
TECHNOLOGY REPORT
published: 25 November 2015
doi: 10.3389/fninf.2015.00027

Frontiers in Neuroinformatics | www.frontiersin.org 1 November 2015 | Volume 9 | Article 27

Edited by:

Arjen Van Ooyen,

VU University Amsterdam,

Netherlands

Reviewed by:

Marc De Kamps,

University of Leeds, UK

Chung-Chuan Lo,

National Tsing Hua University, Taiwan

*Correspondence:

Petra Ritter

petra.ritter@charite.de

†
These authors have contributed

equally to this work.

Received: 09 June 2015

Accepted: 03 November 2015

Published: 25 November 2015

Citation:

Matzke H, Schirner M, Vollbrecht D,

Rothmeier S, Llarena A, Rojas R,

Triebkorn P, Domide L, Mersmann J,

Solodkin A, Jirsa VK, McIntosh AR

and Ritter P (2015) TVB-EduPack—An

Interactive Learning and Scripting

Platform for The Virtual Brain.

Front. Neuroinform. 9:27.

doi: 10.3389/fninf.2015.00027

TVB-EduPack—An Interactive
Learning and Scripting Platform for
The Virtual Brain
Henrik Matzke 1, 2, 3 †, Michael Schirner 2, 3 †, Daniel Vollbrecht 2, 3, Simon Rothmeier 1, 2, 3,

Adalberto Llarena 2, 3, 4, Raúl Rojas 4, Paul Triebkorn 2, Lia Domide 5, Jochen Mersmann 6,

Ana Solodkin 7, Viktor K. Jirsa 8, Anthony Randal McIntosh 9 and Petra Ritter 1, 2, 3, 10*

1Minerva Research Group BrainModes, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,
2Department of Neurology, Charité – University Medicine, Berlin, Germany, 3 Bernstein Focus State Dependencies of

Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany, 4 Intelligent Systems and Robotics Lab,

Department of Mathematics and Computer Science, Free University, Berlin, Germany, 5Codemart, Cluj-Napoca, Romania,
6CodeBox GmbH, Stuttgart, Germany, 7Departments of Anatomy & Neurobiology and Neurology, School of Medicine,

University of California, Irvine, Irvine, CA, USA, 8 Institut National de la Santé et de la Recherche Médicale, Institut de

Neurosciences des Systèmes UMR 1106, Université d’Aix-Marseille, Marseille, France, 9 Rotman Research Institute of

Baycrest Centre, University of Toronto, Toronto, ON, Canada, 10 Berlin School of Mind and Brain and Mind and Brain

Institute, Humboldt University, Berlin, Germany

The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full

brain network simulation based on individual anatomical connectivity data. The

framework addresses clinical and neuroscientific questions by simulating multi-scale

neural dynamics that range from local population activity to large-scale brain function

and related macroscopic signals like electroencephalography and functional magnetic

resonance imaging. TVB is equipped with a graphical and a command-line interface to

create models that capture the characteristic biological variability to predict the brain

activity of individual subjects. To enable researchers from various backgrounds a quick

start into TVB and brain network modeling in general, we developed an educational

module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly

integrate into TVB’s graphical user interface (GUI): (i) interactive tutorials introduce

GUI elements, guide through the basic mechanics of software usage and develop

complex use-case scenarios; animations, videos and textual descriptions transport

essential principles of computational neuroscience and brain modeling; (ii) an automatic

script generator records model parameters and produces input files for TVB’s Python

programming interface; thereby, simulation configurations can be exported as scripts

that allow flexible customization of the modeling process and self-defined batch- and

post-processing applications while benefitting from the full power of the Python language

and its toolboxes. This article covers the implementation of TVB-EduPack and its

integration into TVB architecture. Like TVB, EduPack is an open source community

project that lives from the participation and contribution of its users. TVB-EduPack can

be obtained as part of TVB from thevirtualbrain.org.

Keywords: The Virtual Brain, brain modeling, computational neuroscience, connectome, educational platform

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00027
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2015.00027&domain=pdf&date_stamp=2015-11-25
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:petra.ritter@charite.de
http://dx.doi.org/10.3389/fninf.2015.00027
http://journal.frontiersin.org/article/10.3389/fninf.2015.00027/abstract
http://loop.frontiersin.org/people/244328/overview
http://loop.frontiersin.org/people/239697/overview
http://loop.frontiersin.org/people/240603/overview
http://loop.frontiersin.org/people/272624/overview
http://loop.frontiersin.org/people/185207/overview
http://loop.frontiersin.org/people/82601/overview
http://loop.frontiersin.org/people/82672/overview
http://loop.frontiersin.org/people/4334/overview
http://loop.frontiersin.org/people/7299/overview
http://loop.frontiersin.org/people/4729/overview

Matzke et al. TVB-EduPack

INTRODUCTION

The Virtual Brain (TVB; thevirtualbrain.org) is a Python-based
neuroinformatics platform for the simulation of realistic large-
scale networks (Jirsa et al., 2010) of neural population models
available for all major operating systems, including Windows,
Mac OS, and Linux (Ritter et al., 2013; Sanz-Leon et al., 2013;
Roy et al., 2014; Woodman et al., 2014). TVB provides a generic
framework for computational modeling and tools to extract
structural and functional connectomes frommultimodal datasets
(Schirner et al., 2015) in order to link personalized brain network
structure with neural population models. It is an open-source
whole-brain simulation platform that integrates empirical data of
differentmodalities and spatial scales to construct comprehensive
and biologically plausible models of global brain network
dynamics. TVB combines structural magnetic resonance imaging
(MRI) data (to account for brain geometry) with diffusion-
weighted MRI (to account for brain connectivity) to establish
an individualized brain network model. Brain connectivity as
defined in the context of brain network models (Sanz-Leon
et al., 2015) comprises the complete space-time structure of
the large-scale connectome, i.e., time delays and connection
strengths between brain regions. Computational models in TVB
generate functional data that can be directly compared against
empirical data such as functional MRI, electroencephalography
(EEG), magnetoencephalography (MEG), intra-cortical local
field potentials (LFP), and multiunit activity (MUA) recordings
(Ritter et al., 2013; Roy et al., 2014). These empirical data serve as
targets to modify the free biologically meaningful parameters of
the model in order to produce optimal model fit. The parameters
are either constrained by biology, or by dynamics considerations.
The neuroinformatics architecture of TVB is used to create
large sets of brain models within a unifying framework, to
systematically explore the relation between structural network
features and biophysical parameters to different empirical brain
states or network patterns. TVB relates the signals of different
imaging modalities to underlying neuronal sources and thereby
provides insight into underlying mechanisms (Becker et al.,
2015). While currently TVB accounts for brain structure and
function, it will next also accommodate detailed anatomical
maps, e.g., of receptor distributions as additional model constrain
adding another level of detail and bringing the model’s behavior
closer to the real brain. Like all models, brain network models
use abstractions to describe neuronal population behavior and
their interaction. Despite the reproduction of several features of
empirical neuroimaging data, their biological plausibility is still a
matter of ongoing research.

