
On transition of propagation of relativistic particles from the ballistic to the diffusion
regime

A.Yu. Prosekin
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany∗

S.R. Kelner
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany∗ and

Research Nuclear University (MEPHI), Kashirskoe shosse 31, 115409 Moscow, Russia

F.A. Aharonian
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland and

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany∗

(Dated: June 23, 2015)

A stationary distribution function that describes the entire processes of propagation of relativistic
particles, including the transition between the ballistic and diffusion regimes, is obtained. The
spacial component of the constructed function satisfies to the first two moments of the Boltzmann
equation. The angular part of the distribution provides accurate values for the angular moments
derived from the Boltzmann equation, and gives a correct expression in the limit of small-angle
approximation. Using the derived function, we studied the gamma-ray images produced through the
pp interaction of relativistic particles with gas clouds in the proximity of the accelerator. In general,
the morphology and the energy spectra of gamma-rays significantly deviate from the “standard”
results corresponding to the propagation of relativistic particles strictly in the diffusion regime.
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I. INTRODUCTION

Propagation of the cosmic rays in the turbulent mag-
netic fields can proceed in different regimes depending on
the scales under consideration. On small scales, when the
particles move coherently, their propagation is ballistic.
This usually occurs close to the source, just after the par-
ticles escape the sites of their acceleration. With time,
the multiple stochastic scattering in turbulent magnetic
fields leads to the isotropization of directions of cosmic
rays. The complete isotropization implies that the prop-
agation proceeds in the diffusion regime.

The limiting cases of small-angle and isotropic particle
distributions allow solutions of the problem of particle
propagation on small and large scales, respectively [1–3].
The small-angle approximation fails when the deflection
of particles becomes large, typically larger than one ra-
dian. The solution of the diffusion equation, in addition
to its inability to be applied to small spacial scales, faces
the so-called problem of superluminal propagation [4].
In this regard, the apparent requirement r2/D & r/c im-
plies that the diffusion works when r & D/c, where D is
the diffusion coefficient.

In the small-angle approximation, the evolution of an-
gular distribution has a diffusive behaviour [1, 2]. How-
ever, since the pitch angle changes within the limited
interval, −1 ≤ µ ≤ 1 (µ is the cosine of the pitch angle),
the mean square displacement of the pitch angle deviates
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from diffusive behaviour as the average deflection angle
grows. For the isotropic turbulence, the moments of the
pitch-angle distribution on large timescales have an expo-
nential behaviour [5]. This means that the isotropization
becomes fast after the characteristic time which is deter-
mined by the pitch-angle Fokker-Planck coefficient Dµµ.
On the other hand, a slower isotropization can happen if
the turbulent magnetic field has a slab geometry.

In this work we use the method of moments. It allows
us to eliminate the angular dependence at the expense
of introduction of an isotropization function that deter-
mines the dynamics of isotropization. The final results
depend on the form of the isotropization function. How-
ever, as we demonstrate below, for a reasonable choice of
the form of the function, the results remain quite stable.

To avoid of the problem of the superluminal motion,
Aloisio and Berezinsky [4] have introduced the so-called
Jüttner function, which describes the evolution of the
cosmic ray density. Although this function is obtained
phenomenologically from the formal similarity between
the diffusion propagator and the Maxwellian distribution,
it gives correct results in the limiting cases of diffusion
and the ballistic regime. Below we will show that the in-
tegrated over time Jüttner function is close our stationary
solution, which proceeds from Boltzmann equation.

In many cases, especially for the problems related to
the radiation of cosmic rays, it is necessary to know not
only the cosmic-ray density but also their angular distri-
bution. Indeed, the part of radiation emitted by particles
with strongly anisotropic distribution, can have a strong
impact on the morphology and spectrum of radiation, or
even simply missed by the observer.

ar
X

iv
:1

50
6.

06
59

4v
1 

 [
as

tr
o-

ph
.H

E
] 

 2
2 

Ju
n 

20
15

mailto:Anton.Prosekin@mpi-hd.mpg.de


2

To demonstrate the importance of the angular distribu-
tion for calculations of the apparent gamma-ray morphol-
ogy, we calculated the gamma-ray intensity maps of the
regions surrounding the cosmic ray accelerator. The most
distinct features can be seen for the clumps of matter
close to the source. The anisotropy changes significantly
the radiation spectrum and leads to fast decrease of in-
tensity at high energies. This results in a suppression or
a disappearance of radiation from nearby clouds located
away from the line of sight towards to the cosmic-ray
source. Moreover, even in the case of homogeneous mat-
ter distribution, the effects of anisotropy and the transi-
tion from ballistic to diffusion regime, play an important
role in the formation of gamma-ray morphology.

The article is organised as follows. In Section II we de-
scribe the formalism based on the Boltzmann equation,
and obtain the stationary distribution function, which is
valid for all scales from the ballistic to diffusion regime.
In Section III, this distribution function is used for cal-
culations of the gamma-ray morphology of nearby clouds
irradiated by cosmic rays. The conclusions are summa-
rized in Section IV.

