size. By deforming these
parentHamiltonians, we construct localHamiltonians that stabilize some of the states we introduce in
1D and in 2D.

1. Introduction

The fractional quantumHall (FQH) effect is one of themost fascinating phenomena in strongly correlated
electronic systems, inwhich the electrons of a two-dimensional electron gas subject to a strongmagnetic field
form an incompressible quantum liquid supporting fractionally charged quasiparticle excitations. The
understanding of this paradigmof topological order was in large partmade possible by the discovery of analytical
wave functions, such as the Laughlinʼs wave function [1], describing the electrons in a partially filled Landau
level.

Since its discovery in 1987 [2], one FQH state has attracted a lot of attention: Unlike the states atfilling
factors with odd denominators, the 5 2ν = FQH state with electrons occupying the second Landau level cannot
be explained by a hierarchical construction based on the Laughlinʼs states [3]. This opens the door to the
possibility of electron pairing and emergence of non-Abelian quasiparticle excitations. Indeed the leading
candidate for the description of the 5 2ν = FQH state is theMoore–Read ‘Pfaffian’ state at filling1 2 [4–6],
describing thewave function of the electrons in the second Landau level.Moore–Read states have awave
function defined by [4]
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wherewi are the positions of the particles on the complex plane, q1 is thefilling factor and themagnetic length
has been set to one. They support fractionally charged non-Abelian anyons possessingMajorana fermion states
at zero energy [7–10]. These non-Abelian anyons have attracted a lot of attention due to their applications to
topological quantum computation [11, 12].
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There has been a lot of recent interest infinding FQHphysics in other systems. Indeed, it is a fundamental
problem to understand the origin and properties of states supporting non-Abelian anyons. Finding different
systems exhibiting the same physics is an important step towards an explanation of these phenomena, for which
our understanding is still far from complete.Moreover, experimental realizations of FQH states and
manipulation of their quasiparticles are a challenge. As such it is interesting to search for new possibilities for
realizing FQHphysics and variations thereof experimentally. In particular, latticemodels without Landau levels
may pave theway towards experimental realization and investigation of FQH-like states, for example in optical
lattices [13, 14].

Twomain approaches have been followed to recreate the FQH effect in lattices. In the first approach, one
tries tomimic electrons in amagnetic field by replacing the fractionally filled Landau level by a nearlyflat
fractionally filled Chern band and adding local interactions [15–19].Non-Abelian FQH states where found in
such latticemodels with topological flat bands [20–24].

In the second approach, instead of trying to reproduce the interactions between the electrons and amagnetic
field, the focus is on reproducing the FQHwave functions on lattices. This approachfirst startedwith the
introduction byKalmeyer and Laughlin of the bosonic Laughlin state atfilling fraction 1 2 on a square lattice
[25], for which a parentHamiltonianwas later derived on the torus [26, 27] and formore general lattices in the
thermodynamic limit [28–30] (see also [31, 32] for related results). Hamiltonians were also derived for non-
Abelian chiral spin liquidswith excitations with SU (2)k statistics [29], but only in the thermodynamic limit. For
k=2 this corresponds to a bosonic latticeMoore–Read state at filling fraction 1 on a spin-1 lattice [33].Moore–
Read states of bosons have also been considered on one dimensional lattices, were parentHamiltonians have
been obtained [34]. A bosonicMoore–Read state at filling fraction 1 has also been shown to emerge on a
Haldane honeycomb lattice [35], with a soft core constraint which is analogous to our construction of the
Hilbert space for spin-1models. Other filling fractions andMoore–Read states on spin-1 2 lattices have not been
introduced before.

In the continuum, a useful description of FQH states [4] uses wave functions expressed in terms of
correlators of the related edge conformal field theory (CFT). This descriptionwas extended to lattice systems in
one and two dimensions [28, 36] bywriting thewave functions of spin systems as CFT correlators. The states
obtained can be seen as an infinite dimensional version ofmatrix product states (MPS)which gives a unified
treatment of 1D and 2D lattices systems. An alternative way of implementingMPS ideas to 2DFQH systems has
been developed in [37, 38]. For the Laughlin states, this construction of wave functions written asCFT
correlators provides states that are close to, but not exactly the same as theKalmeyer–Laughlin states on a lattice
offinite size, but that become the same in the thermodynamic limit [28]. Thismodification of the lattice
construction hasmade it possible to construct exact parentHamiltonians for strongly interacting lattice spin
systems of arbitrary sizes [28, 39–42], including topological FQH states such as Laughlin states of hardcore
bosons and fermions [30]. It was shown in some cases that these states could be stabilized by a localHamiltonian
[31, 36, 42, 43]. This description has been applied tofind aHamiltonian for the SU (2)2 spinmodels but the
focuswas on the one dimensional spin chain [39] and the corresponding two dimensional non-Abelian FQH
state has not been analyzed so far.

In this paperwe fill this gap by extending the construction of lattice wave functions fromCFT correlators to
non-Abelian FQH states. Using this approachwe construct a family of lattice versions of theMoore–Read state
atfilling fraction q1 . This family of states allows us to interpolate between the continuum limit, where all states
become continuumMoore–Readwave functions, and a lattice limit. The states are defined on arbitrary spin-1 2
and spin-1 lattices in one or two dimensions, where the value of each spin can bemapped to an occupation
number of bosonic (odd q) or fermionic (even q) particles.We provide numerical evidence that the states are
critical states in one dimension and that in two dimensions they are topologically ordered states. It is shown that
states defined on a spin-1 2 square lattice (for q=2) and states defined on a spin-1 square lattice (for q=1) have
a topological entanglement entropy (TEE)which is constant along the interpolation to the continuum. This
suggests that the lattice states have the same topological properties asMoore–Read states in the continuum.