Obtained as standalone software, TVB is distributed
including all used dependencies, such as the Python interpreter,
CherryPy, Genshi, NumPy, and SciPy. Optionally controlled
by a convenient graphical user interface (GUI) or a Python
programming interface for advanced modeling and post-
processing, TVB appeals to a wide user group. Running in a web
browser, 2D and 3D visualizations are implemented withWebGL
and scalable vector graphics; data and project management is
handled by an SQL database. As a community-driven open-
source software, TVB is licensed under GPL 2.0 and sources

may be freely forked from a GitHub repository, modified, and
distributed.

In TVB, brain structure is parcellated into cortical and
subcortical regions with each region serving as a node in a
large-scale network model. Edges of the network represent the
anatomical connectivity between regions, mediated by long-
range white matter fiber bundles. The local activity at each
node is simulated by models that capture typical dynamics of
mesoscopic neuronal population activity, involving interacting
excitatory, and inhibitory subpopulations. Regions are connected
by edges that represent the strengths and time-delays of
interactions between anatomical regions, which are inferred
from diffusion-weighted magnetic resonance imaging (dw-MRI)
data by tractography. Based on subject-specific anatomy, TVB
enables the full-brain simulation of individualized mean field,
EEG, MEG, and functional MRI (fMRI) activity. Local node
models comprise a choice of more than 10 population models
that, depending on their parameterization, enable the simulation
of brain activity under different physiological and pathological
conditions.

Despite a set of visual aids that make TVB understandable
for the user, it is still a complex simulation tool. Specially, when
considering users without deep knowledge in neuroscience and
its computational principles. Therefore, in order to facilitate
TVB’s usability of the Graphical User Interface (GUI), an
educational tool that could help the user to learn interactively
was required. Here we introduce TVB-EduPack (Matzke, 2014),
a new module of TVB that serves a two-fold purpose:

• First, to enable a quick start into the variety of model
construction, simulation, post-processing, and analysis
options available, TVB-EduPack offers an interactive guide
that leads users through functionality, handling, and
application of TVB. Interactive tutorials guide the user in a
step-by-step manner through use case examples that show
how to perform advanced modeling with TVB. Using this
instructional design framework, TVB-EduPack combines
didactic preparations of computational neuroscience contents
with practical results delivered by brain simulation.

• Second, in order to allow the TVB users to automate or
demonstrate their work, TVB-EduPack contains a graphical
script creation tool that exports simulation and model
configurations and thereby enables users to create re-usable
and modifiable batch scripts for the TVB console interface.

EduPack tutorials are divided into two groups addressing
new and experienced users. Introductory tutorials familiarize
new users with basic TVB usage, while advanced tutorials
offer guidance in use-case scenarios. Another application is
the convenient formalization and reproduction of published
results enhancing reproducibility and visibility. The set of TVB-
EduCases is constantly growing with new EduCases being added
in an ongoing manner, as they are flexible and convenient to
create using XML Schema Definitions. EduCases can be easily
generated on the basis of TVB project files. EduPack exports
the individual steps of a regular TVB application like model
construction and simulation as XML file that can be enhanced
by guiding comments, videos, images or audio files. EduCases

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

encompass a variety of user backgrounds, interests and skill sets.
Tutorials and educational elements can be configured to lay
the focus on, e.g., physiological, pathological, neuroscientific, or
theoretical contents.

While GUIs are convenient to use, their possibilities and
flexibility are generally limited. As modeling scenarios get more
complex, users often switch to the programming interface.
To ease this transition, EduPack contains a script generation
tool that automatically exports simulation script templates with
model parameter and simulator configuration settings specified
within the GUI.

In addition to the newly developed educational framework,
TVB distributions contain a user guide and an online
documentation for the GUI and the programming interface,
which also includes some tutorials and information about data
structures. Parts of the user guide are also embedded into the
GUI in the form of clickable help buttons that reveal contextual
information in the form of GUI overlays. Furthermore, TVB
hosts a mailing list as support and discussion forum and to get
into direct contact with the developers. While earlier articles on
TVB focused on the description of the mathematical framework,
the software infrastructure and analyses of dynamics of brain
network models, here we now introduce an educational add-on
module for TVB that enables new users to quickly familiarize
themselves with TVB usage and brain network modeling in
general.

FUNCTIONALITY AND DESIGN

Background: Modeling Brain Activity with
TVB Simulation Platform
TVB-EduPack is an educational module for the software product
TVB. TVB is a neuroinformatics platform that enables the GUI
or command based construction, simulation and analysis of brain
network models (BNMs). BNMs are mathematically represented
by a generic large-scale brain network equation (Jirsa, 2009;
Spiegler and Jirsa, 2013) that describes how each node of the
large-scale network is governed by its own intrinsic dynamics
and the interaction with all connected nodes. TVB distinguishes
two types of interactions: instantaneous local interactions whose
spatial extent is described by a Kernel function and long-range
interactions. While in the real system long-range interactions
are mediated by groups of axons that are bundled to form
white-matter fibers, in TVB, global node-node communication
is formalized by two connectivity matrices: a weight matrix that
specifies the strength of information transmission and a delay
matrix that specifies the time delays due to signal transmission
delays. The activity of nodes is described by neural mass models
that approximate intrinsic population dynamics, e.g., Wilson-
Cowan (Wilson and Cowan, 1972), reduced representations
of excitatory and inhibitory networks of Fitz-Hugh Nagumo
(FitzHugh, 1961), Hindmarsh-Rose (Stefanescu and Jirsa, 2008),
andWong-Wang oscillators (Wong andWang, 2006; Deco et al.,
2009), Jansen-Rit (Jansen and Rit, 1995), Kuramoto (Kuramoto,
1975; Cabral et al., 2011), and a generalized 2d oscillator capable
of generating a wide range of population dynamics on multiple

time-scales includingmultistability and coexisting oscillatory and
non-oscillatory regimes.

TVB GUI is divided into three main areas (Figure 1): Header
menu (Figure 1A), main area (Figure 1B) and footer menu
(Figure 1C). Starting at the top left corner, the header menu
shows the identifier of the current project (1). A button (2)
opens a drop down menu (6) for the currently running GUI
interface. The drop down menu contains links to functionalities
implemented in different interfaces as described in the TVB user
guide and online documentation. The subsequent panel shows
status information about current operations (3 and 4) followed by
another drop-down menu (5) that allows setting options for the
current interface. The footer (Figure 1C) switches between the
different interfaces of TVB: USER, for managing user accounts
and general settings, PROJECT, for managing and exchanging
projects and associated input/output data, SIMULATOR, to
configure, launch and monitor simulations, ANALYZE, where
simulation results can be analyzed, STIMULUS, where users
can create model stimulation patterns for simulations and
CONNECTIVITY, for visually editing local and large-scale
connectivity.