II. ANALYTICAL DESCRIPTION

A. Method of moments

Let us consider the evolution of the distribution func-
tion in the case of multiple stochastic scatterings. Here
we do not specify the mechanism of the scattering, and
describe the processes only by the generic probability of
the particle to be scattered. The evolution of the dis-
tribution function f(t, r,n) is determined by the Boltz-
mann transport equation

∂f

∂t
+ n

∂f

∂r
= Stf +

δ(t)δ(r)

4π
, (1)

where the speed of the light (propagation speed of ultra-
relativistic particles) is set c = 1. Here n is the unit vec-
tor in the direction of propagation. It is assumed that the
particles are produced by an instant spherically symmet-
ric point-like source described by the Dirac delta func-
tions δ(t)δ(r). We consider only elastic collisions which
are described by the collision integral

Stf =

∫
f(n′)w(n′ → n)dΩ′ −

∫
f(n)w(n→ n′)dΩ′,

(2)
where w(n′ → n) is the probability of scattering of the
particle from the initial direction along n′ to the final
direction along n per unit time. In the case of isotropic
medium, the probability w depends only on the angle be-
tween the initial and final directions. For compactness of
presentation, the dependence of the distribution function
on time and coordinates in Eq. (2) is omitted.

The solution of Eq. (1) can be found in the small-angle
approximation which is valid for initial moments of time.

Below we will show that proceeding from this equation
one can obtain also the equation for diffusion of parti-
cles, and derive its solution which is valid for large time
intervals.

We are interested, first of all, in the transition between
these two solutions. For these purpose it is useful to sim-
plify the problem and consider instead of the distribution
function its moments. Applying successively the integral
operators

∫
dΩ,

∫
dΩnα, ... ,

∫
dΩnα...nω to the Boltz-

mann equation, one can obtain the equations for the mo-
ments. We restrict ourselves to the first two moments:
the density g =

∫
fdΩ and the current j =

∫
nfdΩ.

They are governed by the following equations:

∂g

∂t
+
∂jα
∂rα

= δ(t)δ(r), (3)

∂jα
∂t

+
∂

∂rβ
〈nαnβ〉g = −jα

τ
.

Here τ is the scattering time, which is the inverse of the
transport cross section σtr = 1/τ , where

σtr =

∫
(1− nn′)w(n′ → n)dΩ. (4)

In the derivation of equations in Eq. (3) it has been taken
into account that

∫
nαdΩ = 0,

∫
StfdΩ = 0.

The density and the current depend on the higher mo-
ments of the distribution function. To close the system
of equations given by Eq. (3), we should define the form
of the isotropization tensor,

〈nαnβ〉 =

∫
nαnβfdΩ∫
fdΩ

, (5)

based on the following physical arguments.
In the spherically symmetric case, the radial direc-

tion is the only preferential direction, therefore, the
isotropization tensor should have the following structure

〈nαnβ〉 = Aδαβ +Bραρβ , (6)

where ρ = r/r is the radial direction. The standard
procedure for the determination of the coefficients A and
B, which consists in the consequent multiplication by
tensors δαβ and ραρβ , leads to the equations

1 = 3A+B (7)

〈(nρ)2〉 = A+B,

from where we find

A =
1− 〈(nρ)2〉

2
, B =

3〈(nρ)2〉 − 1

2
. (8)

We assume that the tensor depends only on the coordi-
nates. Then, it is convenient to introduce the isotropiza-
tion function φ(r) = B which would allow us to write the
isotropization tensor in the form

〈nαnβ〉 = (1− φ(r))
δαβ
3

+ φ(r)ραρβ . (9)
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The tensor consists of the unidirectional, ραρβ , and
the isotropic, δαβ/3, parts. At r = 0, when n = ρ,
we have 〈nαnβ〉(0) = ραρβ , whereas at the infinity
all directions of n are distributed isotropically, and
〈nαnβ〉(∞) = δαβ/3. Thus, the isotropization function
should satisfy the boundary conditions

φ(0) = 1 and φ(∞) = 0. (10)

In the spherically symmetric case, the density and the
current are expressed as g = g(t, r) and j = j(t, r)ρ.
Then the substitution of the isotropization tensor in the
form given by Eq. (9) into Eq. (3) results in

∂G

∂t
+
∂J

∂r
=
δ(t)δ(r)

4π
, (11)

∂J

∂t
+
∂G

∂r
− 1

r

∂

∂r

(
2

3
(1− φ)rG

)
= −J

τ
,

where we have introduced the functions G = r2g and
J = r2j.

At small distances and times, the current changes fast,
i.e. ∂J

∂t �
J
τ . Therefore one can neglect the term in the

right-hand side of the second equation in Eq. (11). The
condition φ(0) = 1 leads to the cancellation of the third
term in the left-hand side of the same equation. Thus,
the equations in Eq. (11) are reduced to

∂G

∂t
+
∂J

∂r
=
δ(t)δ(r)

4π
, (12)

∂J

∂t
+
∂G

∂r
= 0,

which can be rewritten in the form of the wave equation
for G

∂2G

∂t2
=
∂2G

∂r2
, (13)

with the boundary condition G(t = +0, r) = δ(r)/4π.
The solution of this equation in terms of the density g =
G/r2 is

g(t, r) =
1

4πr2
δ(r − t), (14)

which describes the behaviour of density in the ballistic
regime.