Sincewe use an approach based on thewave functions, it is then relevant to askwhether these states are
ground states of physical Hamiltonians. Using properties fromCFT,we derive parentHamiltonians for thewave
functions in the lattice limit. These parentHamiltonians have long-range interactions, are exact on any lattice of
arbitrary size andwe find numerically that they have a non-degenerate ground space for q 2⩽ . By deforming
these parentHamiltonians, we then shownumerical evidence that the state at filling fraction 1 on a spin-1 square
lattice can be stabilized by a localHamiltonian in one and two dimensions, while the state atfilling fraction 1 2
on a spin-1 2 square lattice can be stabilized by a localHamiltonian in one dimension, which is afirst step
towards an experimental realization of these states.

The paper is organized as follows: in section 2, latticeMoore–Read states are defined from correlators of
conformal fields. It is shown in section 3 that these states reduce toMoore–Read states of particles in the
continuum. Properties of the states are computed in section 4, where evidence that the states are critical in one
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dimension and that the topological properties remain the same along the interpolation between the continuum
and the lattice states in two dimensions is presented. ParentHamiltonians are derived in section 5. Finally
section 6 provides numerical evidence that some of theseHamiltonians can be deformed into local
Hamiltonians stabilizing the lattice states.

2. Lattice states from correlators of conformalfields

Let us consider a lattice withN sites at positions zj, j N{1, 2, , }∈ … in the complex plane.Wewill refer to one
dimensionalmodels when the zj are restricted to the unit circle and two dimensionalmodels otherwise. Let a be
the average area per site (in 1D a is the average distance between two sites on the unit circle) and a

2
η ≡

π
a

positive real number. The local basis at site j is nj∣ 〉, where nj is an integer thatwill be interpreted as the number of

particles at site j.We consider two classes ofmodels, labelled by S { , 1}1

2
∈ :

• Models with S 1

2
= are defined on aHilbert space of size 2N : the two states in the local basis are n {0, 1}j ∈

and correspond to the absence/presence of a particle at site j. These states can be expressed in terms of spin 1

2
variables at each site: s n2 1i i= − .

• Models with S=1 are defined on aHilbert space of size 3N : the local basis is n {0, 1, 2}j ∈ , whichwe interpret
as the presence of 0 1 2 particles at site j. These states can be expressed in terms of spin 1 variables at each site:
s n 1i i= − .

In general, a wave function defined on one of these two spaces will have the form

n n n n( , , ) ,..., . (2)S
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1 1
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∑ψ ψ∣ 〉 = … ∣ 〉

In the following, wewill consider wave functions forwhich the coefficients n n( , , )N1ψ … can be expressed as
the correlator of some conformal operators. Let us introduce the operators

( )V z z( ) ( ) : e : , (3)n j j
qn z q¯ i ( )

j
nj j jχ= δ η ϕ−

where z( )ϕ is a chiral bosonic field from the c=1CFT, χ is aMajorana fermion field, : :… denotes normal
ordering, q is a positive integer and ¯

nj
δ is 1 if n 1j = and 0 otherwise.We also define a phase coefficient

U z( ) e , (4)n j j
n j ni ( 1)

j
j jξ= π η−

where the jξ are phase factors to be specified.
We propose to consider thewave functions defined by the correlator of the previous operators:
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Thesewave functions are labelled by three parameters: q, η, S andwill be referred to as the q( , )Sη CFT states.
Let us now evaluate the correlator. Note that we do not need to add a background charge in this setting. The

correlator is zero unless n N q
i

N
i

1
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=
. This condition fixes the total number of particles in the system to

M n N q
i

N
i
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∑ η≡ =

=
. qη is therefore the latticefilling fraction and η is a parameter which interpolates

between the continuum limit ( 0η → , N → ∞, number of particles conserved) with infinitelymany lattice sites
per particle and the lattice limit ( 1η = ) at which the latticefilling fraction is equal to q1 , which corresponds to

the Landau levelfilling fraction in the FQHeffect (figure 1). Let us write 1nδ = if n M
i

N
i

1
∑ =

=
and 0nδ =

otherwise. The evaluation of the correlator yields [44]
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∏ξ≡ − η
≠

− and the Pfaffian is evaluated at the coordinates where n 1i = . The Pfaffian

is antisymmetric, so these are bosonic states when q is odd and fermionic states when q is even.Note that this
formula defines different states for S 1 2= than for S=1, the difference being that in the second case the ni can
take the value 2. The states q( , )1 2η are therefore projections of the states q( , )1η onto theHilbert space allowing
only for single occupancy at each site, while states with S=1 and q odd (resp. even) can have sites with two
bosons (resp. fermions of different types). The state q( 1, 1)1 2η= = is trivial since the number of particles is
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fixed toN and there areN sites, so in the followingwe restrict ourselves to states q( , )1 2η with q 2⩾ and q( , )1η
with q 1⩾ (table 1).

3. TheCFT states becomeMoore–Read states in the continuum limit

In this sectionwe consider a two dimensional lattice defined on a disk  of radius R → ∞ and show that the
CFT states we have introduced reduce toMoore–Read states of particles in the continuum, that is (1), when

N0,η → → ∞ and the number of particlesM isfixed.We restrict ourselves to lattices where the area per site ai
is constant equal to a, but the derivation remains true for any lattice if wemake η position dependent [30].

Let usfirst compute f z( )
l N l

nl∏ . Notice that f z zexp( ln( ))N j l
l j

( )
∑ η∣ ∣ = − ∣ − ∣

≠
and since a

2
η =

π
, in the

continuum limit this sum can be replaced by an integral z z zln( ))d 2l
2

∫ π∣ − ∣ . This integral evaluates, in the

thermodynamic limit, to z constantl
2∣ ∣ + [4], so that

f z( ) e e , (8)N l l
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≠
is a real number. It was found numerically in [30] and [28] that this

formulawas an accurate approximation even formoderately largeN.We thus get that
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In the rest of this sectionwe set the phase factors such that el
gi lξ = to get rid of the overall gauge factor, which

does however not change properties like the particle-particle correlation function and entanglement entropy of
the state.