Both, GUI and programming interface act as front-ends for
TVB. Following a client-server model, both interfaces connect
to the Flow Manager that controls those back-end modules
and storage components (the GUI via a web-server), enabling
multi-user applications on PC or supercomputers. The Web

Server generates the HTML interface by receiving data from and
passing inputs to the flow-manager. The Flow Manager is in
charge of TVB’s high-level program control flow and regulates
the interaction of all other back-end modules by receiving
user actions, feeding back of TVB’s responses and all internal
processing. The Database, alternatively SQLite or PostgreSQL,
organizes project structures by storing references to involved
data entities like time series, connectivity matrices, surface
triangulations or sensor coordinates. Actual data are stored as
HDF5orASCII files, due to size. The storage component ofTVB is
optional and can be switched offwhen using the console interface.

To implement TVB’s complex graphical interface, the HTML

Interface consists of several client-side components: Data

Reader, feeds data from the back-end to the front-end; mainly
needed for asynchronous calls toward the server; WebGL

Renderer, for displaying 3d objects in canvas, Graph Renderer,
for displaying 2d plots, mainly with SVG. All TVB pages
in the web GUI are generated based on Genshi templates
on the server side and manipulated on the client-side by
JavaScript. The important elements of the generated pages have
unique identifiers that are used by TVB-EduPack to retrieve
position, status and content of GUI elements and to control or
interact with the desired objects in the DOM-tree (Document
Object Model tree; a structure for organizing objects in HTML
documents) of the respective page.

TVB-EduPack Functionality
Requirements

The main idea of TVB-EduPack is to provide new users with a
tool that enables them to quickly and easily familiarize themselves
with TVB and to use it effectively. Experienced users learn to use

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

FIGURE 1 | The Virtual Brain GUI is divided into three main areas: header menu (A), main area (B), and footer menu (C). The header menu shows the

identifier of the current project (1), a button (2) a drop down menu (6) with functionalities of the active tab (3). The upper right corner contains an information panel

about currently running operations (4) and another drop-down menu (5) with options for the current tab. The main area shows the currently active TVB interface-tab

and, if active, the Edu-Pack menu (7). The footer (C) allows to switch between the different interface tabs: USER, for managing User accounts and general settings,

PROJECT, for managing and exchanging projects and associated input/output data, SIMULATOR, to configure, launch, and monitor simulations, ANALYZE, where

simulation results can be analyzed, STIMULUS, where users can create model stimulation patterns for simulations and CONNECTIVITY, for visually editing local and

large-scale connectivity.

the more advanced and sometimes not-so-obvious possibilities of
working with TVB and to create re-usable and modifiable batch
scripts for the command interface. It also serves as an instrument
to quickly assess the dynamics of typical brain network activity
as it shows up on different scales (e.g., population level,
network level), in different imaging modalities (e.g., LFP, EEG,
fMRI, MEG, stereotactic EEG) and using different commonly
used metrics (e.g., Functional Connectivity, Power Spectral
Density, Effective Connectivity). Prior to implementation, several
requirements regarding functionality have been specified for
TVB-EduPack:

• Comprehensible interface that seamlessly integrates into TVB
GUI

• Simultaneous execution of TVB and TVB-EduPack allowing
users to start EduPack programs at all times during TVB usage

• Walkthrough tutorials that guide users through the interface
by pinpointing the sequence of required steps for different
tasks within TVB’s GUI

• Notification of futile simulation configurations
• Tutorials that show increasingly complex usage scenarios

• Knowledge transfer, mentorship and computational
neuroscience training by providing interactive guided
experiences that impart dynamical systems behavior

• Convenient authoring of new EduPack tutorials
• Facility for creating reusable TVB command interface scripts

based on simulations or analyses that have been created with
the GUI

• Customized support and educational contents for different
user groups

Aforementioned requirements have been implemented as two
core functionalities of TVB-EduPack, explained in the following.

Interactive Guides and Tutorials

The complexity of the human brain is reflected within the
models and tools used for simulating it. To enable a quick
start into working with TVB and BNM in general, EduPack
includes interactive tutorials that guide through functionality of
the software and related computational neuroscience topics. In
contrast to the documentation and reference, EduPack tutorials
allow users to directly engage in complex modeling scenarios

Frontiers in Neuroinformatics | www.frontiersin.org 4 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

FIGURE 2 | EduPack’s two-way interaction architecture.

while learning to use TVB. One fundamental requirement
was to automate the operation of TVB while letting the user
the possibility to maintain full control over TVB (Figure 2).
Therefore, at any arbitrary point every EduPack-tutorial can be
paused or completely stopped allowing the user to continue
with alternative actions. EduPack tutorials can be used as a
reference for complicated use-case scenarios, since users are also
not obligated to follow the linear structure of tutorials, but can
also skip steps and pick only actions that are relevant for the
intended usage (except when preconditions for those actions
need to be fulfilled). At relevant positions, topics that concern
the mechanics of BNMs and computational neuroscience in
general are explained with the help of short animations, videos,
or references to further material. Different types of graphical
elements, dubbed Helper Elements and Action Primitives, add
links to additional information at GUI positions, emphasize
the sequence of actions or highlights the elements that are
relevant for a certain task; furthermore, they verify the actions
of the user and give interactive feedback in the case of incorrect
usage, e.g., when meaningless parameter settings have been
used or relevant information is missing in the context of the
current EduCase scenario. For example, the software informs
users when parameters of a model are set such that they
will not reproduce the desired results of the active tutorial.
Generic XML structures allow for flexible modification and
extension of these elements, enabling the community to create
new tutorials or enhance the reproducibility and visibility
of results.

The educational component of TVB-EduPack realizes two
different educational purposes:

(i) EduStart, which gives users an interactive introduction
into the software TVB while introducing concepts and
methodologies in computational neuroscience.

(ii) EduCase, which develops computational neuroscience
concepts and methods further by leading the user through
in-depth tutorials that exemplify typical applications
like exploring dynamical regimes of different models or
tuning parameters to reproduce specific types of neuronal
activity.

TVB-EduStart tutorials teach users how to work with TVB.
Users are first introduced into the basic functionality and
usability, like creating projects, importing subject specific data
and constructing brain network models. At pivotal positions of
the GUI corresponding tutorials can be started upon pressing
the button. While guiding users through the different steps
of different software functions, EduPack provides the users
background information about the steps they perform and
introduces relevant concepts of computational neurosciences in a
step-by-step manner. TVB-EduCase tutorials lead users through
the wide spectrum of functionalities up to the point of being able
to generate and simulate models and to post-process and analyze
data provided by TVB.

A TVB-EduCase refers to a specific use case in TVB; therefore,
it is composed of the following elements:

• one or more steps and sub-steps which describe and guide the
use case

• one or more preconditions for a use case, step or sub-step
• one or more tasks that need to be fulfilled within a step or

sub-step before being able to continue to the next one
• one ormore assigned actions that need to be performed within

every step or sub-step

Thereby, this structure, implemented as XML file, enables
the creation of interactive tutorials and automatically running
macros. This automated application control uses the same set of
actions that are also used for the tutorials, so that tutorials and
macros can be interchanged flexibly.

