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Abstract

Understanding, quantifying and attributing the impacts of extreme weather and climate
events in the terrestrial biosphere is crucial for societal adaptation in a changing cli-
mate. However, climate model simulations generated for this purpose typically exhibit
biases in their output that hinders any straightforward assessment of impacts. To over-5

come this issue, various bias correction strategies are routinely used to alleviate climate
model deficiencies most of which have been criticized for physical inconsistency and
the non-preservation of the multivariate correlation structure. In this study, we intro-
duce a novel, resampling-based bias correction scheme that fully preserves the phys-
ical consistency and multivariate correlation structure of the model output. This proce-10

dure strongly improves the representation of climatic extremes and variability in a large
regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome),
which is illustrated for summer extremes in temperature and rainfall over Central Eu-
rope. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using
a terrestrial ecosystem model (LPJmL) driven by the bias corrected climate forcing.15

The resampling-based bias correction yields strongly improved statistical distributions
of carbon and water fluxes, including the extremes. Our results thus highlight the im-
portance to carefully consider statistical moments beyond the mean for climate impact
simulations. In conclusion, the present study introduces an approach to alleviate cli-
mate model biases in a physically consistent way and demonstrates that this yields20

strongly improved simulations of climate extremes and associated impacts in the ter-
restrial biosphere. A wider uptake of our methodology by the climate and impact mod-
elling community therefore seems desirable for accurately quantifying past, current and
future extremes.

2000

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-print.pdf
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
climateprediction.net/weatherathome


ESDD
6, 1999–2042, 2015

Ensemble bias
correction

S. Sippel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

Weather and climate extreme events such as heat waves, droughts or storms cause
major impacts upon human societies and ecosystems (IPCC, 2012). In recent years,
these climatic events have changed in intensity and frequency in many parts of the
world (Barriopedro et al., 2011; Donat et al., 2013; Seneviratne et al., 2014) and5

changes are likely to continue throughout the 21st century (Sillmann et al., 2013).
Therefore, improving the scientific understanding of these events, including the link
to impacts, constitutes an important research challenge (IPCC, 2012; Zhang et al.,
2014).

The impacts of climate extremes and potential changes therein are strongly felt in the10

terrestial biosphere. For example, heat and drought events trigger ecological responses
(Reyer et al., 2013; Frank et al., 2015), which in turn induces changes to the cycling of
water and carbon through such systems with potential feedback to the atmosphere and
climate system (Reichstein et al., 2013; Frank et al., 2015). Indeed, on continental to
global scales, it has been shown that large-scale reductions in photosynthetic uptake of15

carbon by plants are mainly driven by water limitations (Zscheischler et al., 2014a, b).
Furthermore, it has been demonstrated that a single large event such as the European
heat and drought summer 2003 alone might undo several years of ecosystem carbon
sequestration (Ciais et al., 2005), thus potentially jeopardizing the terrestrial carbon
sink potential (Lewis et al., 2011).20

A widely debated question in this realm is whether the observed changes in the
occurrence of climatic extremes and associated impacts can be attributed to specific
changes in climate forcing, both anthropogenic or natural (Allen, 2003; Stone and Allen,
2005; Stone et al., 2009). To this end, large climate model ensembles are needed in
order to derive robust probabilistic conclusions about changes in the odds of these25

events (Bindoff et al., 2013; Massey et al., 2014), because direct assessments of rare
extremes are often prohibited by the lack of long and good quality observational time
series. Hence, climate models are indispensable tools to study present and future cli-
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mate extremes on various spatial and temporal scales, and the availability of such
simulations is often a prerequisite for studying climate impacts.

However, despite considerable progress in recent years, global and regional climate
models typically exhibit biases in various statistical moments of their simulated vari-
ables (Ehret et al., 2012; Wang et al., 2014), which often impedes direct assessments5

of climate extremes (Otto et al., 2012; Sippel and Otto, 2014) or simulating impacts
(Maraun et al., 2010; Hempel et al., 2013). These biases are often due to an imperfect
representation of physical processes in the models, parametrizations of sub-grid scale
processes, and an over- or underestimation of feedbacks with the land–atmosphere or
ocean-atmosphere feedbacks (Ehret et al., 2012; Mueller and Seneviratne, 2014). Due10

to the various origins of model biases, these biases are frequently varying depend-
ing on weather patterns both spatially and temporally, for instance in the distributed
weather@home ensemble-based modelling framework (Massey et al., 2014) or in an
ensemble of regional climate models (Vautard et al., 2013).

To alleviate this issue, various bias correction schemes have been developed in re-15

cent years that generally aim to statistically transform biased model output in order
to derive more realistic simulations (see e.g. Maraun et al., 2010; Teutschbein and
Seibert, 2012). To do so, a statistical relationship (“transfer function”) is built between
the statistical distribution of an observed and simulated variable (Piani et al., 2010).
Such methods span a wide range from very simple parametric transformations adjust-20

ing simulated means to observations (i.e. also called the “delta method” (additive) or
“linear scaling” (multiplicative), Teutschbein and Seibert, 2012) to sophisticated, non-
parametric approaches that aim to correct various statistical moments of the simulated
distributions such as quantile mapping approaches (Wood et al., 2004; Gudmundsson
et al., 2012).25

However, the application of bias correction implicitly requires that a range of as-
sumptions are met, which might be questionable in many cases and are discussed in
detail in Ehret et al. (2012). Most importantly, the application of bias correction implicitly
assumes that the statistical transformation improves the simulated output time series
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(“effectiveness”), whilst the signal of interest, e.g. the climate change signal or proper-
ties of the extremes, remains accurately detectable (“reliability”). Those assumptions
are not always fulfilled since statistical bias correction methods are not based on phys-
ical principles, but operate rather heuristically on an observed model-data mismatch.
To this end, even relatively simple methods that are designed to adjust “only” simulated5

long-term monthly means to observations (e.g. Hempel et al., 2013) lack a sound phys-
ical rationale to whether these adjustments are to be made additively or multiplicatively.
Further, the assumption of time invariant biases that currently underlies state-of-the-art
bias correction procedures (Christensen et al., 2008; Ehret et al., 2012) might be es-
pecially critical for century-long climate simulations spanning several degrees of warm-10

ing (Christensen et al., 2008; Buser et al., 2009) including changing land–atmosphere
feedback processes (Seneviratne et al., 2006). Recent studies have shown that this as-
sumption is questionable for future climate simulations (Maraun, 2012; Bellprat et al.,
2013), and have made attempts to address time-dependent biases.

