Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome

Lili K. Doerfel, Ingo Wohlgemuth, Vladimir Kubyshkin, Agata L. Starosta, Daniel N. Wilson, Nediljko Budisa, and Marina V. Rodnina

Figure S1: Functional characterization of Pro*-tRNA^{Pro}. (a) Aminoacylation of tRNA^{Pro} obtained from cells (closed circles) and by T7 RNA-polymerase transcription (open circles) with [¹⁴C]Pro by purified Pro-RS. (b) fMPPG with native tRNA^{Pro} (open symbols) and tRNA^{Pro} transcript (closed symbols) in the absence (circles) or presence of EF-P (triangles). (c) Isolation of the TC by SEC. The upper panel shows purification of [¹⁴C]Pro-tRNA^{Pro} ternary complex (with EF-Tu and GTP). The middle peak corresponds to the TC, as shown by radioactively labeled aa-tRNA. The first peak corresponds to Pro-RS (the dashed profile was obtained with purified aa-tRNA) and the third peak contains uncharged tRNA and EF-Tu. The lower panels show the profile for TCs with X-tRNA^{Pro} with X= 4,4-F₂-Pro, 4-R-Hyp and 4-S-Flp as representatives for Pro analogs. The ratio tRNA/EF-Tu is kept constant, such that the TC-forming efficiency can be estimated from the ratio of peak2/peak3.

Figure S2: Arrhenius plots of fMP*-Pmn formation with and without EF-P.

The Pmn reaction with fMet-S-Flp-tRNA^{Pro} (triangles) and fMet-R-Flp-tRNA^{Pro} (circles), without EF-P (open symbols) or with EF-P (closed symbols). Shown are average values and SD from up to four replicates. Because the rate of the Pmn reaction with fMet-R-Flp-tRNA^{Pro} in the presence of EF-P at 37°C was too rapid for the quench-flow apparatus, the value could not be determined with precision and was therefore excluded from the fitting.

Pro*	$-\Delta G_{tc}^{a}$, kcal/mol	Ref.	$-\Delta G_{tc}^{b}$, kcal/mol	Ref.	k _{ct} (Pro*)/ k _{ct} (Pro)	Ref.
Pro	$0.90 \pm 0.03^{\circ}$	1	0.92 ± 0.02	2	= 1	-
Aze	$0.82\pm0.04^{ m d}$	3	-	-	$15^{d,e} (19^{e,f})$	3
Pip	1.13 ± 0.05^{d}	3	-	-	$49^{d,e} (54^{e,f})$	3
4-S-Flp	$0.54 \pm 0.02^{\circ}$	1	0.54 ± 0.02	2	1.2 ^{c,e}	2
4- R - <i>F</i> lp	$1.13 \pm 0.04^{\circ}$	1	1.12 ± 0.12	2	2.1 ^{c,e}	2
4,4-F ₂ -Pro	$0.76 \pm 0.03^{\circ}$	4	0.70 ± 0.06	2	5.2 ^{c,e}	2
4-S-Hyp ^g	$0.49 \pm 0.02^{\circ}$		0.54 ± 0.16		0.53 ^{c,e}	
4-R-Hyp	$1.07 \pm 0.04^{\circ}$	1	1.08 ± 0.04	5	$0.67^{c,e} (1.1^{e,h})$	$^{5}(^{6})$
cis-MePro ^g	$1.04 \pm 0.04^{\circ}$		-	-	$6.6^{e,i} (0.9^{e,f})$	j
trans-MePro	$1.40\pm0.05^{\rm c}$		-	-	16 ^{e,i} (16 ^{e,f})	j
4-S-Mep	$1.19 \pm 0.04^{\circ}$	1	-	-	$0.67^{h,k}$	7
4-R-Mep	$0.77 \pm 0.03^{\circ}$	1	-	-	$0.09^{h,k}$	7
<i>3,4-Dhp</i> ^{<i>g</i>}	$1.00 \pm 0.03^{\circ}$		0.98 ± 0.08		$0.30^{c,e} (2.1^{h,k})$	(8)
Ala	3.04 ± 0.05^{1}	9	-	-	-	-
Phe	3.03 ± 0.01^{1}	9	-	-	-	-
Val	3.24 ± 0.11^{1}	9	-	-	-	-

Table S1: Equilibrium and kinetic parameters of amide rotation for Pro and analogs.