Command Interface Script Creator

TVB-EduPack provides a user-friendly way to create scripts for
the command interface of TVB based on simulations that were
set up within the GUI. This feature enables users to automatically
export scripts that can be used as input for the console interface
of TVB, after model and simulation settings have been configured
within the GUI. Thereby, the script generator allows users to
quickly learn the structure and usage of the command line
interface. While the GUI is easier to use for beginners, the
console interface allows more flexibility, since actions are not

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

confined by the operations implemented in the GUI. Script
files have the advantage that they can be quickly modified and
customized as required; all specified data sets, parameters, and
model configurations can be exchanged by text replacement,
allowing rapid batch processing. For example, after creating a
specific simulation scaffold and exporting it as a script, the user
can define a large number of structural connectivity datasets for
which the operations are to be performed. Regions for parameter
sweeps can be easily adapted and local models flexibly exchanged.
Since the interface is specified in Python, users can take advantage
of the full power of a high-level programming language and its
huge collection of data analysis toolboxes for post-processing,
data management and analysis.

Interface Design
The major design requirements and constraints for TVB-
EduPack are: (i) smooth integration into the existing TVB GUI
and the TVB framework in accordance with its own design
principles, (ii) neglectable interference with the performance,
functionality, and usability of TVB, (iii) easy maintainability
and flexibility regarding extension, (iv) streamlined realization of
intended functionality, (v) easy and pleasant usage. However, in
order to incorporate all functionalities described in the previous
section, it was necessary to reach a compromise between a

user-friendly design that interferes with the main parts of TVB
GUI as little as possible, while at the same time being able to
cover the full range of desired features. A further constraint
was the capability of the interface to be invoked at any time
during the regular TVB work process. While it is necessary
that EduPack is always available if needed, it should still permit
general interaction between TVB and users and not hamper
any of the features. Consequently, EduPack was integrated
as an overlay, thus, enabling its visibility in all interfaces of
TVB (Project, Simulator, etc.). A new button was added to
the right end of the footer menu that enables the on-demand
activation or deactivation of EduPack at anymoment during TVB
usage.

Figure 3 shows the design of the tutorial view of EduPack
activated within TVB Connectivity interface. EduPack consists of
a window overlay with attached and partially transparent hand-
drawn images that playfully pick up the TVB logo design to
accentuate the contrast between TVB and TVB-EduPack, but also
to show its affiliation. This design concept of comic style images
and animations is recurring through all TVB-EduPack elements
to express the didactic idea and to contrast it with the rigorous
scientific style of TVB. The size of the overlay rescales with the
browser size and is slightly transparent so that the user still sees
the underlying TVB GUI.

FIGURE 3 | Lower right section of the TVB Connectivity interface with activated TVB-EduPack in Tutorial Mode and with loaded example tutorial (See

main text for label description).

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

Checkboxes in the upper part activate or deactivate
different types of Helper Elements in the TVB GUI. Helper
Elements are clickable dialogue balloons that appear next to
important elements of TVB GUI (Figure 4) and a slider that
controls their transparency. Three types of Helper Elements
are included:

1. TVB-GUI Helper (blue): These elements point to TVB GUI
elements and provide contextual information about different
objects, like buttons, frames, or visualizers.

2. TVB-Parameter Helper (red): The parameter Helper Elements
impart physiological interpretations and further background
information for the different parameters and models that are
available within the TVB Simulation page.

3. TVB-Misc Helper (yellow): The miscellaneous Helper
Elements describe all software elements that are not part of
the other groups.

The main tutorial menu is located below the Helper element
control panel. The steps of a tutorial are indicated by green boxes
in the main tutorial menu. Using an accordion design, boxes
expand and reveal their content (e.g., tasks, sub-steps or textual
descriptions) when clicked.

Since the size of the TVB-EduPack is fixed a scrollbar appears
if more vertical space is needed. In case that the overlay window
lies on top of relevant TVB elements, EduPack can be shifted to
another position by using a so-called action primitive described
later.

All design elements of the EduPack interface are defined
in CSS groups and are dynamically manipulated by
corresponding JavaScript functions at runtime. Tutorials
are specified by XML documents that encode a generic
procedural protocol and enable proper structure of created
tutorials. A generic XML Schema Definition for creating and
manipulating tutorials was developed and is described in the
following.

A tutorial consists of three structure levels that describe its
individual steps and additional meta-information. The first level
is called Step and groups one or more second-level elements
called Sub-Steps. Steps and Sub-Steps can contain instructions
for the user, Action Primitives, constraints, or other featured
elements.

The following list contains a description of tutorial elements
as shown in Figure 3 and their corresponding XML tags.

A. Title of tutorial and version of TVB-EduPack (<title>).
B. Introductory description text for loaded EduCase

(<description>).
C. Structure level 1: A <step> element groups one <step-id>

element (starting at 00), one title element <label>, and one
or more <sub-step> elements. In the figure the element is
active and displays three sub-steps.

D. Structure level 2: Completed <sub-step> element. A <sub-
step> element contains one <substep-id> element and one
or more <task> elements. The heading color relates to
the type (indicated by <type> element) of the sub-step—
allowed values are: “description” (green), “parameter” (red)
and “misc” (yellow). The tutorial sub-step was successfully
completed, indicated by the text “done.”

E. Structure level 2: Active <sub-step> element.
F. Structure level 3: <detail> elements contain sub-step

description text. It can contain HTML elements like images
or integrated video components.

G. A <sub-step> element can have an auto-finish constraint
that performs the described action of the sub-step, or
as shown here, contain a link that will proceed to the
next element and mark the element as finished after
clicking it.

H. Structure level 2: Untouched <sub-step> element.
I. Status element: After clicking the link in G, the status on

the right side will change to done. When a <sub-step>
element is clicked, all related Action Primitives are loaded
and stay active as long as they are not completed or the<sub-
step> element is closed manually. When the user achieves all
constraints, the element will change to done. These elements
can also get the status open (not clicked or solved yet) or
blocked (when some predefined constraints are not met).

J. Status element: number of uncompleted sub-steps.

ARCHITECTURE AND IMPLEMENTATION

In this part, we describe the architecture and implementation of
TVB-EduPack and its integration into TVB. EduPack seamlessly

FIGURE 4 | Section of TVB Simulator interface with integrated parameter Helper Elements (red) and TVB-GUI Helper element (blue).

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

integrates into the existing TVB architecture and GUI by
operating on an intermediate level between the front- and back-
end components of the existing framework to ensure highest
possible independence of specific back-end implementations.
During startup, TVB invokes EduPack by loading an XML file
that contains a description of its menu structure and a reference
to its design definition. Upon clicking on its link, located in the
lower right corner of TVB, EduPack becomes active and visible
as an overlay that resumes with the last saved configuration and
progress.