In the opposite case , i.e. for large distances and times,
it is more convenient to proceed from the initial system of
equations given by Eq. (3). The current changes slowly
on scale of the scattering time τ , i.e. ∂j

∂t �
j
τ . This allows

us to neglect the derivative ∂j
∂t in the second equation.

Taking into account that φ = 0 we find

∂g

∂t
= −∇j, (15)

j = −τ
3
∇g,

which can be rewritten in the form of the diffusion equa-
tion for g

∂g

∂t
=
τ

3
∆g. (16)

The comparison with the conventional form of diffusion
equation, gives the well known relation

D =
c2τ

3
=
clc
3
, (17)

where lc = cτ is the scattering length.

B. Stationary case

The system of equations derived in the previous sec-
tion describes the particle motion over the entire pro-
cess of propagation, including the ballistic and diffusion
modes, as well as the transition stage between these two
regimes. They have a simple stationary solution. Indeed,
the integration over the entire time cancels out the time
derivatives and leads to the following system of ordinary
differential equations

dJ

dr
=
δ(r)

4π
, (18)

dG

dr
− 1

r

d

dr

(
2

3
(1− φ)rG

)
= −J

τ
,

where J = J(r) and G = G(r). The first of these equa-
tions gives J = Θ(r)/4π, where Θ(r) is the Heaviside
step function. The substitution of the current J to the
second equation results in the ordinary differential equa-
tion of the first order. It’s solution can be presented in
the form

g(r) =
χ(r)

4πr2τ

∞∫
r

dr′ exp

− r′∫
r

ψ(r′′)

 , (19)

where

χ(r) =
3

1 + 2φ(r)
, ψ(r) =

2

r

(
1− φ(r)

1 + 2φ(r)

)
. (20)

The limits for the integrals are chosen from the condition
that the density should vanish in the infinity.

To find the final expression, one should choose a suit-
able form of the isotropization function φ(r). The bound-
ary condition 4πg(r)r2 → 1 at r → 0, which has not been
used yet, gives a relation between φ(r) and τ . To take
into account this relation, φ should have one free param-
eter ν. In the case of isotropic medium, one expects an
exponential rate of isotropization [5]. Therefore, one of
the possible expressions for isotropization function is

φ(r) = e−r/ν . (21)
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However, this function does not allow representation of
Eq. (19) in quadratures. Another expression

φ =
1

1 + r/ν
(22)

is less physically motivated, but allows us to obtain a
simple analytical solution. Indeed, the substitution of
Eq. (22) into Eq. (19) results in

g(r) =
1

4πr2
3(ν + r)

τ
. (23)

The boundary condition 4πg(r)r2 → 1 at r → 0 gives
ν = τ/3. The comparison with Eq. (17) gives ν = D/c.
Then, the solution can be written in terms of diffusion
coefficient D as

g(r) =
1

4π

(
1

r2
+

c

rD

)
, (24)

which is just the sum of the solutions in the limiting cases
of ballistic and diffusion regimes. Introducing a dimen-
sionless parameter x = rc/D, which is the radial distance
in the units of D/c, one can rewrite this expression in the
form

g(r) =
(1 + x)

4πr2
. (25)

The result is surprisingly simple. However, we
should note that it is obtained for a specific form of
isotropization function. The results for other forms of
isotropization function can be numerically calculated us-
ing Eq. (19). Fig. 1 shows that the densities obtained
for φ = 1

1+r/ν and φ(r) = e−r/ν differ less than 30%,
although it should be noticed that in the first case the
asymptotic behaviour occurs later. For comparison, we
present also the density provided by the generalized
Jüttner function integrated over time. This function was
proposed phenomenologically in ref. [4] for description of
evolution of the cosmic ray flux. It is seen from Fig. 1 that
the Jüttner function gives a result which is quite close to
the solution with an exponential form of the isotropiza-
tion function.

The propagation of cosmic rays is characterized not
only by the density, but also by the angular distribution
of particles. Such an information is contained in the mo-
ments of the angular distribution. Indeed, if µ = nρ is
the cosine of the angle between the particle and the radial
direction, then the first moment of the angular distribu-
tion is

〈µ〉 =
jρ

g
. (26)

Using the solution given by Eq. (25), we have

〈µ〉 =
1

1 + x
. (27)

100

101

102

G
(x

)
=

4
π
r2
g(
r)

G1 for φ1 = 1
1 +r/ν

G2 for φ2 =e−r/ν

GJ

10-2 10-1 100 101 102

x=cr/D

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ra
ti
o

G2/G1

GJ /G1

Figure 1: Upper panel: Density G = 4πr2g(r) for different
models of isotropization as function of x = cr/D. G1(x) and
G2(x) correspond to φ1 = 1

1+rν
and φ2 = e−rν isotropization

functions. GJ(x) corresponds to the integrated over time gen-
eralized Jüttner function proposed by [4]. The dashed lines
represents the asymptotes G(x) = 1 and G(x) = x. Lower
panel: The ratios of the functions: G2/G1 and Gj/G1.