Values were determined in Ac-Pro*-X; ^a calculated as $\Delta G = -RTlnK$ for 298 K; ^b calculated as $\Delta G = \Delta H - T\Delta S$; ^c X = OCH₃; ^d X = 4-nitroanilide; ^e experimental value; ^f X = O⁻; ^g values determined in this work; ^h X = NHCH₃; ⁱ within Ac-GG-Pro*-GG-NH₂ peptides; ^j to be published elsewhere; ^k theoretical value; ¹ X = OH

Ac-4-S-Hyp-OCH₃ ¹H NMR (D₂O, 700 MHz): 4.73 (dd, J = 7.4, 3.2 Hz, 1H, α-CH, cis), 4.56 (dd, J = 9.6, 2.6 Hz, 1H, α-CH, trans), 4.47 (m, 1H, γ-CH, trans), 4.43 (m, 1H, γ-CH, cis), 3.74 (dd, J = 11.7, 4.5 Hz, 1H, δ-CH1, trans), 3.71 (s, 3H, CH3O, cis), 3.67 (s, 3H, CH3O, trans), 3.54 (dd, J = 12.8, 4.3 Hz, 1H, δ-CH1, cis), 3.51 (dm, J = 11.7 Hz, 1H, δ-CH2, trans), 3.38 (dm, J = 12.8 Hz, 1H, δ-CH2, cis), 2.38-2.34 (m, 2 H, cis: β-CH2, 1H, trans: β-CH1), 2.12 (dm, J = 13.8 Hz, 1H, β-CH2, trans), 2.05 (s, 3H, CH3C=O, trans), 1.99 (s, 3H, CH3C=O, cis).

Ac-cis-MePro-OCH₃ ¹H NMR (D₂O, 600 MHz), only trans-conformer: 4.75 (m, 1H, α-CH), 3.64 (s, 3H, CH3O), 3.50 (dt, J = 6.2, 2.7 Hz , δ-CH), 2.61 (td, J = 12.9, 6.2 Hz, β-CH1), 2.17 (s, 3H, CH3C=O), 1.99 (dd, J = 12.9, 3.7 Hz, 1H, β-CH2), 1.71 (m, 1H, γ-CH), 0.84 and 0.71 (two m, 2H, CH2).

Ac-trans-MePro-OCH₃ ¹H NMR (D₂O, 600 MHz), only trans-conformer: 4.27 (dd, J = 9.7, 5.4 Hz, 1H, α-CH), 3.67 (s, 3H, CH3O), 3.47 (ddd, J = 6.6, 5.7, 2.4 Hz, 1H, δ-CH), 2.33 (ddd, J = 13.7, 9.5, 1.3 Hz, β-CH1), 2.21 (m, 1H, β-CH2), 2.16 (s, 3H, CH3C=O), 1.78 (m, 1H, γ-CH), 0.93 (dt, J = 8.7, 5.8 Hz, 1H, CH1), 0.58 (td, J = 5.5, 2.5 Hz, 1H, CH2).

Ac-3,4-Dhp-OCH₃ ¹H NMR (D₂O, 700 MHz): 6.04 (dm, J = 6 Hz, 1H, γ-CH, trans+cis), 5.82 (dm, J = 6 Hz, 1H, β-CH, cis), 5.78 (dm, J = 6 Hz, 1H, β-CH, trans), 5.33 (m, 1H, α-CH, cis), 5.09 (m, 1H, α-CH, trans), 4.38 (dm, J = 15.2 Hz, δ-CH1, trans), 4.34 (dm, J = 15.2 Hz, 1H, δ-CH2, trans), 3.74 (s, 3H, CH3O, cis), 3.69 (s, 3H, CH3O, trans), 2.07 (s, 3H, CH3C=O, trans), 1.94 (s, 3H, CH3C=O, cis).