Basic Architecture of TVB-EduPack and
Integration into TVB
TVB-EduPack is implemented by a collection of interacting
JavaScript scripts, XML Schema Definitions, a HTML template
and a CSS design definition file. Figure 5 shows an excerpt
of the TVB back-end system that contains the modules of
TVB relevant for EduPack, the added EduPack modules and
modules of TVB that have been modified for integrating
EduPack. As mentioned earlier, the basic components of TVB
consist of a graphical HTML application interface (and a
command based application interface that implements more
functionality than the GUI, but is omitted here since EduPack
is solely implemented for the GUI) that is hosted by a
web-server in the back-end system. The web server itself
is controlled by the so-called Flow Manager that regulates
the interaction of all other TVB components (e.g., Simulator

component, Upload component, Analyzer component) of
TVB.

EduPack is integrated into TVB by adapting relevant HTML
and JS templates of TVB’s Web Server module. Figure 5 shows
native, added and adapted modules: boxes with dotted lines show
untouched TVB elements, boxes with solid lines represent files
and packages of TVB-EduPack and dashed lines show modified
TVB packages. TVB-EduPack modules are only activated by
certain triggers in the TVB workflow, e.g., during startup, upon
user input, when simulations are started and when so-called
Action Primitives verify the chosen parameter configuration.
The TVB-EduPack controller module is activated by interrupting
TVB control flow in the method launchNewBurst() of the script
burst.js. Furthermore, a function was added to that script to
forward the current parameter configuration to TVB-EduPack
Controller (e.g., to check if these parameters match with a
configuration required by an EduCase).

EduPack is integrated into the TVB GUI in the base.css
design file by adding the used design specifications and a
connection to the activation link in the footer menu specified
in the footer.html template. The script edupack.js and the design
file edupack.css implement the main EduPack functionalities
and were integrated into base_template.html, which is the
central TVB HTML template that contains the main elements
and structure of all generated TVB pages. By integrating
EduPack scripts into the basic template, the XML-based EduPack
menu structure is invoked during TVB startup. XML files are
interpreted by the parsing script edupack_xml_parser.js. When

FIGURE 5 | Excerpt of TVB-framework component diagram with newly integrated EduPack modules and modified TVB modules.

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

TVB-EduPack is activated for the first time, several key-value
pairs are created in the localStorage object of the browser using
the methods localStorage.getItem(key), setItem(key,value),
and removeItem(key) within the EduPack Controller
edupack_basicController.js. Thereby, information about the
currently opened and finished tasks are saved and updated
during utilization of TVB-EduPack, such as the combination of
the current tutorial, step and sub-step id. This data is needed
and used so that users can continue at the point where they
last worked with TVB and TVB-EduPack. Furthermore, the
values about current progress (key=latestStep, value=stepId) and
completed tasks (key=latestTask, value=taskId) are stored and
checked by tasks that require certain preconditions to be fulfilled.

Upon invocation by burst.js, the TVB-EduPack controller
implemented in the script edupack_basicController.js either
loads the last used tutorial or the default EduPack startup
menu if the localStorage Object does not contain the related
preference variable of the activated Helper Elements (keys:
helper_description, helper_parameter, helper_misc) or the latest
progress (keys: latest_step, latest_task) due to the first use
of TVB-EduPack. Individual parsers were generated for the
different XML Schema Definitions, i.e., Helper Elements,
tutorials, task-related preconditions, and Action Primitives. For
all Helper Elements and tutorials, the parser creates HTML
DOM tree elements and integrates them into TVB-EduPack. The
other two parsers are event-driven and check for task-related
preconditions and Action Primitives when a task is started. For
all found preconditions and Action Primitives the attributes
are saved or forwarded to TVB-EduPack Controller and TVB
workflow continues. When one or more preconditions are not
fulfilled, this will be shown by a default, or, if defined, customized
message and all other checks are canceled. The controller checks
for similar active primitives and either ignores the new primitive,
adapts its lifecycle, or adds it to the list of current active Action
Primitives. In this way, the EduPack controller manages active
primitives and prevents interference between Action Primitives
of the same or a different type. Furthermore, TVB-EduPack
Controller updates active Action Primitives when the user
updates form fields or clicks in specific areas. Some of the user’s
actions can trigger TVB-EduPack Controller to activate, review or
remove active instances or even to interfere with TVB workflow
if required. At the moment parsers do not automatically
check for errors in the imported XML files. Therefore, tutorial
authors have to ensure that the used elements and their
structure are valid and that proper XML well-formedness is
given (this can be checked with free tools like http://xmlgrid.
net). The script edupack_precomputedDataManager.js contains
methods to import pre-computed simulation results and to
forward parameter settings to the Simulator interface of TVB.
The file edupack_batch_generator.js implements methods that
automatically generate Python scripts for the command line
interface of TVB on the basis of simulations that have been
configured within the TVB GUI.

Interactive Guides and Tutorials
Interactive Guides and Tutorials are implemented using two
different types of XML Schema Definitions (XSD): the first one

provides a generic Schema for the two types of tutorials (TVB-
EduStart and TVB-EduCase), while the other one specifies so-
called Helper Elements. Both XSDs are independent from one
another and can be created or adapted to aim at different user
groups. In contrast to the main EduPack menu, the following
elements are only loaded when the user activates those elements.

Helper Elements

Helper Elements are dialogue balloons that appear in the GUI
to give the user three types of information about GUI, modeling
parameters and miscellaneous TVB features. In addition to
the context sensitive Helper Elements implemented in TVB
(green buttons with question marks that show information about
data types from the TVB-API), Helper Elements provide in-
depth information in a didactic form. The powerful simulation
framework offered by TVB comes at the expense of a complex
and, especially in the beginning, potentially overwhelming
interface. When the user clicks on a TVB-EduPack Helper
element, the main screen of TVB gets darkened and a
speech bubble appears that reveals the contextual information
(Figures 4, 6). Didactic information or instructions come in the
form of short video or audio sequences, graphics or text. The
size of the speech bubble overlay relates to the content and
is opened directly next to the object. The overlay is movable,
if it obscures other object in the TVB GUI. HTML tags can
be used to emphasize text, integrate images, diagrams or link
to videos stored locally or on the web. The Helper element
closes when the user clicks on the “x” in the upper right corner
or into the shaded background. Behavior and appearance is
specified in the CSS class edupack.css and JavaScript scripts
edupack_xml_parser.js for the integration of the XML Schema
described elements and edupack_basicController.js for basic
functionality and management.

The XSD top-level element for Helper Elements is the
<edupack_xml_detail_description> tag. Helper element text is
defined as content of the <description> tag, while specification
of Helper element type and parameters is done by setting
respective attributes of that tag as summarized in Figure 6. It
is recommended to use the ![CDATA[...content...]]-tag for text
in order to integrate HTML tags, use media elements or special
characters. Figure 6 shows the components of theHelper element
XSD as well as an example listing and result in the GUI.