Figure 1. Illustrationof a square lattice on the complexplane in the continuum limit ( N0,η → → ∞) and in the lattice limit ( 1η → ).At
each site there canbe0 (blue circle), 1 (bluedisk) or2 (reddisks) particles. The interpolation is performedbyfixing thenumberof particles
M N

q
η= andby varying a

2
η =

π
between0 and1,which changes the number of lattice sites per particle between infinity and q.

Table 1. First q( , )Sη CFT states.

Lattice limit 1η =

S
1

2
1

q

1 × Bosonic SU (2)2

q( 1, 1)1η= =
2 Fermionic

q( 2, 1)1 2η= =
Fermionic q( 2, 1)1η= =

⋮ ⋮ ⋮

Continuum limit 0η → +

S
1

2
1

q

1 × BosonicMoore–Read

2 FermionicMoore–Read FermionicMoore–Read

⋮ ⋮ ⋮
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3.1. Continuum limit of the S 1

2
= states

Let us nowwrite the complete wave function in the continuum limit:
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where the gauge factor has been set to one. It is not straightforward to take the continuum limit in this basis,
since one has to define the limit of theHilbert space onwhich thewave functions are defined.However, since the
number of particles is conserved, we can rewrite thewave function in the basis spanned by the positions
w w, , M1 … of the particles. For S 1 2= there is atmost one particle per site so thewave function can be simply
expressed as

w w w w( , , ) ( ) Pf
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where thewi are restricted to positions in the lattice. In the limit of infinitelymany lattice sites per particle the
lattice becomes a continuous plane and the positionswi become positions in the plane. This state then coincides
with theMoore–Read state (1). The number of particles on the lattice is M N

q

a N

q2
η= =

π
, so if the flux is Area

2π
,

thenwe can express
q

M1

flux
= . This explains that this quantity corresponds to the filling fraction in the

continuum, defined as the number of particles permagnetic flux.

3.2. Continuum limit of the S=1, q=1 state
For S=1, q=1, the state also has the form (10), however since the ni can take the value 2, it is not straightforward
to take the continuum limit.Wefirst have towrite thewave function in the basis spanned by the position of the
particles. For a basis element n n, , N1∣ … 〉, letwr, r M{1, , }∈ … be the positions of the particles. Sincewe
interpret the state 2∣ 〉 as the presence of two particles, positions ziwhere n 2i = are listedwith two different
indices r in the set w{ }r .We nowwrite thewave function in the basis given by the sets w{ }r .

As a starting point, observe that
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Suppose first that only the first site is doubly occupied. Then,

w w z z z z z z( ) ( ) ( ) ( ) . (14)
r s

r s

i

i
n n

i j

i j
n n

1 1

1

1

2

i i j1∏ ∏ ∏− = − − −
< < ⩽ <

Moreover,

Pf
1

w w

1

z z
Pf

1

w w
, (15)

r s
r s

r s1 1
, 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥−

=
− −⩾

z z

1
Pf

1

z z
, (16)n n

i j1 1
1i j

⎡
⎣⎢

⎤
⎦⎥=

− −= =

wherewe have used in the last line that all other positions have atmost one particle. Combining (14) and (16)we
see that the z z( )1 1− term cancels, so that (13) holds. The same derivationwith a recursion on the number of
sites with two particles proves that (13) holds for all basis elements.

Putting together (13) and (12), thewave function can therefore bewritten as
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where thewr can be repeated twice to allow for states with double occupation, inwhich case this expression does
not vanish because of a cancellation between the Jastrow factor and the Pfaffian. If we now take the continuum
limit, the positions of the particles can be anywhere on the plane and this becomes the bosonicMoore–Read
state (1) atfilling fraction 1, which also does not vanishwhen two particles are at the same site.

Onemay askwhat happened to the doubly occupied site. In the continuum the ensemble of states with two
particles at the same positions hasmeasure zero compared to states with atmost one particle at each position,
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therefore they are irrelevant and do not contribute to thewave function. Similarly, whenwe take the continuum
limit of the lattice, states with two particles at the same site do not contribute to thewave function, as wewill now
explain inmore details. Intuitively, this comes from the fact that there is afinite number n Mi i∑ = of particles,
so configurationswith at least one doubly occupied site are rare when the number of sites goes to infinity.More
quantitatively, let us denote Pm the number of basis elements n n, , N1∣ … 〉 satisfying n Mi∑ = withm doubly

occupied sites. P
N

M
( )0 = is the number of basis elements with no doubly occupied sites and

Pm
N

m M m N m M

!

! ( 2 ) ! ( ) !
=

− + −
. In the continuum limit,M andm arefixed andN goes to infinity, so

P P K Nm
m

0 ∼ where K is a constant and P P 0m
M

m1
2

0∑ →= . This shows that the number of basis elements with
at least one doubly occupied site is small compared to the number of basis elements with no doubly occupied
sites. Let us nowobserve that thewave function has to be normalized by a factor Q n n( , , )n n N, , 1

2
N1

ψ= ∑ ∣ … ∣… .
We can decomposeQ between the basis of states with zero doubly occupied sites and the basis of states with at
least one doubly occupied site:

Q n n( , , ) , (18)
n n

N

, ,

1
2

N1

∑ ψ= …
…

n n( , , ) , (19)
n n

n M N

, ,

1
2

N

i

1

∑ δ ψ= …∑
…

=

n n n n( , , ) ( , , ) , (20)
n n

N

n n

N

, ,

1
2

, ,

1
2

N
ni ni

ni M

N
ni ni

ni M

1
2

1
2

∑ ∑ψ ψ= … + …
… …

∑ ∑
∀ ⧹ ≠

=
∃ ⧹ =

=

where thefirst sum containsP0 elements and the second sumcontains P Pm
M

m1
2

0∑ ≪= elements.Wenowobserve
that elements appearing in these two sums are of the same order. Indeed, let us take a configurationwithM
particles at positionswr such that 2 particles are at the same site (w w1 2= ), corresponding to an element

n n( , , )N1ψ … in the second sum. Then by slightlymoving one of the particles (w w1 1 δ= + ) we obtain a new
configuration that is in the first sum,where all particles are at distinct positions. Since the number of particles is
fixed, continuity of the coefficients of thewave function (17) implies that the new element obtained is close to

n n( , , )N1ψ … . Therefore elements in the second sumare of the same order as elements in the first sum and since

there are P P
m

M
m

1

2
0∑ ≪

=
elements in the second sum, in the continuum limit this sumdoes not contribute to the

normalization factorQ. This shows that the contribution of configurationswith two particles at one ormore
sites can be neglected in the continuum limit.