Furthermore, an adjustment of daily variability does not necessarily improve monthly15

statistics, thus emphasizing the role of time scales at which bias correction is con-
ducted (Haerter et al., 2011). Lastly, if impact simulations are to be conducted with
bias-corrected output of numerical climate models, the multivariate correlation struc-
ture between climate variables deserves attention: Most bias-correction schemes that
are currently in use to simulate impacts have been suggested to correct each vari-20

able separately (Hempel et al., 2013) and hence dependencies between variables are
often not retained. This is especially critical for assessments of extreme events and
“compund events” (Leonard et al., 2014), where inter-variable interactions, such as
soil moisture-temperature feedbacks might play an important role (Seneviratne et al.,
2006). Although recent progress has been made to derive bivariate bias correction25

schemes (Piani and Haerter, 2012; Li et al., 2014), to the best of our knowledge cur-
rently no bias correction scheme retains a multivariate correlation structure of a larger
set of input variables for impact simulations.
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In conclusion, accounting for biases in climate model output is crucial in order to
produce credible climate model simulations. Nonethless, statistical transformations are
to be applied with caution and the changes induced to the simulated statistical mo-
ments, multivariate dependencies and spatio-temporal patterns deserve considerable
attention. Since the tails of statistical distributions are especially sensitive to changes5

in statistical moments such as the mean and variance (Katz and Brown, 1992), the
latter holds in particular for assessments of extreme events and highlights the need for
physically consistent ways to alleviate climate model biases.

In this paper, we demonstrate how a physically consistent bias correction of a re-
gional climate model ensemble might aid to better simulate climatic extreme events10

and impacts in the terrestrial biosphere (see Fig. 1 for the methodological workflow of
the paper).

First, we introduce a novel methodology to alleviate biases in the output of climate
model ensembles that successfully circumvents major deficiencies of statistical bias
correction (Sect. 3): an ensemble-based probabilistic resampling approach retains the15

physical consistency of the regional climate model output. This includes the preserva-
tion of the multivariate correlation structure, and the procedure is shown to considerably
improve the simulation of various statistical moments of the simulated variables. Sec-
ondly, we assess contemporary temperature and precipitation extreme events in Cen-
tral Europe on monthly to seasonal time scales by comparing a widely used “standard”20

statistical bias correction methodology (Hempel et al., 2013) with the original model
simulations and the probabilistic resampling (Sects. 4.1 and 4.2). This evaluation also
focuses on the uncertainty induced by different observational datasets used as a ba-
sis for any bias correction approach. Thirdly, we explicitly test how differently corrected
climatic data propagates into the simulation of impacts on major component fluxes of25

terrestrial carbon (net ecosystem exchange – NEE, gross primary production – GPP –
and ecosystem respiration – Reco) and water cycling (actual evapotranspiration, AET)
in the terrestrial biosphere using a dynamic vegetation model (LPJmL, Sect. 4.3). To
this end, we demonstrate that different ways to deal with biases in climate simulations
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yield both qualitatively and quantitatively different results regarding simulated impacts,
which affect both central moments of the distribution as well as extremes and variability.

2 Data

2.1 Climate model simulations

In this study, regional climate model ensemble simulations spanning 26 years (1986–5

2011) with approx. 800 ensemble members per year from the weather@home dis-
tributed computing platform are investigated (Massey et al., 2014). The “atmosphere-
only” simulations were conducted over the European region (identical to the EURO-
CORDEX region Giorgi et al., 2009) using a regional model (HadRM3P) on a rotated
grid nested into the global HadAM3P model. Both models share the same model for-10

mulation and are described in Pope et al. (2000). The regional (global) simulations are
run with a spatial resolution of 0.44◦×0.44◦ (1.875◦×1.25◦) with 19 vertical levels, and
the temporal resolution is set to 5 (15) min (Massey et al., 2014). The models are driven
by observed sea surface temperatures and sea ice fractions, the observed composi-
tion of the atmosphere (greenhouse gases, aerosols) and anomalies in the solar cycle15

(Massey et al., 2014). To derive different ensemble members, the initial conditions of
the driving GCM are perturbed on 1 December of each 1 year simulation (ibid.). For
further analysis and bias correction, the ensemble simulations were remapped to 0.5◦

spatial resolution using a conservative remapping scheme (Jones, 1999).
Massey et al. (2014) demonstrate that the ensemble setup described above pro-20

duces a realistic representation and statistics of European weather events, including
the extremes for most seasons and regions. However, despite these encouraging re-
sults, a relatively large mismatch remains between the statistical distribution of the
ensemble simulations and the observations in Northern Hemisphere summer, which
holds for the means of simulated seasonal temperature and precipitation (Massey et al.,25

2014) as well as for higher statistical moments, shown in the Supplement against the
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ERA-Interim reanalysis dataset (Dee et al., 2011). Especially in more continental parts
of the European model region, HadRM3P shows a pronounced hot and dry bias in
simulated summer weather (Figs. S1–S3 in the Supplement). However, note that the
ensemble setup still captures the entire range of the observed distribution (Fig. S1).
In HadRM3P, these biases are likely related to an imperfect parametrization of cloud5

processes in the model, leading to an overestimation of incoming solar radiation, which
in turn triggers warm and dry summer conditions (Richard Jones, personal communi-
cation, 2015) that are further amplified by strong soil moisture-temperature coupling in
the model (Fig. S4). In this context, it is worthwhile to note that these biases are not
a peculiarity of the regional climate model employed in this study, but indeed hold for10

many dynamically downscaled regional climate model simulations over Europe (Buser
et al., 2009; Boberg and Christensen, 2012).