In order to create TVB-EduPack Helper Elements, the TVB
internal DOM-Tree ID of the elements must be specified by the
name-attribute. IDs are identified by a browser tool like Firebug
or Apache JMeter by hovering over the respective items with
the mouse. GUI elements of TVB either have a unique ID in
the DOM-Tree or belong to a certain class that can be used to
identify the corresponding element. Most of the element IDs or
class names are already specified in the Helper Elements XML file
(commented out) and can be directly used. This XML document
is also a good starting point to create specialized Helper Elements
for different user groups, like beginners or specific content for
computational neuroscientists (at the moment TVB-EduPack
integrates only one type of Helper Elements). Positioning of
Helper Elements is done through the retrieved position of
the DOM-Tree elements. Resizing or scrolling events in the

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2015 | Volume 9 | Article 27

http://xmlgrid.net
http://xmlgrid.net
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

FIGURE 6 | Helper element XSD, exemplary code listing and resulting Helper element.

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

browser are fetched by the edupack_basicController.js, because
these might require the repositioning of all visualized elements
on screen.

EduStart and EduCase Tutorials

Interactive assistance and tutorials allow the user to quickly start
working with TVB and to set up own simulations. EduStart
and EduCase Tutorials have the advantage that the user is not
bound to follow a single strict sequence of steps, but is enabled
to leave the suggested pathway of a tutorial and to flexibly
continue a started tutorial on an independent path. Tutorials are

implemented by a simple XSD and can be quickly created and
modified. Figure 7 summarizes the structure of tutorials.

Tutorials are organized into three structural levels comprising
mandatory as well as optional elements. All mandatory elements
are marked with a leading (1) before their tag-name. As
mentioned earlier, at the current stage parsing scripts do not
verify the validity of XML files, which might lead to errors
and even crashes of TVB. The first structural level is the top
level and organizes the individual steps of the tutorial specified
by the <step> element. Furthermore, it provides tags for the
configuration of general tutorial properties: tutorial title (<title>

FIGURE 7 | Overview of the XML Tutorial structure of all three levels.

Frontiers in Neuroinformatics | www.frontiersin.org 11 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

element), a description of tutorial content (<descriptions>
element) and preconditions for tutorials (<preconditions>
element). The <precondition> element can be used to organize
individual tutorials into a collection of tutorials that are sorted
by increasing levels of difficulty (tutorials can only be accessed if
their preconditions are met). A precondition is set by referencing
the content of the<title> element of another tutorial. The second
level is organized as a sequence of one or more <step> tags,
which correspond to the sequence of tutorial steps. Mandatory
elements are the <label> tag and the <step-id> tag, which
specify the heading of the step that will be shown in the menu
respectively the number according to which it will be arranged
and for referencing sub-level elements and animations within the
menu. The top element of the third level is the <sub-step> tag.
Each second-level <step> element capsules at least one <sub-
step> element. Mandatory elements are: a <sub-step-id> tag
sorted by increasing numbers, a <task> tag that contains the
title of the step and a <type> tag that specifies the color of
the sub-step (i.e., “green” for description, “red” for parameter
or “yellow” for miscellaneous) and all related links, overlays or
pointers.

A <sub-step> element becomes visible when the user
activates its parent step element. Upon clicking on <sub-
step>, the element becomes active and reveals its content, if
all <preconditions> of that <sub-step> element are fulfilled.
Preconditions are used when the execution of the current task

depends on the successful completion of a previous task, e.g.,
when the user is asked to switch to another interface in TVB.
If a <precondition> is not fulfilled, the <sub-step> element
is marked as “blocked” and will not open. For this case, the
author can specify an error message that pops up in a small
overlay. The content of the <precondition> tag defines the error;
it can be simple text or images if CDATA tags are used. Within
<sub-step> elements graphical overlays can be specified with
the <overlay> tag. Overlays are a way to incorporate further
audio-visual material like videos or animations that describe the
scientific or structural backgrounds of a certain step. Figure 8
shows an example of an overlay object with sliders. An overlay
appears in the sub-step content area as a blue “info”-button
that opens the overlay upon clicking. Upon clicking the overlay
appears and TVB GUI is darkened. By clicking in the darkened
background the overlay closes again. The implementation of
overlays is described in detail later.

Another child node of the <sub-step> element is the
tag <finish_constraints>, which is used to set task-related
constraints like, e.g., waiting for a key input or validating
the parameter configuration by some presets. Constraints are
specified by the contents of the <state> tag. In the current
version, parameter checks are the only available finish constraint;
thus, the only allowed content of the <state> element is
parameter_constraint. The content of the<manual> tag specifies
the text of a link that appears below the task allowing users to

FIGURE 8 | Parameter regime exploration tool: Sliders are used to set different simulation and model parameters. Pre-computed simulation results show

the associated dynamics for different metrics of interest like FC or power spectral density. Thereby, users can quickly determine meaningful parameter ranges for their

own simulations.

Frontiers in Neuroinformatics | www.frontiersin.org 12 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

manually set the state of the task to “completed” and to continue
with the next task.

Action Primitives

Action Primitives are a set of XML Schema Definitions
that specify event-related GUI operations for TVB-EduPack.
Applications are, e.g., highlighting of TVBGUI elements, moving
of the EduPack to different position within TVB GUI or
pointing at elements to hint users at important content. Action
Primitives can be flexibly created, modified or combined to
allow easy contribution and adjustment by the community. They
are integrated in EduPack by a JavaScript script that allows
to add or delete Action Primitives or to change their status.
During runtime, they are controlled by the so-called action-
manager, which schedules incoming or deletes expired Action
Primitives. Integration happens at specific levels in the different
XML structures of EduPack. When the respective level becomes
activated, the action primitive is loaded and started and stays
active until certain constraints have been fulfilled or the enclosing
element is closed. An overview of Action Primitive’s applications
is given in Figure 9.

The <task_overlay> primitive can be used to point to a
selected object on the screen and is mainly used in tutorials,
e.g., to hint the user at the location of a previously described
functionality. One or more <task_overlay> elements are
specified within one<sub-step> element. Upon activation, TVB-
EduPack adds a type-colored TVB-Helper element and a task id
number to the selected position. By specifying more than one
<task-overlay>, it is possible to implement a sequence of such
visual pointer elements, e.g., to show a series of GUI actions for
carrying out a certain operation. Since <task_overlay> can be
used in the same manner as <overlay>, it is also possible to
include animations or videos and to position them at the relevant

GUI location, e.g., to illustrate the effect of a certain parameter an
explanatory animation can be placed right next to the respective
configuration field. Besides the previously used element type for
color coding (for this structure called<helper_type>), additional
parameters are specified as attributes of the <action> element
and can have the same values as the <action> element used by
Helper Elements (Figure 6).

As the name suggests, the <move_edupack> primitive allows
tutorial authors to move TVB-EduPack to another position,
which is useful when the TVB-EduPack menu is hiding relevant
elements. In contrast to other Action Primitives that can
be integrated multiple times into one <sub-step> level, the
<move_edupack> will only work once in a <sub-step> element.
After the task is completed, TVB-EduPack will automatically
move back to its original position unless the next task includes
a <move_edupack> primitive as well. This action element is
most likely used in combination with other Action Primitives,
because its movement allows the user to click elements behind
TVB-EduPack without closing it. To implement a horizontal
translation operation, the attributemoveX is set. If this parameter
is not set or defined, a default value of 200pxmovement to the left
will be used for the translation.