no acid p	K _a , amino group ^a	pK _a , carboxyl group ^b			
	pKa	s-trans	s-cis	Weight Average ^c	
	10.7	3.55	2.85	3.42	
	10.5	3.24	2.73	3.14	
	10.8	3.63	3.37	3.6	
·Flp	9.1	3.39	2.87	3.24	
-Flp	9.1	3.19	2.37	3.08	
F ₂ -Pro	6.5	2.93	2.34	2.80	
Нур	10.0	3.62	3.19	3.49	
-Нур	9.7	3.15	2.39	3.04	
MePro	9.6	3.47	2.84	3.37	
s-MePro	9.6	3.38	2.75	3.32	
Mep	10.7	3.46	2.77	3.38	
-Mep	10.7	3.53	2.81	3.38	
Dhp	9.8	3.03	2.37	2.93	
	9.9	3.56	3.11	3.56	
	9.3	3.42	2.98	3.42	
	9.7	3.55	3.10	3.55	
F ₂ -Pro Hyp -Hyp MePro <i>s</i> -MePro Mep -Mep Dhp	6.5 10.0 9.7 9.6 9.6 10.7 10.7 9.8 9.9 9.3 9.7	2.93 3.62 3.15 3.47 3.38 3.46 3.53 3.03 3.56 3.42 3.55	2.34 3.19 2.39 2.84 2.75 2.77 2.81 2.37 3.11 2.98 3.10	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

Table S2: The pK_a values.

^a values for the free amino acids determined in aqueous buffer at 298 K ¹⁰; For comparison, previously reported amino-group pK_a values for Pro, 4-R-Flp, 4,4-F₂-Pro, and 4-R-Hyp, are 10.8, 9.2, 7.2, and 9.7, respectively ^{5 2}; ^b pK_a values of the carboxyl-group of Ac-Pro* are taken from ⁹. ^c The weight average pK_a was calculated from the *cis* and *trans* pK_as taken the *cis-trans* equilibrium into account (Table S1).

Table S3: Rate of reactions for Pro and Pro-derivatives

Pro*	k _{hydrol}	k _{aminol}	fMP*-Pmn		fMP*G		fMP*P*G	
	·		no	EF-P	no	EF-P	no	EF-P
	$\times 10^{-5} \text{ s}^{-1}$	×10 ⁻⁵ s ⁻¹	k_{pep}, s^{-1}	k_{pep}, s^{-1}	k_{obs}, s^{-1}	k_{obs}, s^{-1}	k_{obs}, s^{-1}	k_{obs}, s^{-1}
Pro	6.3 ± 0.5	3.7 ± 0.5	0.14 ± 0.1	8.2 ± 0.8	4.2 ± 0.3	33 ± 2	0.018 ± 0.02	0.6 ± 0.02
Aze			$0.55 \pm 0.26 \ (40\%)$	45 ± 13 (34%)				
			$0.12 \pm 0.04 \ (60\%)$	2.4 ± 0.3 (66%)				
Pip			$0.5\pm 0.06~(68\%)$	27 ± 3 (81%)				
_			$0.03 \pm 0.01(32\%)$	0.7 ±0. 3 (19%)				
4-S-Flp	3 ± 0.3	2 ± 0.4	0.003 ± 0.0002	0.23 ± 0.02	0.15 ± 0.02	5 ± 0.5	no product	0.013 ± 0.001
4-R-Flp	23 ± 1	9 ± 3	21 ± 2	121 ± 33	73 ± 10	63 ± 9	0.22 ± 0.02	0.53 ± 0.06
4,4-F ₂ -Pro	31 ± 1	28 ± 5	2.3 ± 0.2	67 ± 5	42 ± 4 (73%)	65 ± 14 (83%)	0.077 ± 0.005	0.7 ± 0.1
					$0.07 \pm 0.02 \ (27\%)$	$0.3 \pm 0.3 (17\%)$		
4-S-Hyp	14 ± 1	4 ± 1	0.007 ± 0.0003	0.64 ± 0.06	0.3 ± 0.03	11 ± 1	0.004 ± 0.001	0.077 ± 0.008
4-R-Hyp	6.3 ± 0.1	7 ± 2	0.2 ± 0.02	9.4 ± 0.5	4 ± 0.3	49 ± 7	0.039 ± 0.004	0.3 ± 0.04
Cis-MePro	1.7 ± 0.2	1.8 ± 0.3	$6 \pm 1 \times 10^{-5}$	0.001 ± 0.0004	0.001 ± 0.0001	0.037 ± 0.003	no product	0.013 ± 0.002
Trans-MePro	8.4 ± 0.3	6.6 ± 0.6	0.32 ± 0.03	14 ± 2	28 ± 4 (68%)	69 ± 11 (86%)	0.065 ± 0.008	0.64 ± 0.09
					$1.7 \pm 0.5 (32\%)$	$0.6 \pm 0.5 (14\%)$		
4-S-Mep	3.7 ±0.9		0.09 ± 0.002 (21%)	$6 \pm 1(38\%)$	9 ± 4 (32%)	26 ± 9 (72%)	0.009 ± 0.004	0.085 ± 0.008
-			0.003 ± 0.0002 (79%)	0.18 ± 0.03 (62%)	0.16 ± 0.03 (68%)	1 ± 1 (28%)		
4-R-Mep	3.8 ± 0.04	10 ± 1	0.17 ± 0.03	12 ± 1	19 ± 3 (69%)	73 ± 9 (75%)	0.072 ± 0.006	0.51 ± 0.05
-					$0.6 \pm 0.2 (31\%)$	$1.9 \pm 0.6 (25\%)$		
3,4-Dhp	5.6 ± 0.2	4.4±1	0.01 ± 0.001	0.62 ± 0.07	2.8 ± 0.4 (67%)	21 ± 4 (82%)	0.005 ± 0.001	0.12 ± 0.01
-					0.23 ± 0.07 (33%)	0.2 ± 0.1 (18%)		
fMet	11 ± 0.6	11±1						