2.2 Simulation of atmosphere–biosphere carbon and water fluxes

To assess terrestrial biosphere impacts of bias correcting regional climate simulations
(see Sect. 4.3), we simulate ensembles of atmosphere–biosphere fluxes of carbon15

(NEE, GPP, Reco) and water (AET) using the Lund-Potsdam-Jena managed land
scheme (LPJmL, Version 3.5, Sitch et al., 2003; Bondeau et al., 2007), a state-of-
the-art process-based dynamics global vegetation model that accounts for human land
use. We follow Schulze (2006) and Chapin III et al. (2006) in their definition of ma-
jor components of carbon cycling in terrestrial ecosystems: Gross primary productivity20

(GPP) denotes the vegetation’s gross photosynthetic uptake of carbon from the atmo-
sphere, whereas ecosystem respiration (Reco) is defined as the respiratory release of
carbon by plants and microbes in the ecosystem, i.e. including both (autotrophic) plant
respiration and (heterotrophic) soil organic matter decomposition. Net ecosystem ex-
change (NEE) constitutes the net carbon flux from the ecosystem to the atmosphere,25

i.e. the difference between Reco and GPP.
LPJmL simulates vegetation dynamics (growth, competition and mortality) and fully

coupled cycling of carbon (photosynthesis, autotrophic and heterotrophic respiration)
2006
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and water (transpiration, evaporation, interception, runoff) in terrestrial ecosystems and
managed systems (Sitch et al., 2003; Gerten et al., 2004; Bondeau et al., 2007). The
model is driven with monthly or daily climatic input data (temperature, precipitation, in-
coming shortwave radiation and net longwave radiation), atmospheric carbon dioxide
concentrations and soil texture. Vegetation structure in LPJmL is characterized by the5

fractional coverage of 11 plant functional types that differ in their bioclimatic limits and
ecophysiological parameters. Vegetation dynamics and competition are explicitly rep-
resented using a set of allometric and empirical equations and updated annually (Sitch
et al., 2003).

GPP in LPJmL follows the process-oriented coupled photosynthesis and water bal-10

ance scheme of the BIOME3 model (Haxeltine and Prentice, 1996). Subsequently,
autotrophic (growth and maintenance) respiration is subtracted from GPP, and the
net carbon uptake is allocated to plant compartments based on a set of allometric
constraints (Sitch et al., 2003). Ecosystem heterotrophic respiration depends on tem-
perature and moisture in each litter and soil carbon pool; carbon decomposition dy-15

namics are simulated as first-order kinetics with specified decomposition rate in each
pool (Sitch et al., 2003). Water cycling in LPJmL has been improved by Gerten et al.
(2004) and Schaphoff et al. (2013), where actual evapotranspiration (the sum of evap-
oration, transpiration and interception) is computed as a function from atmospheric
demand and soil moisture supply. Phenology and photosynthesis-related parameters20

in the LPJmL version used in this paper have been optimized against remote sens-
ing observations for an improved simulation of natural vegetation greenness dynamics
(Forkel et al., 2014), including the introduction of a novel phenology scheme.

LPJmL has been applied in a range of studies assessing ecosystem responses to
anomalous climatic conditions (Rammig et al., 2015; Van Oijen et al., 2014; Zscheis-25

chler et al., 2014b; Rolinski et al., 2015). Rolinski et al. (2015) argued that the model
might be able to capture various ecosystem physiological responses to climatic ex-
treme events such as heat or drought through various pathways. These include a water
stress response through reduced stomatal conductance, which in turn decreases both
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photosynthetic carbon uptake and transpiration. Further, the model responds to very
high temperatures by a photosynthesis inhibition and increased respiration (Rammig
et al., 2015).

In this paper, we use the weather@home climate data to derive ensemble-based
simulations of the functioning of terrestrial ecosystems. LPJmL simulations are con-5

ducted in natural vegetation mode (i.e. no human land use, fire or permafrost) in 0.5◦

spatial resolution and monthly time steps over Central Europe. For each bias-corrected
ensemble dataset, 2000 years of spinup to equilibrate soil carbon pools were con-
ducted, using randomly chosen years from the first 10 years of the HadRM3P ensem-
ble. Subsequently, atmosphere–biosphere fluxes were simulated at the monthly time10

scale for 1986–2010 over Central Europe (see Fig. 1 for methodological workflow).
This procedure was repeated five times to check that no carry-over effects from the
randomized spinup affect simulated biosphere–atmosphere carbon fluxes in the tran-
sient period. Since this was not the case, differences in carbon and water fluxes and
their extremes can be directly attributed to the bias correction of the climatic forcing in15

the transient period, and are analyzed in Sect. 4.3.

2.3 Observations

Any statistical assessment or correction method of biases requires reference datasets,
and the quality of bias adjustment is thus restricted by the quality of observations or
reanalysis data available (Ehret et al., 2012; Hempel et al., 2013). Consequently, the20

sensitivity of “bias corrected” model output to any given set of observations needs to
be tested. In this study, a range of observational datasets is used in order to charac-
terize uncertainty induced by using different observations for bias correction. In total,
seven different temperature and precipitation datasets consisting of gridded observa-
tions/reanalysis were used for the univariate bias correction (Sect. 4.2) and are detailed25

in Table 1. The simultaneous correction of multiple variables for the impact simulations
in the terrestrial biosphere presented in Sect. 4.2 are conducted using ERA-Interim as
reference dataset (Dee et al., 2011, see Table 1).
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To conduct the sensitivity analysis of climatic extremes and associated biosphere
impacts to the type of bias correction applied, we select one focus region in Central
Europe. This region roughly encompasses Germany (47.5–55.0◦ N, 6.0–15.0◦ E, see
e.g. Fig. S2a) and consists of temperate mid-latitude climate with maritime influence to
the North-West and more continental characteristics to the East. In addition, to sample5

local (i.e. grid cell scale) variability we test different bias correction scheme on one
single grid cell located in Central Germany (“Jena pixel”, 50.75◦ N, 11.75◦ E).

3 Methods

In this section, we describe the different bias correction methods deployed in this study.
First, a bias correction methodology designed for impact simulations that has been10

adopted widely is summarized (Hempel et al., 2013). Second, we introduce the novel
resampling-based bias correction scheme and lastly the methodologies for evaluation
are described.

3.1 Statistical bias correction

Hempel et al. (2013) presented a bias-correction that is designed to preserve long-15

term trends in simulated impacts and that has been used widely in simulating ef-
fects of climatic changes in different sectors such as water, agriculture, ecosystems,
health, coastal infrastructure, and agro-economy (see Warszawski et al. (2014) for an
overview).

The approach builds on earlier, conventional statistical bias correction schemes (Pi-20

ani et al., 2010; Haerter et al., 2011) and is based on linear transfer functions of the
form

2009
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xcor = a+bx. (1)

Here, x and xcor represent the simulated and corrected climatic variable, a and b are
coefficients to be calibrated.

In Hempel et al. (2013) the transfer function is applied additively (for temperature,
i.e. b = 1), such that5

a = Tobs − Tmod; (2)

where Tmod and Tobs represent the means of simulated and observed monthly temper-
atures, respectively.