The Action Primitive <highlight_and_compare> is used to
emphasize elements that have values that need to be re-evaluated
(e.g., parameter settings that will produce meaningless results)
or that need special attention during a tutorial by drawing a
red rectangle around them. The element stays highlighted until
the number in the related field is changed to the value specified
by the value-attribute. The action primitive <highlight> works
similarly, but only highlights elements without checking for a
preset. The action primitive <set_param_value> overwrites the
value of any parameter field within the Simulator interface. The
action primitive <load_project_xml> loads a TVB simulation

FIGURE 9 | Several applications of Action Primitives.

Frontiers in Neuroinformatics | www.frontiersin.org 13 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

XML, compares the specified values with the current values and
highlights all non-matching fields using the action primitive
<highlight_and_compare>.

In Table 1, we summarize all Action Primitives that have
been implemented up to now and allowed attributes and
values.

Console Interface Script Generator
The Console Interface Script Generator creates a Python
command line script for the console interface of TVB upon
button press. Upon setting a parameter configuration with the
Simulator Interface, users can download a script that performs
the specified simulation. When the user hits the corresponding
button in the Script Generator Menu of TVB-EduPack, the
method onButtonCreateBatchPressed() (which is associated with
the button) in the script edupack_batch_generator.js is triggered
and calls the function checkAndRunTVBPage(), which checks
whether the user is on the Simulator page of TVB. If
not, an overlay appears that informs the user that he is
not on the right page. If the Simulator interface is active,
the method runBatchGeneratorSimulator() is activated. This
method reads out the parameters from the simulator page
using the function getSubmittableData() from the TVB script
genericTVB.js (functions are accessible by their linkage in
base_template.html cf. Figure 5). Afterwards, the function saves
all parameter variable names and value pairs into a hash table
data structure. After that, the function createScript() fills the
parameter keys and values into a command script template.
Finally, the method saveTextAsFile() saves the script as text
file and triggers an automatic download of the file within
the browser.

CONCLUSIONS AND FUTURE WORK

The TVB neuroinformatics platform provides versatile
possibilities for construction, simulation and analysis of

TABLE 1 | Action types and corresponding attributes and values.

Action type Attributes Values

Task_overlay Section e.g., “s-project,” “s-burst,” …

Helper_type “task”

Group “elementId” or “elementClass”

Variable_name “nav-project,” “coupling,” …

Move_edupack Section e.g., “s-project,” “s-burst,”...

MoveX (optional) Numeric Value; default: 200

Highlight Section e.g., “s-project”

Variable_name e.g., “coupling”

Highlight_and_compare Section e.g., “s-project”

Variable_name e.g., “coupling”

Value Numeric value

Load_project_xml Section “s-burst”

Set_param_value Group “elementId” or “elementClass”

Variable_name e.g., “coupling,” “simulation_length,” …

Value Numeric value

subject-specific brain models and can be operated by a
graphical and a command interface. Here, we introduced
an expandable educational module for the neuroinformatics
platform TVB dubbed TVB-EduPack. In order to enable users
to quickly learn GUI operations, EduPack gathers interactive
user guides, tutorials, and other educational content (see also
Supplementary Figures 1, 2). Step-by-step tutorials guide
novice and experienced users through basic TVB operation
and complex use-case scenarios. Different types of interactive
elements are implemented that can be used for a variety of
functions, e.g., event listeners that check parameter settings
for validity as they are entered, graphical highlighting items
lead users’ attention to relevant parts of the GUI or point
out further options. Multimedia content like animations,
videos, audio, images and text can be integrated at each stage
of the TVB workflow. In order to ease the transition from
the GUI to the more powerful and flexible programming
interface, EduPack automatically creates command scripts
on the basis of simulations that were configured within
the GUI.

EduPack’s architecture was designed with the intention of
creating a lightweight, generic and extensible framework that
enables convenient ongoing content development. The main
interface used for the communication with TVB-EduPack is
implemented at the HTML level of TVB, reducing invasion of
its core libraries to a minimum. On this layer, GUI objects
are organized in a DOM tree, allowing simple addressing
and manipulation. The core functionality of EduPack is
implemented by JavaScript scripts that are loaded during the
startup of TVB and that register event handlers to TVB’s
HTML objects to catch desired events and to interrupt
the flow of TVB. EduPack’s content is defined by XML
structures that allow the quick and easy authoring of tutorials
and other features for the development of entirely new
functionalities. Therefore, EduPack represents a convenient
interface to add new GUI extensions and functionality to
TVB at its top layer without requiring manipulation of TVB’s
source code.

To initially estimate the impact of EduPack, several
tests regarding hardware consumption and usefulness were
performed. Activation of EduPack did not produce recognizable
differences in the rendering performance of TVB’s GUI. Runtime
and CPU consumption tests did neither for the web browser
process, nor for the TVB process show noticeable differences.
A comparison of initialization speed at the startup of TVB
and execution speed of simulations showed no difference for
an instance that was patched with EduPack and one that was
not. Additional main memory usage with activated EduPack
is below one Megabyte. EduCases that contain animations or
audio-visual content are varying in size (up to several MB)
depending on their contents, but are only loaded for the time
of execution of the respective EduCase. Hard disk consumption
of EduPack (including animations) is at the present stage
around 350MB.

The impact of EduPack was tested with EduStart for six
subjects (five medical students and one computer science
student) that had no prior experience with TVB and that were

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2015 | Volume 9 | Article 27

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

only provided with minimal instructions about the purpose
of the software and how to activate TVB and EduPack. It
took the students on average 35min to complete EduStart,
upon which they were able to use basic TVB functionalities.
EduStart covers tasks like creating a new project, uploading
subject data, performing a simulation (containing an explanation
of the mathematical model, the biophysical interpretation of
parameters and the integration scheme, details on how to select a
structural connectome, parameters from the simulator interface,
setting of output monitors like BOLD or EEG and starting the
simulation) and performing initial analysis of the results (i.e.,
viewing simulated time series).

Besides the EduStart tutorial, EduCases are available
that provide step-by-step guidance for using advanced TVB
functionalities like opening and viewing of simulation results,
usage of different viewing options, exporting of results,
generating, and analyzing different types of neuroimaging
signals and the design and application of electrical stimulation
paradigms. A further EduCase explains how structural
connectomes are integrated in the model, how they are used
within the software and how they can be modified to emulate
certain conditions like lesions of brain regions. Other EduCases
cover compound scenarios that employ simultaneous application
of different functionalities like monitoring and analysing the
results of stimulation or lesion studies with different modalities.
The TVB team is developing new EduCases in an ongoing
manner and we encourage the community to participate in
this process by providing own EduCases for the emerging TVB
applications.

Although the chosen XML-based approach supports
generality and flexibility, it could represent an obstacle for
XML-naive users. Therefore, to make authoring for EduPack
more convenient, upcoming versions will integrate a graphical
tool that automatically generates XML files by directly recording
GUI interaction, as well as drag-and-drop tools to integrate
EduPack elements like overlays, sliders or action elements.
Another upcoming feature, dubbed “Autopilot,” allows
users to watch demos of TVB use cases and workflows in
the GUI.