Note that the previous derivation also shows that the q( 1, 1)1η= = CFT state in the thermodynamic limit
is equivalent to the spin 1 non-Abelian chiral spin liquid introduced in [33], but the two states are different on
finite lattices.

3.3. Continuum limit of the S=1, q 2⩾ state
When q 2⩾ the state can bewritten as
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Wehave already derived the continuum limit of the state on the right at q=1 and the remaining factor can be
expressed as
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In the continuum limit, thewave function can therefore bewritten as
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Whenno two particles are at the same site, this wave function is the same as the q( , )1 2η CFT state in the
continuum limit. As explained in section 3.2, configurationswith two particles at the same site do not contribute
to thewave function in the continuum limit, therefore the q( , )1η CFT states for q 2⩾ have the same continuum
limit as the q( , )1 2η CFT states, which is theMoore–Read state at filling fraction 1/q.
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3.4.One dimensional continuum limit
So farwe have focused on two dimensional states. In the one dimensional setting, when z ej

ij N2= π , the same
results enable us to perform an interpolation between the lattice and the continuum. The only difference with
the 2D case is that it is nowpossible to compute analytically

f z z( ) , (25)N l l lξ∝ η

so thewave functions in the continuumcan be expressed as

w w w w( , , ) ( ) Pf
1

w w
, (26)S M

i j

i j
q

i j
j1

j

⎡
⎣⎢

⎤
⎦⎥∏ ∏ψ ξ… ∝ −

−<

which is a one-dimensional version of theMoore–Read state.

4. Properties of theCFT states

In two dimensions, theMoore–Read states in the continuumare topological states which support non-abelian
quasi-particle excitations. It is of high interest to checkwhether the lattice CFT states we have introduced share
these properties. In one dimension, we expect that the CFT states display critical behaviour related to the
conformal operators used to construct thewave function. In this sectionwe focus on the states with q=1 and
q=2, and numerically compute some of the properties of the states we have introduced.

4.1.One dimensional critical states
Wenow look at one-dimensional chains such that z ej

ij N2= π . Sincewewillfind localHamiltonians for the
states q( 1, )1η= and q( 2, )1 2η= in one dimension in the lattice limit in section 6, we focus on these states.

First we compute the Renyi entropy S ln TrL L
(2) 2ρ= − , where Lρ is the densitymatrix of the CFT states restricted

to a subsystemof size L of the chain. This computation can be performed by using aMetropolis-Hastings
algorithmwith two independent spin chains [36, 45–47].

The results are shown in figure 2. The entropy scales logarithmically with the size of the subchain for all
values of η.Moreover, the scaling is approximately the same for different values of η andfits of the form

S
c L

N
b

4
ln sin (27)L

(2) ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

π= +

yield a value of the central charge c approximately equal to 1.36 for the q( 1, )1η= CFT states (themain source of
errors is here thefinite size of the lattice considered). This value is in agreementwith the value of 1.395 found for
the state in the lattice limit in [39], where it was also shown that a value of 1.5 for the central charge, as expected
for the SU (2)2 WZWmodel, could not be excluded. For the q( 2, )1 2η= CFT states we find a value of 0.98
which is compatible with a central charge equal to 1.

Figure 2.Renyi entropy SL
(2) of a subsystemof L consecutive sites for the 1D q( 1, )1η= CFT states (a) and q( 2, )1 2η= CFT states (b)

for different values of η. The number of particles M N qη= isfixed so the sizes of the chain are N 40, 80, 160, 320= for
1, 1 2, 1 4, 1 8η = respectively. The lines are linear fits of the points for 1 8η = (blue) and 1η = (red).
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Another quantity that can be computed usingMonte Carlo techniques is the particle-particle correlation
function C n n n nL L L1 1= 〈 〉 − 〈 〉〈 〉. Results infigure 3 confirm that the states are critical since the correlation
functions decay polynomially with the distance L. For the q( 1, 1)1η= = CFT state, the critical exponent is
found to be 0.70, which is in agreementwith the value of 0.69 found in [39], where it was observed that such a
value can be influenced by amultiplicative logarithmic correctionwhich could explain the difference with the
expected value of 0.75 [48–50].Moreover for the q( 2, )1 2η= states at different values of η, the correlations are
very close once rescaled by a factor of1 2η , which confirms that properties of the state do not change along the
interpolation. For a Tomonaga–Luttinger liquid, the expected behaviour of the particle-particle correlation
function is [51]

( )
C

A Lk

L

N

N

K

L

N

N

cos 2

sin 2 sin

, (28)L

F

K2
2

2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

π
π

π π
π

= +

whereK is the Luttinger parameter, k qF ηπ= is the Fermimomentum andA is a non-universal constant. For
the q( 2, )1 2η= state wefind a good agreement of this formula for K 0.494= , A 0.123= . This suggest that this
state in one dimension is well described by a Tomonaga–Luttinger liquidwith central charge c= 1 and Luttinger
parameter K 0.5= , which corresponds to the properties of a free-bosonCFTwith radius 2 , as was the case for
the corresponding one-dimensional Laughlin state [30].