To account for positivity constraints for precipitation and radiation components,
Hempel et al. (2013) suggested a multiplicative adjustment of those variables (i.e.10

a = 0), such that

b =
xobs

xmod

. (3)

These parametric transformations are applied on each grid cell and for each month
separately to account for potential temporal and spatial structure in the biases. By
applying this transfer function, long-term monthly means of the simulated distributions15

are matched with those in observations for each grid cell (Hempel et al., 2013). In
addition to adjusting monthly means, Hempel et al. (2013) also adjust daily variability
about the monthly means, but (importantly) the year-to-year variability at monthly time
scales remains unchanged. In our present analysis, we follow this conventional bias
correction scheme for comparison and denote it by “ISIMIP”.20

Furthermore, to isolate the effects of bias-correcting the full suite of impact variables
(temperature, precipitation and radiation) vs. correcting simulated precipitation only, we
conduct impact simulations with a “precipitation only” bias-corrected scenario (“PRE-
CIPCOR”).
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3.2 A novel resampling-based ensemble bias correction scheme

Conventional statistical bias correction methods have been criticized due to their phys-
ical inconsistency and the non-preservation of dependency relationships between me-
teorological variables (Ehret et al., 2012). In this subsection, we introduce a novel “bias
correction scheme” suitable for ensemble simulations that retains the physical consis-5

tency and multivariate correlation structure of the model output. The idea is to resam-
ple plausible ensemble members from a large ensemble simulation given the statistical
distribution of an observable meteorological metric (“constraint”). The procedure is il-
lustrated using the weather@home ensemble described above.

The largest biases in the HadRM3P simulation occur in the summer season (JJA)10

over the European model domain, where the model ensemble produces too frequent
and too pronounced hot and dry conditions (Massey et al., 2014). Importantly however,
the ensemble spans the entire distribution of observed summer conditions in most
parts of Europe, i.e. some (but too few) ensemble members produce relatively wet and
cold summers. Therefore, our resampling-based correction approach is designed to15

alleviate the representation of summer conditions in the model ensemble.
The bias correction procedure consists of the following steps and is illustrated in

Fig. 2:

1. Define an observable meteorological metric that is poorly represented (“biased”)
in the model ensemble. In this paper, we use summer mean temperatures over20

Central Europe, which are relatively well-constrained in observational datasets.

2. Estimate the probability distribution function of the meteorological constraint from
observational datasets using e.g. a kernel density fit (f̂obs(x), see e.g. Fig. 2a, blue
line for an illustration), where x denotes the constraint. Here, we use a Gaussian
kernel with reliable data-based bandwidth selection (Sheather and Jones, 1991)25

fitted over the observed meteorological constraint for the period 1986–2011 in
various observational datasets.
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3. Estimate the probability distribution of the meteorological constraint in the model
ensemble using the same estimation procedure as above (f̂mod(x), see Fig. 2a,
red line). The deviation between the red and blue line in Fig. 2a illustrates the
temperature bias in the weather@home ensemble.

4. Derive a transfer function that maps any given quantile in the observations (qobs,X )5

to the respective quantile in the model ensemble (qmod ,X , see Fig. 2b), such
that qmod,X = TF (qobs,X ) using the fitted kernels f̂obs(x) and f̂mod(x) to determine
empirical quantile functions. For example, a “median temperature” summer over
Central Europe (approx. 17.2 ◦C) would correspond to the 50th percentile in the
observations-based kernel (by definition). The transfer function would then map10

the 50th percentile in f̂obs to the corresponding 20.4th percentile in f̂mod (i.e. av-
erage summer temperatures of 17.2 ◦C would correspond to the 20.4th percentile
in the model ensemble, see Fig. 2b). In this study, we use Cubic Hermite splines
(Fritsch and Carlson, 1980) to determine the transfer function shown in Fig. 2b.

5. Derive a new “bias-corrected” ensemble (of sample size n) by randomly resam-15

pling n times from f̂obs and retaining the ensemble member that corresponds to
qmod,X as given by the transfer function.

Hence, the outlined procedure does not adjust any output variable in the model
ensemble thus preserving physical consistency, but rather selects plausible ensem-
ble members. This procedure invariably leads to a reduction in the effective ensemble20

size: For example in the HadRM3P ensemble, roughly the hottest 20 % of simulations
are effectively not chosen for the resampled ensemble since they are implausibly hot
(Fig. 2a). However, an evaluation of the sample size in the bias corrected ensemble
shows that at least 4 % of the ensemble simulations match any decile of observa-
tions (Fig. 2c and d, in an unbiased ensemble exactly 10 % of ensemble simulations25

would match each decile of observations), corresponding to an effective sample size of
at least approx. 1000 model years (=ensemble members) per decile of observations
(Fig. 2c).
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In conclusion, the outlined approach to bias correction is conceptually similar to ear-
lier ideas of assigning weights to different regional climate model projections based
on each model’s performance in order to derive probabilistic multi-model projections
(Piani et al., 2005; Collins, 2007; Knutti, 2010; Christensen et al., 2010). However, in-
stead of a weight assignment specific ensemble members are selected and combined5

into a new ensemble using the statistical distribution of observed meteorological con-
straints.

3.3 Analysis methodology

In Sect. 4.1 the outlined bias correction method is evaluated for the simulation of tem-
perature, rainfall and radiation using standard evaluation metrics such as seasonal10

mean values and interannual variability. Further, we evaluate soil moisture coupling
in the original and bias corrected ensemble against reanalysis data and upscaled ob-
servations by computing the correlation between summer mean temperatures and the
mean latent heat flux following Seneviratne et al. (2006).

Moreover, we analyze empirical return times of the original and bias-corrected en-15

sembles that are derived by plotting each ensemble value against its rank both for cli-
matological extremes (Sect. 4.2: monthly summer temperatures and cumulative sum-
mer rainfall) and simulated ecosystem–atmosphere annual fluxes of water and carbon
(Sect. 4.3).

To further understand discrepancies between the bias-corrected ensemble simula-20

tions and observed climate extremes (Sect. 4.2), we characterize the tails of simulated
and observed variables by extreme value theory (Coles et al., 2001). Hence, gener-
alized extreme value distributions (GEV) are derived from monthly temperature and
precipitation in a procedure similar to Sippel et al. (2015a), i.e. by resampling block-
maxima in randomly concatenated 10 year sequences of ensemble data and fitted to25

a GEV model using generalized maximum likelihood estimation. In observational data,
only a relatively small sample size is available (mostly 1901–2014 only) that is addi-
tionally plagued by non-stationarity and does not match the period in which ensemble
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simulations are available (1986–2011). Hence, for monthly temperatures we subtract
the trend and seasonal cycle from the original time series using Singular Spectrum
Analysis (v. Buttlar et al., 2014), and subsequently resample (monthly) summer tem-
perature anomalies (for the whole time series) by adding a trend and seasonal cycle
component drawn randomly from the period of available ensemble simulations (1986–5

2011). Approximate stationarity was assumed for seasonal precipitation, and hence no
further adjustments were made. Lastly, GEV models were fitted to the observations
following the procedure as described above.