The second moment is just the projection of the
isotropization tensor on the radial direction

〈µ2〉 = 〈nαnβ〉ραρβ =
1 + 2φ(r)

3
. (28)

The moments 〈µ〉 and 〈µ2〉 can be used to construct a
function that has properties of the exact angular distri-
bution. In this regard, the simplest function is

M(µ) =
1

Z
exp

(
−3(1− µ)

x

)
, (29)

where the normalization function has the form

Z(x) =
x

3

(
1− e−6/x

)
. (30)

M(µ) is the distribution of the cosine of pitch angles µ
in the range [−1, 1]. This distribution gives the moments
that are in a good agreement, at small and large dis-
tances, with moments given by Eqs. (27) and (28). For
both moments the difference from Eqs. (27) and (28) does
not exceed 35%.

One can show that in the small-angle limit the distri-
bution given by Eq. (29) describes the diffusion in angle.
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Indeed, in this limit the transport cross section becomes

σtr ≈
∫

(1− (1− θ2

2
))w(n′ → n)dΩ =

1

2
〈∆θ

2

∆t
〉 =

Dθ

2
,

(31)
where Dθ is the diffusion coefficient in angular space.
Taking into account Eq. (17) and the relation x = rc/D,
we obtain

M(µ) ∼ exp

(
−3D(θ2/2)

rc

)
= exp

(
− θ2

Dθr/c

)
. (32)

The combination of the density and the angular distri-
butions results in the stationary distribution function

f(r, µ) =
Q

4πc

(
1

r2
+

c

rD

)
1

2πZ
exp

(
−3D(1− µ)

rc

)
,

(33)
which describes the evolution of propagation, from bal-
listic to diffusion, where Q is the source function (the
production rate) of cosmic rays in the source.

C. Diffusion coefficient

In the derived distribution functions the diffusion co-
efficient is assumed to be constant in space, but it can
have an arbitrary energy dependence. The latter is
determined by the relation between the Larmor radius
RL = E/eB and the correlation length of the turbulence
λ. If RL � λ, the particle is only slightly deflected on the
correlation length. The random walk of uncorrelated de-
flections results in the scattering length lc ∼ R2

L [6]. By
combining Eq. (17), Eq. (31) and the relation τ = 1/σtr,
we obtain

D =
2

3

c2

Dθ
. (34)

The coefficient of diffusion in angle, Dθ, can be written
as [2]

Dθ =
(α− 1)(β + 1)

4αβ

cλ

R2
L

, (35)

where α and β are the power-law indices of turbulence
for wave vectors k > k0 = 2π/λ and k < k0, respectively.
The value of β is poorly known; here we will assume
β = 1.

For the Kolmogorov spectrum of turbulence (α = 5/3),
calculations of the diffusion coefficient in the regime
RL � λ give

D =
10

3
cλ

(
RL
λ

)2

. (36)

Note that the energy dependence in this regime is the
same for any other spectrum of turbulence.

At RL � λ, particles are only scattered by MHD
waves with the length equal to their gyroradius. This

leads to the dependence of the diffusion coefficient on
the turbulence spectrum. The quasi-linear theory pre-
dicts lc ∼ R2−α

L [7], where α is the power-law index of the
turbulence spectrum. This dependence can be obtained
as follows. The scattering frequency of the particle by
waves is expressed as [8]

νs =
π

4
Ω

(
Ekk

B2/8π

)
|k=kres

, (37)

where Ek is the spectrum of turbulence normalised as∫
Ekdk = B2/8π, kres = Ω/vµ is the resonance wave

vector, Ω is the girofrequency, and µ is the cosine of the
pitch angle. The diffusion coefficient is related to the
scattering frequency as [6, 7]

D =
v2

4

1∫
0

dµ
1− µ2

νs
. (38)

Taking turbulence spectrum in the form Ek ∼ 1/kα

with minimum wave vector k0 = 2π/λ, and substitut-
ing Eq. (37) into Eq. (38), we obtain

D =
2

(2− α)(4− α)(α− 1)

1

π(2π)α−1
λc

(
RL
λ

)2−α

.

(39)
Thus for α = 5/3 we have

D =
27

7

1

π(2π)2/3
λc

(
RL
λ

)1/3

, RL � λ. (40)

We note that the value of the numerical prefactors in
Eqs. (36) and (40) depend slightly on the on turbulence
spectrum. The parameter λ in these expressions corre-
sponds to the largest scale of inertial range of turbulence
and can be associated with the correlation length.

The simulations of the particle propagation in the
isotropic and purely turbulent magnetic field performed
in ref. [9] show that the diffusion coefficient can be pre-
sented in the following form

D =
cλ

3

(
1

(2π)2/3

(
RL
λ

)1/3

+
4π

3

(
RL
λ

)2
)
. (41)

In the next section, this convenient expression for the
diffusion coefficient will be used for calculations of the
gamma-ray emission.