4.2. Two dimensional topological states
In the continuum, theMoore–Read state atfilling fraction q1 has a TEE of [52]

q q( )
1

2
ln(4 ). (29)0γ =

To compute the TEE of theCFT states, wemap a L Lx y× square lattice on the cylinder to the complex plane

by choosing the positions of the lattice sites to be ( )( )z ej
x L y L2 1 2 ij x j y= π − − + , where x L{1, , }j x∈ … ,

y L{1, , }j y∈ … (figure 4).We then cut the cylinder in two halves and compute the Renyi entropy of the first

half. The size along the cut is Ly andwe use the behaviour of the entanglement entropy [53, 54]

S L (30)L y
(2)

y
α γ= −

to extract the TEE γ (figure 5). The results for the states q( 1, )1η= (resp. q( 2, )1 2η= ) are in agreementwith
the TEE of aMoore–Read state atfilling fraction 1 (resp. 1 2), (1) ln(4) 0.690

1

2
γ = ≈ (resp.

(2) ln(8) 1.040
1

2
γ = ≈ ).Moreover the value of the TEEdoes not changewith η, so topological properties of the
states remain the same along the interpolation between the continuum and the lattice limit.

Figure 3.Rescaled correlation function CL
2η− as a function of the distance between the sites for the 1D q( 1, )1η= CFT states (a) and

q( 2, )1 2η= CFT states (b) for different values of η. The number of particles M N qη= isfixed so the sizes of the chain are
N 40, 80, 160, 320= for 1, 1 2, 1 4, 1 8η = respectively. The data for 1η = is shown in the insets in log–log scale, confirming the
polynomial decay of correlations, and the line in the insets is a linearfit yielding critical exponents 0.70 ( q( 1, 1)1η= = state) and
1.02 ( q( 2, 1)1 2η= = state). In (b), the line is afit of the form (28)with parametersK=0.494 andA=0.123.
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Weobserve however that the state q( 2, )1η= has a TEE close to zero and different than (2)0γ . TheTEE does
not stay constant when η is changed, which is compatible with the expectation that its value is (2)0γ in the
continuum limit: theremust be a phase transition along the interpolation between the continuum and the
lattice. The states with S=1, q 2⩾ can therefore define distinct lattice states from the states with S 1 2= ,
q 2⩾ , while having the same continuum limit.

5. ParentHamiltonians

So farwe have consideredwave functions for lattice states. It is also relevant to askwhether these states are
ground states of someHamiltonians andwhether theseHamiltonians can be realized in nature or implemented
in experiments.We turn now to the construction of parentHamiltonians forwhich theCFT states are ground
states. TheCFT states are constructed from correlators of conformal fields. As has been shown in [39], this
enables the construction of parentHamiltonians fromnull fields of the consideredCFT.Null fields arefields
such that when inserted in a correlator of primary fields, the evaluation of the correlator gives zero. The
procedure is as follows:

(i) Find null fields z( )a
iχ labelled by a and acting at position zi of the consideredCFT.

(ii) The vacuum expectation value of a product of primary chiral conformal fields is zero if one of the fields is a
null vector, therefore we get equations

z z z( )... ( )... ( ) 0. (31)n
a

i n N1 N1 χ =

(iii) These equations are rewritten in the form 0i
aΛ ψ∣ 〉 = , where i

aΛ are operators acting on the degrees of
freedomof thewave function.

(iv)
a i i

a
i
a

,

†∑ Λ Λ is then a positive semi-definiteHermitian operator annihilating thewave function.

In this sectionwe apply this procedure to construct parentHamiltonians for theCFT states in the lattice
limit. In the rest of this work the phase factors arefixed to 1lξ = .

Figure 4.Themapping from a lattice on the complex plane to a cylinder. To compute the topological entanglement entropy of the
state, the cylinder is cut into two halves and the Renyi entropy of the first half is computed using aMetropolis–Hastings algorithm. The
topological entanglement entropy is then extracted by varying the size Ly of the cylinder (30).
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5.1. ParentHamiltonians for the SU (2)2 q( 1, 1)1η= = CFT state
The special case of the q( 1, 1)1η= = state has awave function constructed from the spin 1 primary fields of the
SU (2)2 Wess–Zumino–WittenCFT [39, 55] and has already been considered partially in [39], where, however,
the focuswas on 1D systems. This SU (2)2 symmetry can be used to construct parentHamiltonians invariant
under SU(2) transformations.

As shown in [39], the nullfields in this case can be parametrized by

( ) ( )z K J z( ) ( ), (32)a
i

i

b

a b
n i

( )
1χ φ= −

where repeated indices are summed over, nφ is a chiral spin 1 primary field, Jb
1− are the 1− modes of the SU (2)2

current operators and

( ) ( )K t t t t t
2

3

5

12
i

1

12
, (33)i

b

a
ab abc i

c
i
a

i
b

i
b

i
a( ) δ ϵ= − − +

where abcϵ is the Levi–Civita symbol and ti
a are the spin 1 operators acting on site i. These operators can be

written in the spin basis at site i as

t t t
2

0 1 0
1 0 1
0 1 0

,
2

0 i 0
i 0 i
0 i 0

,
1 0 0
0 0 0
0 0 1

. (34)i
x

i
y

i
z

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= ℏ = ℏ −

− = ℏ
−

We then exploit that the correlator with a null field inserted is zero:

z z z( )... ( )... ( ) 0. (35)n
a

i n N1 N1
φ χ φ =

Figure 5. Linear behaviour of the Renyi entropywith the size of the cut Ly for the q( 1, )1η= (a), q( 2, )1 2η= (b) and q( 2, )1η= (c)
CFT states on a L Lx y× lattice. The topological entanglement entropy of theMoore–Read states atfilling 1 (a), (1) 0.690γ ≈ , and at
filling 1 2 (b,c), (2) 1.040γ ≈ , are indicatedwith a red arrow. The values of η are 1, 1 4 and 1 8 and the corresponding sizes Lx are
respectively 12, 16 and 16. The insets are enlarged views confirming that the topological entanglement entropy stays the samewhen η
is varied and that its value corresponds to (1)0γ (resp. (1 2)0γ ) in thefirst two cases, while the topological entanglement entropy of the
q( 2, )1η= CFT state is close to zero in the lattice limit and close to (1 2)0γ in the continuum limit.
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TheWard identity enables to transfer the action of a current operator tofields at other positions:

( )z J z z

t

z z
z z z

( )... ( )... ( )

( )... ( )... ( ) . (36)

n
b

n i n N

j i

N
j
a

j
n n i n N

1 1

( ) 1
1

i N

i N

1

1∑

φ φ φ

φ φ φ=
−

−

≠

Using (36) it is possible to rewrite (35) as [39]

0, (37)i
aΛ ψ∣ 〉 =

where

( )K t , (38)i
a

j i

N
i

b

a
ij j

b

( )

( )∑Λ ω=
≠

( )t t t t t t t t
2

3

5

12
i

1

12
, (39)

j i

N

ij j
a

abc j
b

i
c

i
a

i
b

i
b

i
a

j
b

( )

⎡
⎣⎢

⎤
⎦⎥∑ ω ϵ= − − +

≠

wherewe have defined ij
z z

z z

i j

i j
ω = +

−
. This can be used to construct a parentHamiltonian H

a i i
a

i
a

,

†∑ Λ Λ= , which

gives

( )

H t t

t t t t t t

4

3
*

1

3
* 2 *

1

6
*

1

3
*

1

2
* . (40)

i j

N

ij ij

i j

N

ij ij

k i j

N

ki kj i
a

j
a

i j

N

ij ij i
a

j
a

i j k

ik ij ik ij i
a

j
a

i
b

k
b

( , )

2 ⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

∑ ∑ ∑

∑ ∑

ω ω ω ω ω ω

ω ω ω ω ω ω

= + +

− + −

≠ ≠ ≠

≠ ≠ ≠

ThisHamiltonian is SU(2) invariant and numerical diagonalization on small systems confirm that it has the
q( 1, 1)1η= = CFT state as a unique ground state. ThisHamiltonian is similar to the one obtained in [29] for
the spin 1 non-Abelian chiral spin liquid state introduced in [33].However theHamiltonianwe just constructed
is valid for any choice of lattice and not only in the thermodynamic limit as is the case in [29].

5.2. ParentHamiltonians for the q( , 1)1η = , q 2⩾ CFT states
For q 2⩾ , the q( , 1)1η = CFT states do not display an SU(2) symmetry. However it is still possible tofind null
fields and construct operators annihilating thewave function. Let us define the operators

G z z( ) ( )e q zi ( )χ= ϕ± ± , J z z( ) ( )i

q
ϕ= ∂ .We use the following q 1+ nullfields:

w
z

z w
G z V w( )

d

2 i

1

( )
( ) ( ), (41)p

p q w p
0,1, , 2

1∮χ
π

=
−= … −

+

w
z

z w
G z V w

z w
V w( )

d

2 i

1

( )
( ) ( )

1

( )
( ) , (42)q

w q
1

1 1 2

⎡
⎣⎢

⎤
⎦⎥∮χ

π
=

−
−

−
−

−
+

w
z

z w z w
G z V w

z

z w
qJ z V w( )

d

2 i

1 1

( )
( ) ( )

d

2 i

1
( ) ( ), (43)q

w q w1 1 2

⎡
⎣⎢

⎤
⎦⎥∮ ∮χ

π π
=

− −
−

−−
+

where (41) gives q 1− nullfields w( )pχ with p running from0 to q 2− . Let us define the operators d†, d to be
creation and annihilation operators (bosonic for q odd, fermionic for q even) acting between states 0∣ 〉 and 1∣ 〉,
and d †′ , d′ to be creation and annihilation operators acting between states 1∣ 〉 and 2∣ 〉. The number of particles at
site i is thus n n n2i i i

(1) (2)= + , where n d di
(1) †= and n d di

(2) †= ′ ′. Using the previous null fields, we derive the
following operators annihilating thewave function (see appendix A for the complete derivation).

d , (44)
i

i
0 ∑Λ =

z z
d d

1

( )
, (45)i

p

p q j i i j
p j i

1, , 2 ( )

†∑Λ =
−

′
= … − ≠

z z
d d n

1

( )
, (46)i

q

j i i j
q j i i

1

( )
1

† (2)∑Λ =
−

′ +−

≠
−

z z
d d

qn

z z
n

1

( )

1
. (47)i

q

j i i j
q j i

j i

j

i j
i

( )

†

( )

(2)∑ ∑Λ =
−

′ −
−

−≠ ≠
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This leads to a three-bodyHamiltonian annihilating thewave function

H n
N

q
, (48)

i

N

a

q

i
a

i
a

i

i

1 0

†

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑∑ ∑Λ Λ= + −

= =

where the last termfixes the number of particles.
ThisHamiltonian annihilates thewave function q( , 1)1η = , howeverwe find numerically that the ground

space of thisHamiltonian is degenerate when q 3⩾ and that the degeneracy does not depend on the number of
sites. Other simple nullfields of the theory constructedwith the same current operators do not lead to operators
acting on thewave function thatwould reduce this degeneracy.

5.3. ParentHamiltonians for the q( , 1)1 2η = , q 2⩾ CFT states
Wecannowuse the previous results to construct parentHamiltonians for the q( , 1)1 2η = , q 2⩾ CFT states.
They are projections of the q( , 1)1η = CFT states in the subspace allowing only for single occupation at each site,
that we denote 1 . Let us also define theHilbert space 2 spanned by basis elements containing at least one site
with two particles.Wewill nowproject the operators annihilating the q( , 1)1η = CFT states onto 1 in order to
get operators annihilating the q( , 1)1 2η = CFT states (see appendix B for the detailed derivation).We start by
multiplying the operators i

aΛ obtained previously on the left by di′: these operators continue to annihilate the
q( , 1)1η = CFT states. Since d d ni i i

† (1)′ ′ = , we get operators d d, , ,i i i i i
q0 1 2Λ Λ Λ′ … ′ − that act on 1 and are zero

on 2 , so they also annihilate the q( , 1)1 2η = CFT states.We can then use the fact that

d d n di i
q

j i z z j i i
1

( )