4 Results

This section is structured as follows: first, we evaluate the bias correction procedure10

both for resampling based on an area mean and grid cell based constraint. Second,
climate extreme statistics and their sensitivity to bias correction schemes are investi-
gated (Sect. 4.2). More specifically, the probabilistic resampling scheme introduced in
Sect. 3.2 is evaluated against a conventional bias correction scheme (Hempel et al.,
2013, Sect. 3.1) and compared against the uncorrected simulations and different ob-15

servational datasets. Third, we illustrate how biases and their “correction” propagate
into climatic impacts exemplified by simulations ecosystem water and carbon fluxes in
Central European natural vegetation.

4.1 Evaluation of resampling bias correction

An evaluation of the distribution of variables in the resampled ensemble in Central Eu-20

rope shows that it not only improves the simulation of seasonal mean temperatures
(which it does by construction), but also yields considerable improvements to the simu-
lation of rainfall and radiation components (Fig. 3). This suggests that these biases are
related to specific synoptic situations in summer, justifying to apply the bias correction
approach to summer months. Hence, the multivariate covariance structure between25
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temperature, precipitation and radiation as simulated by HadRM3P appears to be well
represented in the model simulations posterior to the updating procedure given the
reanalysis/observational data. Moreover, while this procedure also improves the sim-
ulation of summer temperatures and precipitation on a monthly time scale, virtually
no changes in the ensemble statistics are induced to non-summer months (Fig. S1),5

indicating that the time scales of temporal decorrelation are short enough for a suc-
cessful application of the resampling procedure (Fig. S1). However, while conventional
statistical bias correction following Hempel et al. (2013) adjusts monthly means of the
distributions of precipitation and radiation (by construction), changes are induced by
the multiplicative adjustment to the width and shape of the distribution, including its10

tails (Fig. 3, see also Sect. 4.2).
An evaluation of the resulting spatial patterns of the resampling bias correction

shows that the representation of the simulated statistical distributions of temperature
and precipitation are considerably improved in Central Europe (area mean constraint)
and across the entire European model region (single grid cell constraints, Figs. S2–S3).15

Remarkably, this holds not only for seasonal averages, but also for higher statistical
moments such as the inter-decile range (Figs. S2–S3).

Furthermore, we test the representation of land–atmosphere coupling in the origi-
nal and resampled model ensemble by investigating the correlation strength between
summer mean temperatures (T ) with latent heat (LE) fluxes following Seneviratne et al.20

(2006). The original HadRM3P ensemble shows strong water limitation of evapotran-
spiration in summer (negative correlation between LE and T ) for most temperate and
Mediterranean European regions, thus overestimating soil moisture control compared
to reanalysis data and upscaled observations (Fig. S4). In the resampled ensemble,
land–atmosphere coupling remains strongly soil moisture controlled in the Mediter-25

ranean regions, but reduces in temperate European regions, resulting in spatial pat-
terns that resemble those of land–atmosphere coupling in ERA-Interim (Fig. S4). The
latter finding indicates that the procedure of eliminating implausible ensemble mem-
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bers also yields an improved representation of physical processes such as land–
atmosphere coupling in the resampled ensemble.

4.2 Sensitivity of climatic extremes to bias correction

4.2.1 Summertime temperature extremes

Summertime monthly extreme temperatures are shown in Fig. 4 as a spatial average5

for the study region located over Central Europe and for an illustrative and randomly
chosen grid cell (“Jena grid cell”).

The location, slope and shape of the lines in the return time plots shown in Fig. 4
reveal that the tails of simulated monthly temperature extremes are highly sensitive to
the type of bias correction applied, both for a regional average and a single grid cell:10

Uncorrected simulations overestimate both location and scale (i.e. slope of the line in
the return time plot) of positive temperature anomalies in summer, while this is not the
case for anomalously cold summer months (Fig. 4). An additive adjustment of monthly
means (orange lines in Fig. 4, Hempel et al., 2013) preserves slope and shape of the
tail, i.e. preserves the year-to-year variability of simulated monthly temperatures (and15

biases therein) in the ensemble. Note that this procedure cannot account for the asym-
metry between the upper and lower tail of simulated monthly temperatures – i.e. the
offset correction leads to an overcorrection of cold months, whereas the statistics of the
hot tails improve only marginally. This is confirmed by a statistical extreme value anal-
ysis (Figs. S5 and S6): the temperature offset approach adjusts only the location of the20

GEV yielding spurious artefacts in the (originally well simulated) cold tail, whilst not ac-
counting fully for the upper tail due to the aforementioned asymmetries. This is a funda-
mental drawback of using linear parametric transfer functions, i.e. even if the variability
of the simulated distributions would have been adjusted along with the means (see e.g.
Sippel and Otto, 2014), the outlined “asymmetry” issue would not necessarily improve.25

On the other hand, the probabilistic resampling procedure alters both the location and
slope of the lines in the return time plot, where resampling based on a spatial average

2016
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as well as on a grid cell constraint yield relatively similar representations of the tails. An
evaluation of the extreme value statistics shows that the probabilistic procedure indeed
considerably improves the statistical characteristics of the simulated tails in the ensem-
ble compared to (long-term) observations (Figs. S5 and S6). To this end, resampling
the original ensemble changes location and scale of the extreme value distributions,5

but the shape parameter of the tails remain effectively unchanged. Some caution is re-
quired due to the relatively scarce availability of observed monthly mean temperatures
(i.e. 1901–2014), which induces considerable uncertainties to the parameters of the
fitted GEV distributions (Figs. S5 and S6). Moreover, the different time periods of ob-
servations and ensemble simulations (1986–2011) impede a direct “evaluation” of the10

bias correction. Nonetheless, this indicative comparison yields very promising results
of bias-correcting without invasive changes to the simulated statistical distribution.

Lastly, our analysis shows that any bias correction based on a single grid-cell level in-
duces some uncertainty due to the choice of observational dataset. This is an important
issue to consider if impact model simulations on a grid cell scale are to be conducted,15

whereas regional averages are not as strongly affected. Figure 4 shows that resam-
pling the ensemble based on a spatial average constraint reduces this uncertainty as
compared to adjusting monthly means or resampling on a grid cell scale.