III. GAMMA-RAY EMISSION OF THE REGION
SURROUNDING COSMIC-RAY ACCELERATOR

High energy gamma-rays carry unique information not
only about the accelerators of cosmic rays (electrons, pro-
tons and nuclei), but also allow us to trace these particle
after they leave the sites of their acceleration. In the
interstellar medium, this is realized through interactions
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of cosmic rays with the so-called giant molecular clouds.
These dense gas regions illuminated by cosmic rays pro-
vide a target for proton-proton interaction and radiate
gamma-rays. Thus they can serve as unique "barome-
ters" for measurements of the pressure (energy density)
of cosmic rays at different locations relative to the accel-
erator.

The massive clouds located in the vicinity of the accel-
erator dramatically increase the chances of tracing the
run-away particles through the secondary gamma-rays.
For example, for a young supernova remnant (as an ac-
celerator of cosmic rays) at a distance of 1 kpc, a gas
cloud of mass of order 104 M� can emit very high energy
gamma-rays at a level detectable by current instruments
if the cloud is located within 100 pc from the supernova
remnant [10]. Before being fully diffused way and inte-
grated into the "sea" of the galactic cosmic rays, they
produce gamma-rays the spectrum of which could essen-
tially differ from both the gamma-ray spectrum of the
accelerator itself and the spectrum of the diffuse galac-
tic gamma-ray emission. In the case of propagation in a
"nominal" diffusion regime, the formation of gamma-ray
energy spectra has been discussed in ref. [11]. However,
closer to the accelerator, the propagation of cosmic rays
may have a more complex character which would be re-
flected in the spectra of secondary gamma-rays.

The morphology of the gamma-ray emission is deter-
mined by the interplay between cosmic ray and mat-
ter distributions. While the distribution of the matter
could be arbitrary and random, the density of the cos-
mic rays decreases with distance from the accelerator,
which means the most intensive radiation should arrive
from the dense regions located close to the accelerator.

However, the angular distribution of cosmic rays may
lead to a significant deviation from such a simple picture
[12]. Indeed, due to the relativistic character of proton-
proton interactions, gamma rays are emitted along the
direction of the momentum of the incident proton. It
means that only the protons directed towards the ob-
server give a contribution to the detectable gamma-ray
flux. Close to the accelerator, the angular distribution of
cosmic rays, which propagate ballistically along the ra-
dial direction, is strictly anisotropic. Thus the gamma
radiation can arrive from the direction towards accelera-
tor only in the case of presence of significant amount of
gas along the line of sight. The nearby clouds located
not on the line of sight could be invisible because their
radiation is directed not towards the observer. As the
distribution of cosmic rays becomes more isotropic, the
apparent intensity of the radiation increases with the dis-
tance from the accelerator.

On the other hand, if a gas cloud on the line of sight is
located sufficiently close to the accelerator, we could see a
bright source which would coincide with the accelerator.
This can be misinterpreted as a prolific production of
gamma-rays inside the accelerator, although in reality the
accelerator could be a very inefficient gamma-ray emitter.

Thus, the consideration of transition from the ballistic

to diffusion regime may result in two consequences re-
lated to the density and angular distributions of cosmic
rays. The first one is the lack of radiation from regions
close to the accelerator even in the case of presence of
massive nearby clouds (but located away from the line
of sight). In contrary, we may detect very bright and fo-
cused gamma ray image if a dense cloud in proximity of
the accelerator would appear on the line of sight.

In the following calculations we consider a pro-
ton accelerator of power Lcr = 1037 erg/s located
at a distance d = 1 kpc from the observer. The
energy spectrum of protons is taken in the form
Jcr(E) = E−2 exp

(
−E/1015 eV

)
. The stationary dis-

tribution of cosmic rays around the accelerator is de-
scribed by Eq. (33) with the diffusion coefficient given by
Eq. (41). We assume that particles propagate through a
turbulent magnetic field with the Kolmogorov spectrum
of turbulence. We keep the coherence length of turbu-
lence λ as a free parameter.

In calculations, the magnetic field is taken at the
level of B = 10−4 G. In the galactic disk, the typi-
cal value of the diffusion coefficient is D ≈ 1028cm2/s
at 1 GeV [13]. To match this value we as-
sume λ = 104 pc and λ = 105 pc for the diffu-
sion coefficients, which below we refer to as small
and large, respectively. The smallness of the ratio
RL/λ ≈ 1.1 × 10−9E12λ

−1
4 , where E12 = E/1012 eV is

the cosmic ray energy and λ4 = λ/104 pc, allows us to
neglect the high-energy non-resonant part of the diffu-
sion coefficient. The estimate based on Eq. (41) gives
D ≈ 9× 1028E

1/3
12 λ

2/3
4 cm2/s. Correspondingly, the tran-

sition from ballistic to diffusion regime occurs at a charac-
teristic distance D/c ≈ 1.0E

1/3
12 λ

2/3
4 pc from the cosmic-

ray source.
Below we consider two cases: (i) a homogeneous cloud

surrounding the accelerator, (ii) a group of clouds lo-
cated near the accelerator. We consider different den-
sities of the background gas (between the clouds), and
different values of the diffusion coefficient of cosmic rays.
For calculation of gamma-ray production in pp collisions
the parametrisation of ref. [14] has been used. The re-
sults present the intensity of gamma-radiation integrated
along the line of sight through the gamma-ray production
region.