1

( )
(1)

i j
q 1∑Λ′ = + ′−

≠ − − annihilates the q( , 1)1η = wave function to replace the operator di′ in

di i
qΛ′ by d n

h i z z h i( )

1

( )
(1)

i h
q 1∑−

≠ − − . The resulting operator di i
qΛ′ then acts separately on 1 and 2 .Wefinally get

operators annihilating the q( , 1)1 2η = wave function:

d , (49)
i

i
0 ∑Λ′ =

z z
d n

1

( )
, (50)i

p

p q j i i j
p j i

1, , 2 ( )

(1)∑Λ ′ =
−= … − ≠

z z
d n

z z

qn

z z
d n

1

( )

1

( )

1
. (51)i

q

j i i j
q j i

j i h i i h
q

j

i j
h i

1

( )

(1)

( ) ( )
1

(1)

(1)∑ ∑ ∑Λ ′ =
−

+
−

−

−
−

≠ ≠ ≠
−

This leads to afive-bodyHamiltonian

H n
N

q
. (52)

i

N

a

q

i
a

i
a

i
i

1 0

1
† (1)

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑∑ ∑Λ Λ= ′ ′ + −

= =

−

As in the previous case, this parentHamiltonian has a single ground state only when q= 2 and this ground
state is the q( 2, 1)1 2η= = CFT state.

6. LocalHamiltonians

The parentHamiltonianswe have derived involve three orfive-body interactions between all sites on the lattice.
TheseHamiltonianswould therefore be very difficult to implement in experiments. However in some cases it
has turned out that states constructed from correlators of conformal fields had very high overlapswith ground
states of localHamiltonians [31, 36, 42, 43]. This has lead to a protocol to implement one of these states in
experiments [31, 57]. In this sectionwe show that there is a localHamiltonian for which the ground state is close
to the q( 1, 1)1η= = CFT state in one and in two dimensions and that this result is also true for the
q( 2, 1)1 2η= = CFT state in one dimension.

6.1. LocalHamiltonians for the q( 1, 1)1η= = CFT state
In one dimension the case of the q( 1, 1)1η= = CFT state was studied in [39]. It was shown that this state has a
high overlapwith the ground state of the bilinear-biquadratic spin 1Hamiltonian

( )H t t t tcos( ) sin( ) , (53)
i

N

i
a

i
a

i
a

i
a

1D
(1)

1

1 1
2⎡⎣ ⎤⎦∑ β β= +

=
+ +

with periodic boundary conditions, when 0.3213β = . Note that thisHamiltonian includes the 2-body terms
present in the parentHamiltonian (40).
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Wenow study the twodimensional case and build a localHamiltonian fromthe parentHamiltonian (40). The
operators i

aΛ contain 2-body interactions between sites i and j.We cut these operators by keeping only terms for
which the sites i and j are nearest-neighbours on the square lattice. This leads to a localHamiltonianwith three-body
interactions. In addition to these terms,we include the two-body interactions betweennext-nearest neighbours
present in the parentHamiltonian.All six terms included inour trialHamiltonian, thatwedenote H2D, are shown
in table 2.Note that the coefficients of these terms in the exact parentHamiltonian are not position-independent. In
our localHamiltonian, however,we choose them tobeposition-independent and invariant under rotations.

By exact diagonalization and optimization on these coefficients, we find that there is a localHamiltonian for
which the overlap H CFTψ ψ∣〈 ∣ 〉∣between the ground state and the q( 1, 1)1η= = CFT state on a 4 4× square
lattice on the plane is 97.36%. Considering the size of theHilbert space 3 4 1016 7≈ × , this overlap is very high.
Note that with the same parameters, the overlap is also above 98%on a 4 3× or on a 4 2× lattice. On a cylinder
geometry, i.e. periodic boundary conditions in one direction, the overlap on a 4 4× square lattice is 97.21%.

Compared to the localHamiltonian found in [33], which is for a state that is equivalent to the
q( 1, 1)1η= = CFT state in the thermodynamic limit, but different onfinite lattices, theHamiltonianwefind
has less free parameters (5 instead of 11) tofine-tune, whichmightmake it easier to implement.Moreover, the
very good scaling with lattice sizes lets us expect that a good agreement will persist on larger lattices. Infigure 6,
we show the low-energy spectrumof this localHamiltonian. This figure is compatible with having a gap in the
thermodynamic limit, but the limitations on the system sizes that we can consider prevent us frommaking a
reliable extrapolation.

6.2. LocalHamiltonian for the 1D q( 2, 1)1 2η= = CFT state
The state q( 2, 1)1 2η= = CFT state has afive-body parentHamiltonian. Let us consider the one dimensional
case. If we cut the i

aΛ operators by keeping only terms forwhich the sites i and j are nearest-neighbours, we get a
localHamiltonianwith several termsWefind however numerically that even a smaller number of terms is
already sufficient to get a good overlap. Specifically, we choose to keep only the simplest two-body and the
simplest three-body terms, to obtain a localHamiltonianwith periodic boundary conditions

( )H n n n d d c. c., (54)
i

N

i i i i i1D
(2)

1

1 2
†

1∑ κ= + +
=

+ + +

where di
†, di are fermionic creation and annihilation operators at site i and n d di i i

†= . For i0.274 0.052κ = + ,

wefind that the overlap between the ground state of H1D
(2) and the q( 2, 1)1 2η= = CFT state is 97.71% for a

chainwith 20 spins (figure 7(a)).
In two dimensions, since the SU(2) symmetry is not present in thismodel, cutting the parentHamiltonian

leads to a localHamiltonianwith up tofive-body interactions withmany different coefficients. In addition, the
fact that the five-body terms involvemore sitesmeans that each of them stretches over a larger part of the lattice.
With the limited lattice sizes that we can consider with exact diagonalization, this is problematic because the

Table 2.Terms in theHamiltonian H2D and coefficients obtained after
numerical optimization on a 4 4× lattice.