4.2.2 Summertime rainfall extremes

We extend the analysis of the previous paragraph to investigate how resampling based20

on a temperature constraint alters the representation of summer precipitation in a large
ensemble simulation. The original HadRM3P simulated summer seasons are too dry
in average over Central Europe (Fig. S2), which is largely due to a much too dry lower
tail (Fig. 5), whilst simulated heavy monthly precipitation matches relatively well the
available observational data (Fig. 5).25

The tails of simulated (cumulative) seasonal precipitation are sensitive to bias cor-
rection. As above, the plots in Fig. 5 illustrate that a statistical adjustment of the means
can be detrimental to statistics of extremes and variability. For instance, scaling monthly

2017
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means to match observations (Hempel et al., 2013) leads to an inflation of very wet
seasons that are physically implausible given the observations (Fig. 5, orange lines).
Likewise, the (biased) dry tail in HadRM3P improves only to a very limited extent if
the scaling approach is used. The extreme value analysis (Fig. S6) shows that the
multiplicative adjustment changes both location and scale of the tail distribution – and5

that both parameters are not necessarily improving (indeed often deteriorating, see
e.g. scale parameters in Fig. S6 in the Supplement) by applying a simple statistical
bias correction. However, resampling based on a temperature constraint yields a new
ensemble, in which the simulation of both tails has improved (Figs. 5 and S6). Only
minor changes have been induced to the (well-simulated) wet tail, whilst the previ-10

ously strongly biased dry tail has considerably improved (Figs. 5 and S6), indicating
that temperature-based resampling as deployed here successfully separates “plausi-
ble” ensemble members from the (unrealistic) hot and dry members. The extreme value
analysis shows that resampling largely alters the location of the simulated distribution
of seasonal rainfall extremes, whilst the scale and shape of the tails remain largely15

unchanged.
To conclude, it was shown that resampling based on a univariate observations-based

temperature constraint improves the simulation of rainfall variability and extremes by
teasing out ensemble members that are implausibly hot and dry in our case study
region.20

4.3 The impact of bias correction on simulated ecosystem water and carbon
fluxes

In this subsection, we present HadRM3P-LPJmL ensembles of simulated fluxes of car-
bon and water and discuss bias correction methods with a focus on the extreme tails
of the simulated distributions. Further, we investigate the sensitivity of the simulated25

carbon fluxes to an accurate representation of rainfall in the climatic input data.
Annual mean fluxes across the large ensemble of NEE, GPP, Reco, and AET are

shown in Table 2 for the 1986–2010 period for each bias correction and the control
2018

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-print.pdf
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
6, 1999–2042, 2015

Ensemble bias
correction

S. Sippel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

simulation. Conventional statistical bias correction that matches monthly means of the
HadRM3P ensemble exactly to those of the ERA-Interim control climate simulation
yields differences in fluxes of −6.6, −7.5 and −4.7 % for GPP, Reco and AET, respec-
tively. Note that differences in the resampled HadRM3P ensemble are less pronounced
(−4.2, −4.5, and −2.0 %, respectively), although no attempt has been made to adjust5

the statistical properties of the model output. Those differences in simlated annual
mean fluxes are related to higher statistical moments of the statistical distributions and
shown in Fig. 6.

To this end, simulated GPP, NEE, and AET show strong asymmetry in their simulated
distributions (Fig. 6): negative anomalies in GPP and AET are much more pronounced10

than positive ones; this holds also for NEE but with an inverted sign (ecosystem carbon
release corresponds to positive fluxes). However, the simulation of these extremes
is highly sensitive to bias correction, where the lower tails of GPP and AET in the
original and statistically bias corrected ensemble strongly overestimate reductions in
carbon and water flux. In contrast, negative GPP and AET anomalies in the resampled15

ensemble (corresponding to positive ones in NEE) exhibit a much less pronounced
lower tail and asymmetry and agree well with the control simulations.

For example, a positive anomaly in NEE corresponding to a 30 year return period ex-
ceeds +200 gCm−2 a−1 in the conventionally bias corrected simulations and the orig-
inal ensemble, whereas such an anomaly in the resampled ensemble hardly reaches20

+150 gCm−2 a−1 (Fig. 6b) roughly corresponding to an empirical 30 year return event
in the ERA-Interim control simulations. Similar arguments can be made for negative
anomalies in annual GPP and annual AET (Fig. 6). The different tails of the simulations
occur because the original meteorological ensemble implies large hot and dry biases
in summer, inducing negative anomalies in ecosystem–atmosphere carbon and water25

cycling. These biases are not accounted for by conventional statistical bias correction
but they are alleviated if an ensemble resampling scheme is used (see previous sub-
section). However, this is remarkable because monthly means of precipitaton in PRE-

2019
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CIPCOR and ISIMIP are identical to the control climate simulation, which highlights the
importance to consider statistical moments beyond the mean for impact simulations.

However, note that the positive tails of GPP and AET are not as strongly affected.
Furthermore, ecosystem respiratory fluxes show a relatively lower sensitivity to bias
correction (i.e. to hot and dry summer conditions).5

Further, we investigate whether different bias correction schemes induce different
sensitivities of LPJmL simulated carbon fluxes to rainfall. Here, the relationship be-
tween a growing season rainfall proxy (April–September rainfall sums) and annual NEE
is characterized using piecewise linear regression (Fig. 7a–d). Figure 7e shows that
LPJmL simulated annual NEE responds to rainfall in a roughly similar way across dif-10

ferent bias correction schemes, which highlights the need of an accurate representation
of precipitation in climate impact simulations in the terrestrial biosphere. However, char-
acterizing the annual NEE response for each quantile of the rainfall distribution shows
that the resampled rainfall distribution (PROBCOR) leads to a less negative NEE re-
sponse to rainfall (larger slopes in Fig. 7f), whereas a dry summer tail (in the ORIG,15

ISIMIP, and PRECIPCOR simulations) yields a generally stronger NEE response (more
negative sloped in Fig. 7f).

In conclusion, different bias correction methods induce different statistical properties
of simulated ecosystem–atmosphere fluxes of carbon and water. This affects the vari-
ability and skewness of NEE, GPP and AET simulations (as shown in Fig. 6), where hot20

and dry biases in summer imply a disproportional reduction in carbon and water fluxes
in climatically “unfavourable” years. Conventional statistical bias correction cannot ac-
count for this issue, whereas the novel probabilistic bias correction schemes alleviates
those biases to a very large extent.