Pro*, EF-P	ΔG[≠] , kcal/mol	ΔH[≠] , kcal/mol	T∆S [≠] , kcal/mol		
4-R-Flp, no EF-P	16 ± 1	22 ± 2	6.4 ± 0.6		
4-R-Flp, EF-P	15 ± 1	24 ± 1	8.7 ± 0.7		
4-S-Flp, no EF-P	22 ± 1	19 ± 2	- 2.3 ± 0.2		
4-S-Flp, EF-P	19 ± 1	24 ± 1	4.6 ± 0.3		
Calculated for 37 °C, $\Delta H^{\neq} = E_a$ -RT, $\Delta G^{\neq} = \Delta H^{\neq}$ -T ΔS^{\neq} , T $\Delta S^{\neq}_{(37^\circ C)} = T\Delta S^{\neq}_{(25^\circ C)} * 310.15 \text{K}/298.15 \text{K}$					

Table S4: Activation parameters of the Pmn reaction with fMet-R/S-Flp-tRNA Pro for 37 $^{\circ}C$

References

(1) Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. **2009**, 78, 929.

(2) Renner, C.; Alefelder, S.; Bae, J. H.; Budisa, N.; Huber, R.; Moroder, L. *Angew. Chem., Int. Ed.* **2001**, *40*, 923.

(3) Kern, D.; Schutkowski, M.; Drakenberg, T. J. Am. Chem. Soc. 1997, 119, 8403.

(4) Shoulders, M. D.; Kamer, K. J.; Raines, R. T. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3859.

(5) Eberhardt, E. S.; Panisik, N., Jr.; Raines, R. T. J. Am. Chem. Soc. 1996, 118, 12261.

(6) Owens, N. W.; Braun, C.; O'Neil, J. D.; Marat, K.; Schweizer, F. *J. Am. Chem. Soc.* **2007**, 11670

129, 11670.

(7) Kang, Y. K.; Byun, B. J.; Park, H. S. *Biopolymers* **2011**, *95*, 51.

(8) Kang, Y. K.; Park, H. S. *Biopolymers* **2009**, *92*, 387.

(9) Kubyshkin, V.; Durkin, P.; Budisa, N. *submitted for publication*.

(10) Kubyshkin, V.; Afonin, S.; Kara, S.; Budisa, N.; Mykhailiuk, P. K.; Ulrich, A. S. Org Biomol Chem **2015**, *13*, 3171.