In the first example, we consider a homogeneous cloud
with a radius R = 10 pc and density np = 100 cm−3. At
these parameters the mass of the cloud is Mcl ≈ 104M�.
The accelerator is placed in the centre of the cloud. The
intensity maps of gamma rays at three different energies,
E = 1010 eV, E = 1011 eV, and E = 1012 eV, are shown
in Fig. 2. Calculations are performed for the case of
slow diffusion. It is assumed that the density inside the
accelerator is very small, thus the gamma-radiation of
the accelerator itself can be ignored.

Fig. 2 shows that with the increase of energy the radi-
ation becomes more concentrated on the position of the
accelerator. The change of the gamma-ray morphology
is explained by the energy dependence of the cosmic-ray
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propagation. With the increase of energy, the transition
from ballistic to diffusion regime occurs at larger dis-
tances from the accelerator. The faster decrease of the
cosmic-ray density in the ballistic regime results in the
faster decrease of gamma-ray intensity at high energies.
It is seen in Fig. 3 in which the radial profiles of intensity
at different energies are shown. The left and right pan-
els of Fig. 3 present the results calculated for the small
and large diffusion coefficients, respectively. For the fast
diffusion, the transition from the steep to the flat part of
the profile occurs at large distances from the accelerator.

In Fig. 3 we show the radial profiles of gamma-ray
intensities for two different regimes of diffusion. To de-
scribe the behaviour of these curves, we also show the
local power-law indices α = d lnP (r)/d ln(r) at different
energies. One can see that at small distances all profiles
approach to the same inclination with α ≈ −1.3. At
small energies the flat part starts earlier and intensity
decreases slower. For example, at energy E = 109 eV the
flattest part of the profile corresponds to α ≈ −0.3. With
an increase of energy, the flat part becomes steeper. At
very high energies the transition to the flat part might
not happen at all.

The angular distribution of cosmic rays has a strong
impact on the characteristics of the secondary gamma-
radiation, in particular on the radial profile of the
gamma-ray intensity (see Appendix A). In the case of
strictly radial distribution of particles (i.e. for the the
ballistic regime of propagation), the gamma-ray source
will be detected as a point like object, independent of
the linear size of the gamma-ray production region, L.
For the “nominal” diffusion regime, the angular size of
the gamma-ray source is determined by the ratio L/R.
The transition regime introduces non-neglible corrections
to the formation of the overall image of the gamma-ray
source, therefore should be treated thoroughly. The com-
parison of the results in Fig. 3 and Fig. A.1 (which does
not take into account the angular distribution of protons)
shows that, in general, the shapes of the radial profiles
in these figures are similar, but there is also a significant
difference. In particular, if one assumes that angular dis-
tribution of particles is isotropic just after their escape
from the source,the power-law index of the slope of the
(projected) gamma-ray profile would be α = −1. This
is in contrast to α ≈ −1.3, which is expected if we cor-
rectly treat the angular distribution of particles closer
to the source. The sharp angular distribution of cosmic
rays close to the accelerator leads to considerable loss of
emission, and therefore to a steeper gamma-ray intensity
profile.

The spectral energy distributions (SED) of gamma
rays at different distances from the source of cosmic rays
are shown in Fig. 4. The left and right panels show the
results corresponding to the small and large diffusion co-
efficients, respectively. It is seen that the increase of the
diffusion coefficient leads to harder gamma-ray spectra.
In the case of homogeneous distribution of the cosmic-ray
density and for the power-law energy spectrum of protons

with an index α = 2, gamma-rays have an almost flat
SED. The flat part slightly deviates from the cosmic ray
spectrum, namely it contains an intrinsic hardening due
to the increase of inelastic cross section [15]. For the ho-
mogeneous distribution of cosmic rays, the flat part of the
gamma-ray spectrum can be approximated by power-law
with an photon index Γ = 1.94. The SED in the direction
to accelerator becomes even harder with the power-law
photon index Γ = 1.86. This can be explained by the
fact that high-energy protons preserve longer their ra-
dial direction and, consequently, produce higher energy
radiation towards observer.

Because of diffusion of cosmic rays, in the directions
far from direction to the accelerator, the density of the
low-energy protons decreases slower. At large distances
from the accelerator, the SED of gamma-rays is close to
E−δ (slightly harder because of the pp interaction cross-
section), where δ characterizes the energy-dependence of
the diffusion coefficient, D(E) = D0E

δ. Because of the
assumed dependence of the diffusion coefficient with δ =
1/3, the SED at large distances in Fig. 4 follows ∝ E−1/3
behaviour.

In more realistic scenarios, the surroundings of the
cosmic-ray source could be inhomogeneous, i.e. may con-
sist of clumps of matter. To study the general features
of radiation of such an environment, we use a simpli-
fied gas distribution-template consisting of four identical
equally separated clouds surrounded by a homogeneous
low-density gas (background):

np = np0

(∑
i

e
−
(

r−ri
wi

)2

+ xbg

)
, (42)

where np0 = 103 cm−3, ri and wi are the coordinates of
the centres of these clouds and their widths, respectively;
xbg is the level of the background relative to the maxi-
mum density in the centres of the clouds. The width of
each cloud is wi = 1 pc which corresponds to the mass
Mcl ≈ 140M�. Separation between clouds is 5 pc. We
consider the case without background and with the back-
ground of the level of xbg = 10−2. The zero level of the
background allows us to eliminate the radiation from the
direction towards the accelerator. For illustrative pur-
poses, the source of cosmic rays is located at the left
border of each map in Fig. 8 and Fig. 9. It is assumed
that the density inside the accelerator is very low, thus
its own gamma-radiation can be neglected.