5 Discussion25

In this paper, we have introduced a novel ensemble-based resampling bias correction
approach that retains the physical consistency and multivariate correlation structure of

2020
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regional climate model output. The methodology is conceptually similar to earlier ap-
proaches designed to constrain future probabilistic climate predictions based on obser-
vational constraints (Piani et al., 2005; Collins, 2007). Its application has been shown in
this paper to yield considerably improved simulations of weather and climate extremes.
Remarkably, the improvement holds for variables that have not been constrained upon5

(i.e. constraining on seasonal mean temperatures improves the representation of mean
and extreme precipitation), which indeed emphasizes the importance to bias correct in
a physically meaningful way. Furthermore, simple but widely used statistical bias cor-
rection methodologies (e.g. Hempel et al., 2013) have been evaluated with respect
to the effect on the representation of weather and climate extremes on monthly to10

seasonal time scales. These methods cannot account for biases associated with e.g.
specific synoptic situations that result in biases in higher statistical moments of the
simulated distributions, which indeed emphasizes the importance to bias correct in
a physically meaningful way. We demonstrated that this shortcoming of conventional
methodologies can be detrimental to statistics of weather and climate extremes and15

their variability. Although more sophisticated statistical bias-correction schemes (see
Gudmundsson et al. (2012) for an overview) might have an improved skill in rectifying
biases in higher statistical moments (such as e.g. asymmetries in simulated distribu-
tions) have not been explicitly tested in this study, the fundamental question of how
physical consistency can be preserved after bias correction (Ehret et al., 2012), in-20

cluding multivariate dependencies between variables, remains elusive. Therefore non-
linear and nonparametric bias correction techniques (Gudmundsson et al., 2012) might
potentially improve statistics of extreme events if a large enough sample of observa-
tions is available, but cannot retain physical consistency (Sippel and Otto, 2014) and
may ultimately fall short for correcting a set of input variables.25

To this end, we have explicitly simulated an ensemble of ecosystem–atmosphere
fluxes of carbon and water using a state-of-the-art biosphere model (LPJmL) in order
to test the sensitivity to bias correction. Similarly to above, we find that bias correction
induces strong effects on the representation of extremes and variability in carbon and
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water fluxes (Sect. 4.3). Mechanistically, the stark contrast between the bias correction
schemes can be traced back to the sensitivity of the LPJmL model to dry conditions
(see e.g. Rammig et al., 2015; Rolinski et al., 2015): NEE, GPP and AET in Central
Europe are to a large extent driven by the availability of rainfall in the growing season,
except for wet conditions, under which the relationship levels off (Fig. 7). Bias correction5

strongly affects the variability and extremes of rainfall (as shown above), thus inducing
pronounced asymmetries in simulated water and carbon fluxes (Figs. 7f and 6). There-
fore, our results highlight the importance to account not only for biases in the mean but
also for higher moments in the climatic input in order to generate robust insights into
the past, present and future climate impacts. Our results demonstrate that physically10

consistent bias correction schemes might be preferable for this task. Moreover, it has
been shown recently that climatic drivers exert multivariate controls on ecosystem re-
sponses such as phenology and vegetation greenness dynamics (Forkel et al., 2015),
therefore accurate ecosystem impact simulations requires bias correction schemes that
preserve the correlation structure of climatic data.15

However, several limitations of the present methodology should be discussed: First,
probabilistic resampling based on a regional observational constraint cannot account
for biases on very large regional or continental scales if the biases show a spatially or
temporally heterogenous structure or gradients. In the latter case, resampling-based
bias correction could lead to spurious artefacts in the spatio-temporal structure of the20

bias-corrected model domain. Secondly, a careful evaluation of the ensemble resam-
pling approach has to be made – particularly with a focus on the spatial and temporal
extent of the constraint and the resampled ensemble: A trade-off exists between re-
sampling on small domains (e.g. grid-cell based) that is sensitive to the choice of ob-
servational dataset, and very large domains that might be prone to a spatio-temporal25

bias structure. Thirdly, the applicability of bias correction methods for future projections
is currently unclear, since previous studies have shown that biases in climate projec-
tions (e.g. for the 21st century) are unlikely to be stationary (Ehret et al., 2012; Maraun,
2012). However, an application of the resampling approach to future projections sim-
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ilarly to the current practice of statistical bias correction (e.g. Hempel et al., 2013)
would be straightforward, i.e. based on a calibration using present or past conditions.
Lastly, the resampling approach requires relatively large ensemble sizes to be effective:
in order to plausibly cover the climate space in any particular location, the simulated
ensemble should cover the entire observed distribution. However, this condition does5

not necessarily restrict resambling-based bias correction methods to large ensembles
simulations: For example, under the assumption of ergodicity for a given time period,
resampling shorter time periods (e.g. single years) from smaller ensembles such as
CORDEX regional simulations (Giorgi et al., 2009) would provide a promising topic for
further study.10

Notwithstanding these limitations however, we show the usefulness of the novel bias
correction scheme that might be a useful and physically consistent alternative to con-
ventional statistical bias correction as long as global and regional dynamical climate
models suffer from pertinent biases.

6 Conclusions15

In this paper, we introduced a novel bias correction method that retains physical consis-
tency and the multivariate correlation structure of the climate model output based on an
ensemble resampling approach. We showed that such an approach strongly improves

a. statistics of weather and climate extreme events, and

b. the simulation of climate impacts such as ecosystem–atmosphere fluxes of car-20

bon and water, including extremes and variability therein.

The methodology could be readily taken up in probabilistic event attribution studies
that deploy large ensembles simulations (see Stott et al. (2013) for an overview) in
order to more realistically describe the statistics of (changing) extreme events.

Furthermore, detecting and attributing the impacts of climatic variability and ex-25

tremes on hydrological and socio-ecological systems has emerged as a highly topical
2023
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research area (Stone et al., 2009, 2013), including demonstrated interest by stake-
holders across various sectors (Schiermeier, 2011; Stott and Walton, 2013; Sippel
et al.b)Sippel, Walton). To this end, our study showed that it is crucial to account for
higher statistical moments in biased climatic input data, and to correct climatic biases
in a physically consistent way. Therefore, our methodology could be taken up by the5

climate impact modelling community to reduce climate forcing biases to a very large
extent without requiring any modifications to the climate model output.

The Supplement related to this article is available online at
doi:10.5194/esdd-6-1999-2015-supplement.
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Table 1. Datasets used for bias correction and evaluation.