OBTAINING TVB-EduPack

TVB-EduPack is made available as part of the main TVB
distribution, which can be obtained from the TVB website
www.thevirtualbrain.org. To get in touch with other users and
developers and for questions concerning usage and development
the TVB mailing list can be reached at https://groups.google.
com/forum/#!forum/tvb-users. For contributing own code, the
GitHub code repository can be found at https://github.com/the-
virtual-brain. Online documentation and programming interface
specification is located at http://docs.thevirtualbrain.org.

AUTHOR CONTRIBUTIONS

HM, MS, DV, SR, AL, RR, PT, LD, JM, AS, VJ, AM, and PR
conceived the toolbox, developed the toolbox, provided content
for the toolbox, and wrote the manuscript.

ACKNOWLEDGMENTS

The authors acknowledge the support of the James S. McDonnell
Foundation (Brain Network Recovery Group JSMF22002082),
the German Ministry of Education and Research (Bernstein
Focus State Dependencies of Learning 01GQ0971), and the Max-
Planck Society (Minerva Program). We thank Jessica Palmer
for contributing graphical elements, illustrations, and visual
animations.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2015.00027
Supplementary Figure 1 | Description of TVB-EduPack menu: After a user

finished all tasks of a section, the number should be zero. Here, the user

opened the next section—it indicates four open tasks while one of them is already

active. All elements are colored red/orange as indicator for the parameter-type

related tasks.

Supplementary Figure 2 | The tutorial shows the user how to create a new

simulation and offers to read the text out loud.

REFERENCES

Becker, R., Knock, S. A., Ritter, P., and Jirsa, V. (2015). Relating alpha

power and phase to population firing and hemodynamic activity using a

thalamo-cortical neural mass model. PLoS Comput. Biol. 11:e1004352. doi:

10.1371/journal.pcbi.1004352

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of local network

oscillations in resting-state functional connectivity. Neuroimage 57, 130–139.

doi: 10.1016/j.neuroimage.2011.04.010

Deco, G., Jirsa, V., McIntosh, A., Sporns, O., and Kötter, R. (2009). Key role of

coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci.

U.S.A. 106, 10302–10307. doi: 10.1073/pnas.0901831106

FitzHugh, R. (1961). Impulses and physiological states in theoretical models

of nerve membrane. Biophys. J. 1, 445–466. doi: 10.1016/S0006-3495(61)

86902-6

Jansen, B. H., and Rit, V. G. (1995). Electroencephalogram and visual evoked

potential generation in amathematical model of coupled cortical columns. Biol.

Cybern. 73, 357–366. doi: 10.1007/BF00199471

Jirsa, V. K. (2009). Neural field dynamics with local and global connectivity and

time delay. Philos. Trans. R. Soc. A 367, 1131–1143. doi: 10.1098/rsta.2008.

0260

Jirsa, V., Sporns, O., Breakspear, M., Deco, G., and McIntosh, A. R. (2010).

Towards The Virtual Brain: network modeling of the intact and the damaged

brain. Arch. Ital. Biol. 148, 189–205.

Kuramoto, Y. (1975). Lecture Notes in Physics, International Symposium on

Mathematical Problems in Theoretical Physics. New York, NY: Springer-Verlag.

Matzke, H. (2014). TVB-EduPack—An Interactive Learning and Scripting

Platform for the Virtual Brain (Master’s thesis). Free University

of Berlin.

Ritter, P., Schirner, M., McIntosh, A. R., and Jirsa, V. K. (2013). The Virtual

Brain integrates computational modeling andmultimodal neuroimaging. Brain

Connect. 3, 121–145. doi: 10.1089/brain.2012.0120

Roy, D., Sigala, R., Breakspear, M., McIntosh, A. R., Jirsa, V. K., Deco, G.,

et al. (2014). Using The Virtual Brain to reveal the role of oscillations and

plasticity in shaping brain’s dynamical landscape. Brain Connect. 4, 791–811.

doi: 10.1089/brain.2014.0252

Frontiers in Neuroinformatics | www.frontiersin.org 15 November 2015 | Volume 9 | Article 27

www.thevirtualbrain.org
https://groups.google.com/forum/#!forum/tvb-users
https://groups.google.com/forum/#!forum/tvb-users
https://github.com/the-virtual-brain
https://github.com/the-virtual-brain
http://docs.thevirtualbrain.org
http://journal.frontiersin.org/article/10.3389/fninf.2015.00027
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Matzke et al. TVB-EduPack

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical

framework for large-scale brain network modelling in The Virtual Brain.

Neuroimage 111, 385–430. doi: 10.1016/j.neuroimage.2015.01.002

Sanz-Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,

McIntosh, A. R., et al. (2013). The Virtual Brain: a simulator of primate brain

network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.00010

Schirner, M., Rothmeier, S., Jirsa, V. K., McIntosh, A. R., and Ritter, P. (2015).

An automated pipeline for constructing personalized virtual brains from

multimodal neuroimaging data. Neuroimage 117, 343–357. doi: 10.1016/j.

neuroimage.2015.03.055

Spiegler, A., and Jirsa, V. (2013). Systematic approximations of neural fields

through networks of neural masses in The Virtual Brain. Neuroimage 83,

704–725. doi: 10.1016/j.neuroimage.2013.06.018

Stefanescu, R. A., and Jirsa, V. K. (2008). A low dimensional description of globally

coupled heterogeneous neural networks of excitatory and inhibitory neurons.

PLoS Comput. Biol. 4:e1000219. doi: 10.1371/journal.pcbi.1000219

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions

in localized populations of model neurons. Biophys. J. 12, 1–24. doi:

10.1016/S0006-3495(72)86068-5

Wong, K.-F., and Wang, X.-J. (2006). A recurrent network mechanism of

time integration in perceptual decisions. J. Neurosci. 26, 1314–1328. doi:

10.1523/JNEUROSCI.3733-05.2006

Woodman, M. M., Pezard, L., Domide, L., Knock, S. A., Sanz-Leon, P., Mersmann,

J., et al. (2014). Integrating neuroinformatics tools in TheVirtualBrain. Front.

Neuroinform. 8:36. doi: 10.3389/fninf.2014.00036

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Matzke, Schirner, Vollbrecht, Rothmeier, Llarena, Rojas,

Triebkorn, Domide, Mersmann, Solodkin, Jirsa, McIntosh and Ritter. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2015 | Volume 9 | Article 27

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain
	Introduction
	Functionality and Design
	Background: Modeling Brain Activity with TVB Simulation Platform
	TVB-EduPack Functionality
	Requirements
	Interactive Guides and Tutorials
	Command Interface Script Creator

	Interface Design

	Architecture and Implementation
	Basic Architecture of TVB-EduPack and Integration into TVB
	Interactive Guides and Tutorials
	Helper Elements
	EduStart and EduCase Tutorials
	Action Primitives

	Console Interface Script Generator

	Conclusions and Future Work
	Obtaining TVB-EduPack
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