The intensity maps for the case without background
gas calculated for the slow and fast diffusion of cosmic
rays, are shown in Figs. 5 and 6, respectively. The corre-
sponding intensity profiles are presented in the left and
right panels of Fig. 7. For slow diffusion, the gamma-ray
intensity of clouds decreases with the distance from the
proton accelerator. The clouds are located along the line
perpendicular to the line of sight. At high energies in the
case of fast diffusion a part of the radiation from the clos-
est clouds is "lost". Therefore, one can see an interesting
effect when despite the decrease of the cosmic ray density
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Table I: Power-law index α for the fit to the gamma-ray in-
tensity profiles for positions of the maximum radiation (the
centres of the clouds) shown in the right panel of Fig. 10 (large
diffusion coefficient).

Eγ , eV 109 1010 1011 1012 1013 1014

α -0.85 -0.73 -0.49 -0.21 0.53 1.14

with distance, highest energy gamma-rays are seen from
the furthest rather than closest clouds.

The results corresponding to the homogeneous gas
background are shown in Figs. 8 and 9. The intensity
profiles shown in Fig. 10 are smoother compared to the
relevant curves in the case of background absence. The
radiation towards the accelerator appears in Fig. 10 be-
cause of the presence of the background gas on the line
of sight. The results in Fig. 10 show that in the case of
fast diffusion the gamma-ray intensity is reduced; at very
high energies it disappears at all from the closest cloud.

To describe quantitatively how fast the gamma-ray in-
tensity decreases with distance, the intensity at the posi-
tion of the maximum (in the centres of the clouds) shown
in Fig. 10 has been fitted with power law. The calcu-
lated power-law indices of the fits for different energies
are presented in Table I. It is seen that with increase
of energy the profile becomes flatter. The intensity de-
creases slower in the case of large diffusion coefficient.
Moreover, for energies E = 1013 and E = 1014 the inten-
sity increases with distance for the farthest two clouds. In
all cases the intensity in maximum points changes with
distance slower than 1/ρ, where ρ is the projected dis-
tance from the source.

The spectral energy distributions of gamma rays in
the direction to the centres of the clouds are shown in
Figs. 12 and 11. The clouds are numbered in the order of
their distances to the accelerator. The energy spectra of
gamma-rays from the clouds are steeper than in the case
of the homogeneous cloud surrounding the accelerator
(see Fig. 4). Obviously, this is explained by anisotropic
distribution of cosmic rays closer to the accelerator. The
picture becomes smoother if the clouds are embedded in
a homogeneous background gas.

IV. CONCLUSION

One of the major issues in the general problem of iden-
tification of sources of galactic and extragalactic cosmic
rays, is the character of their propagation through the
turbulent magnetic fields outside the accelerators. De-
pending on the distance to the source, the level of the
magnetic turbulence of the ambient medium, as well as
the energy of particles, their propagation can proceed in
the ballistic or in the diffusion regimes. While the diffu-
sion of cosmic rays has been comprehensively studies in
the literature, the description of propagation in the in-

termediate stage, i.e. at the transition from the ballistic
to the diffusive regime, is a problem of greater complex-
ity regarding the exact analytical solutions. To study
the dynamics of this transition, we used a simplified ap-
proach. Based on the treatment of moments of the Boltz-
mann equation, we derived the system of equations for
the time evolution of the distribution function of cosmic
rays. Written in the form of Eq. (11), it describes not
only the ballistic and diffusion regimes of propagation
as limiting cases, but also the transition stage between
these two regimes. This system of equations allows a
simple stationary solution in the form of Eq. (19).

The key feature of this approach is the proper
choice of a specific function which describes the pitch-
angle isotropization. Within the chosen approach, the
isotropization function cannot be strictly determined.
Nevertheless it can be chosen and introduced in a self-
consistent manner based on reasonable physics argu-
ments. In this paper, two forms of the isotropization
function has been considered: (1) φ = e−r/ν and (2)
φ = 1/(1 + r/ν). The exponential form seems to be bet-
ter justified given that at the presence of isotropic turbu-
lence the pitch angle distribution moments behave expo-
nentially [5]. On the other hand the form φ = 1/(1+r/ν)
provides a simple representation of the stationary solu-
tion given by Eq. (23). The results obtained for both
forms of the isotropization function are in agreement
within better than 30% accuracy. They agree well also
with the integrated Jüttner function proposed in ref. [4].

The angular, energy and radial distributions of cosmic
rays outside the accelerator, in the general case of their
propagation, including the transition stage between the
ballistic and diffusion regimes, is described by a surpris-
ingly simple function given by Eq. (33).