Operator Configuration Coefficient

t ti
a

j
a a) 1

b) 0.6227

t t( )i
a

j
a 2 c)−0.1762

d) 0.3226

t t t ti
a

j
a

i
b

k
b e) 0.4637i

f ) 0.0208
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local regions need to be small compared to the total size of the lattice (otherwise it would not be expected that the
same localHamiltonianwould alsowork for other lattice sizes). This suggests that even if a localHamiltonian
that is related to the exactHamiltonian exists, wemay not be able tofind it with exact diagonalization. Instead of
cutting the exact parentHamiltonian, we therefore askedwhether, by chance, a localHamiltonian can be
obtained if we restrict the range of the interactions to all interactions preserving the number of particles on all
possible configurations inside a plaquette of the lattice. Optimizing the coefficients in thisHamiltonian, we did
not, however,find a set of coefficients for these interactions forwhich the ground state of thisHamiltonian is
close to the q( 2, 1)1 2η= = CFT state.Whether there exists amore complicated, but still local, Hamiltonian
stabilizing this state therefore remains an interesting open problem.

7. Conclusion

Wehave introduced a three-parameter family q( , )Sη of strongly-correlated spin states on arbitrary lattices in
one and two dimensions. It was shown that these states reduce to continuumMoore–Read states of bosons (odd
q) and fermions (even q) in the continuum limit 0η → . Numerical evidence that these states are critical states in
one dimension and topological states in two dimensionswas provided, and theTEEwas shown to remain the
same along the interpolation for the q( 1, )1η= and q( 2, )1 2η= states. ParentHamiltonians of the states in the
lattice limit were derived using analytical tools fromCFT and in some cases it was shown that these states could
be stabilized by localHamiltonians in one and two dimensions.

Figure 6.Energy difference to the ground state energy for the first excited states of theHamiltonian H2D for different sizes of lattices.
The overlap between the ground state of thisHamiltonian and the q( 1, 1)1η= = CFT state is indicated below each ground state.

Figure 7. (a)Overlap HCFTψ ψ∣〈 ∣ 〉∣between the q( 2, 1)1 2η= = CFT state and the ground state ofHamiltonian H1D
(2) with κfixed to

i0.274 0.052+ , as a function of the numberN of lattice sites. The dotted line is a linearfit with equation y N1.0075 0.00152= − . If
the overlap continues to follow this behavior at larger sizes, it will still be above 85% for a spin chainwith 100 lattice sites. (b)Overlap
per site H

N
CFT

1ψ ψ∣〈 ∣ 〉∣ between the same two states.
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TheHamiltonians derived in the present paper are not expected [31] to be of the fractional Chern insulator
type, but since themodels can be constructed on arbitrary lattices, it would be of interest to checkwhether
Moore–Read states obtained in fractional Chern insulators [17, 20–24] are close to the states we introduce.
Moreover it has been possible using tools fromCFT towrite lattice wave functions for localized quasiholes of
Laughlin states and to derive their parentHamiltonians [56] andwe expect that a similar procedure can be
applied to the states we have introduced to obtain quasiholes ofMoore–Read states aswell as their parent
Hamiltonians.

There is currently a lot of interest infindingmodels possessing topological properties. Given the complexity
of quantummany-body systems, the analysis of phenomena, like e.g. topology, can be greatly facilitated by
havingmodels inwhich at least the ground state can be found analytically. The results of the present paper show
that CFT is a valuable tool to derive analyticalmodels, also in the context of non-Abelian FQH states, and in
addition can be used as a starting point to identify simplermodels that aremore realistic to realize physically.
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AppendixA.Operators annihilating the q( , 1)1η = CFTwave functions

We restrict ourselves to the case q 2⩾ , since the construction of the parentHamiltonianwhen q=1 is explained
in section 5.1.Note however that the derivation presented here can also be used to obtain aHamiltonianwithout
the SU(2) symmetry for the q( 1, 1)1η= = CFT state. TheCFT states are defined from the operators z( )n jj


given in (6). Additional operators that are needed to construct parentHamiltonians are the operators

G z z( ) ( )e q zi ( )χ= ϕ± ± , J z z( ) ( )
q

i ϕ= ∂ . The operator product expansion (OPE) of G z( )+ and J z( )with the

operators used to build thewave function are, for q 2⩾ ,
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and
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which shows that w( )qχ is a nullfield. Similarly, there aremore simple nullfields
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Let us nowuse the fact that by replacing thefield at site i by a nullfield, the correlator vanishes:

z z z0 ( ) ( ) ( ) . (A.12)n
a

i n N1 N1 χ= ⋯ ⋯

Wewill transform this equation into an equation involving thewave function by deforming the contour integral
andmoving the operators in the nullfields at different positions. Let us do it for the nullfield w( )qχ .Wewill use
theOPEs aswell as the commutation relations:
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aminus sign onlywhen n 1j = .
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where q( , 1)1
ψ η= is thewave function of the q( , 1)1η = CFT state.
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Let us nowdefine the creation and annihilation operators d d d d, , ,j j i i
† †′ ′ acting on theHilbert space at site j
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Wealso define the particle number operators corresponding to these operators as n d dj j j
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Summing the two terms together, we get an operator annihilating thewave function:
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The same procedure applied to the other null fields gives the following operators annihilating the q( , 1)1η =
CFTwave functions:
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Appendix B.Operators annihilating the q( , 1)1 2η = CFTwave functions

To obtain operators annihilating the q( , 1)1 2η = CFTwave functions, we can follow the same procedure and
use the following nullfield instead of w( )qχ :
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However this procedure does notworkwhen q=2 since this is not a nullfieldwhen q=2. Instead of
following this approach, we present a different way to obtain operators annihilating the q( , 1)1 2η = CFTwave
functions, using the operators already obtained in appendix A. The resulting operators are the same that would
be obtained directly using null fields when q 2> but this approach allows us to also construct a parent
Hamiltonianwhen q=2.

We start bymultiplying the previously obtained operators on the left by di′. Since d d ni i i
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