The anisotropy of angular distribution of cosmic rays
before they enter the diffusion regime of propagation,
leads to a partial or complete "loss" of secondary gamma-
rays by the observer. The numerical calculations of sec-
ondary gamma-rays performed for both the homogeneous
and clumpy (consisting of dense clouds) distributions of
gas in the vicinity of the accelerator, demonstrate the
strong impact of the effects of particle propagation in
the pre-diffusion regime on the apparent gamma-ray mor-
phology and the energy spectrum. Therefore, the de-
tailed studies of spectral and morphological features of
high energy gamma-ray emission outside the detected (or
potential) cosmic ray accelerators can tell us about the
propagation character of cosmic rays after they leave the
sites of their acceleration.

Appendix A: Intensity profiles

The gamma-ray intensity profile corresponds to the ra-
diation integrated along the line of sight and considered
as a function of projected distance from the source. Let
us assume that the angular distribution of cosmic-ray
protons is isotropic. In this case the production rate of
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Figure A.1: The gamma-ray intensity profiles calculated
for a spherical homogeneous cloud surrounding the source
of protons. The curves correspond to three values of the
parameter X. The upper panel: the intensity, lower panel
- the slop of the profile.
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Figure A.2: The same as in Fig. A.1 but for a strip
region.

gamma rays in the direction of the observer is propor-
tional to the density of protons. Since the cosmic-ray
density changes according to Eq. (24), the form of inten-
sity profile is

I =

z2∫
z1

(
1

r2
+

c

rD

)
dz, (A1)

where z axis is directed along the line of sight.
If the region emitting gamma-rays is a spherical

cloud of radius R with the centre at the position
of the particle accelerator, then the integration limits
z1,2 = ±

√
R2 − ρ2 give

Isph =
2

R

arctan
√

1
η2 − 1

η
+Xarccosh

(
1

η

) , (A2)

where ρ is the projected distance from the source, η =
ρ/R, and X = Rc/D. If the emitting region is a strip
with width 2R, and the source of cosmic rays is in the

middle of the strip, then the integration limits z1,2 = ±R
give

Istr =
2

R

(
arctan 1

η

η
+Xarcsinh

(
1

η

))
. (A3)

The functions IsphR/2 and IstrR/2 are presented
in Fig. A.1 and Fig. A.2, respectively. The lower
panels show the local slops of the curves defined as
α = d lnF (η)/d ln(η), where F (η) = IR/2.

It is seen from Figs. A.1 and A.2 that at small distances
the intensity changes as 1/ρ. For X = 1 this behaviour
approximately retains at all distances. This curve cor-
responds to the case when the diffusion regime has not
been reached at the distance R. Other curves reveal the
transition to the diffusion regime becoming flatter with
increase of distance. The integration over smaller region
along the line of sight in the case of a spherical cloud
makes the slope of the profile steeper compared to the
case of strip region.
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Figure 2: The intensity maps of gamma-ray emission at different energies. The spherical cloud with homogeneous density
distribution is irradiated by the cosmic-ray source located in its centre. The gas density inside the accelerator is assumed very
low, so the contribution of the accelerator to the gamma-ray emission is negligible. The maps are produced for the case of small
diffusion coefficient (for details, see the text). For the distance to the source d = 1 kpc, the region of ∼ 1◦ × 1◦ corresponds to
the area ∼ 20× 20 pc2.
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Figure 4: Energy spectra of gamma rays at different distances from the cosmic-ray source in the case of homogeneous cloud.
The results are given for the scenarios with slow (left panel) and fast (right panel) proton diffusion.

Figure 5: The intensity maps of gamma-ray emission from the group of clouds (without background) at various energies for
the case of low diffusion coefficient. The cosmic-ray source is located in the centre of the left side.

Figure 6: The same as in Fig. 5 for the case of high diffusion coefficient.
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Figure 7: The radial intensity profiles for various energies in the case of group of clouds for the low (left panel) and high (right
panel) diffusion coefficient. The profiles for energies E = 109 eV, E = 1011 eV, and E = 1013 eV correspond to the intensity
maps given in Fig. 5 for the left panel and Fig. 6 for the right panel.

Figure 8: The intensity maps of gamma-ray emission from the group of clouds and homogeneous background at various
energies for the case of low diffusion coefficient. The cosmic-ray source is located in the centre of the left side.

Figure 9: The same as in Fig. 8 for the case of high diffusion coefficient.
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Figure 10: The radial intensity profiles for various energies in the case of group of clouds surrounded by homogeneous
background for the low (left panel) and high (right panel) diffusion coefficient. The profiles for energies E = 109 eV, E = 1011 eV,
and E = 1013 eV correspond to the intensity maps given in Fig. 8 for the left panel and Fig. 9 for the right panel.
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Figure 11: Energy spectra of gamma rays in the direction to the centres of the clouds in the case of background absence for
low (left panel) and high (right panel) diffusion coefficient. The clouds are numbered in the order of the distance from the
source.
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Figure 12: Energy spectra of gamma rays in the direction to the centres of the clouds in the case of homogeneous background
for low (left panel) and high (right panel) diffusion coefficient. The clouds are numbered in the order of the distance from the
source.
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