Name of dataset Climate variables Domain and Orig.
Resolution

Provider and Reference

Berkeley Earth Observa-
tions (gridded experimen-
tal)

Tair Europe, 0.25◦,
monthly, 1850–2012

http://www.berkeleyearth.
org, Rohde et al. (2013)

Climate Research Unit
(CRU), High-resolution
gridded datasets

Tair, Precip. Global, 0.5◦,
monthly, 1901–2012

Climate Research Unit,
http://www.cru.uea.ac.uk/
cru/data/hrg/,
Harris et al. (2014)

CRUNCEP Tair, Precip., SWdown,
LWdown

Global, 0.5◦,
daily, 1948–2012

http://dods.extra.cea.fr/
data/p529viov/cruncep/
readme.htm

Global Precipitation Clima-
tology Centre monthly pre-
cipitation (GPCC)

Precip. Global, 0.5◦,
monthly, 1901–2012

Global Precipitation Clima-
tology Center (GPCC),
http://gpcc.dwd.de/,
Schneider et al. (2014)

E-OBS gridded dataset Tair, Precip. Europe, 0.5◦,
daily, 1951–2014

European Climate
Assessment and Dataset
(ECA&D), http://www.ecad.
eu,
Haylock et al. (2008)

ERA-Interim, Version 2
(ERAI)

Tair, Precip., SWdown,
LWdown, LE

Global, ≈ 0.7◦,
6 hourly, 1979–2014

European Centre for
Medium Range Weather
Forecasts (ECMWF),
http://apps.ecmwf.
int/datasets/data/
interim-full-daily/,
Dee et al. (2011)

Model Tree Ensembles LE Global 0.5◦,
monthly, 1982–2011

MPI Biogeochemistry
Jena,
Jung et al. (2011)

WATCH-harmonized
(WFDharmonized)

Tair, Precip., SWdown,
LWdown

Europe, 0.5◦,
daily, 1901–2012

MPI Biogeochemistry
Jena,
Weedon et al. (2011); Beer
et al. (2014)

WATCH ERA-Interim
(WFDEI)

Tair, Precip., SWdown,
LWdown

Global, 0.5◦,
daily, 1979–2012

EU-WATCH,
http://www.eu-watch.org/
gfx_content/documents/
README-WFDEI.pdf,
Weedon et al. (2011)
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Table 2. Annual mean ecosystem–atmosphere water and carbon fluxes simulated by LPJml.

Bias Correction Method NEE GPP Reco ET
(gCm−2 a−1) (m−2 a−1) (gCm−2 a−1) (mma−1)

HadRM3P-ORIG −26.5 1206.4 1179.9 501.5
HadRM3P-PROBCOR −30.3 1295.8 1265.5 525.9
HadRM3P-ISIMIP −31.6 1262.3 1230.7 525.2
HadRM3P-PRECIPCOR −38.2 1263.2 1225.0 511.2
ERAI-CONTROL −28.4 1353.3 1324.8 536.7
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Probabilistic attribution of extreme weather

A potential way to assess extreme events:
I run large climate model ensemble simulations (> 1000 for any

period) and analyse the (small) probabilities of extreme events
I allows to make statements how changing climatic drivers alters

the occurence frequency of extremes
I e.g. the ‘Fraction of attributable risk’: far = p1�p0

p1 = 1� p0
p1

(p0: probability of an event to occur in a system in reference state, p1: probability of an event in
a forced state, see e.g. Allen (2003), Nature, 421, 891-892)

weather@home.net+
I Distributed

climate modelling
I Further details:

climatepredic-
tion.net/weatherathome

I Figure: Courtesy
to Mitchell Black

Sebastian Sippel 13.11.2014 4 / 8

Figure 1. Methodological workflow of the study. (a) Generation of regional climate model sim-
ulations using a large ensemble modelling framework (climateprediction.net/weatherathome).
(b) Adjustment of biases in the regional climate model’s output. (c) Assessment of weather and
climate extreme events. (d) Ensemble simulation of ecosystem–atmosphere fluxes of carbon
and water using the LPJmL model.
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Figure 2. Illustration of ensemble-based resampling methodology. (a) Empirical cumulative
density function of JJA mean temperatures over Central Europe in ERA-Interim. The non-
parametric fit to the cumulative density using a Gaussian kernel for observations and the model
ensemble are shown by the blue and red lines, respectively. (b) A transfer function between the
observed and modelled distribution is derived using Cubic Hermite splines. (c, d) Fraction of
original ensemble members in percentile bins of the observed distribution (blue line in a), i.e.
“effective ensemble size” after resampling.
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Figure 3. Evaluation of the resampling bias correction methodology for the study area in Central
Europe for (a) temperature, (b) precipitation, (c) incoming short-wave radiation, and (d) incom-
ing long-wave radiation.
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Figure 4. Return times of hot (a, c) and cold (b, d) temperature extremes in summer (JJA)
in the original regional model simulations (“ORIG”), in the resampled ensemble (“PROBCOR”)
and the mean-adjusted ensemble (“ISIMIP”). Plots are shown as spatial averages over Central
Europe (top panels) and for an illustrative grid cell (Jena, bottom panels). Black dots in each
plot indicate empirical return times estimated from observations taken from 7 different datasets
that were used for bias correction.
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Figure 5. Return times of wet (a, c) and dry (c, d) rainfall extremes in summer (JJA) in the
original regional model simulations (“ORIG”), in the resampled ensemble (“PROBCOR”) and
the mean-adjusted ensemble (“ISIMIP”). Plots are shown as spatial averages over Central Eu-
rope (top panels) and for an illustrative grid cell (Jena, bottom panels). Black dots in each plot
indicate empirical return times estimated from observations taken from 7 different datasets that
were used for bias correction.
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Figure 6. LPJmL simulated distributions of ecosystem–atmosphere carbon and water fluxes
for Central European natural vegetation for each bias correction scheme. Each row shows the
simulated distribution and the upper and lower tail of NEE (a–c), GPP (d–f), Reco (g–i) and
AET (j–l), respectively.

2041

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-print.pdf
http://www.earth-syst-dynam-discuss.net/6/1999/2015/esdd-6-1999-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
6, 1999–2042, 2015

Ensemble bias
correction

S. Sippel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

−200

−100

0

100

200

300

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

JJA
HadRM3P−ORIG

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

JJA
HadRM3P−PROBCOR

−200

−100

0

100

200

300

200 300 400 500 600

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

JJA
HadRM3P−PRECIPCOR

200 300 400 500 600

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

JJA
HadRM3P−ISIMIP

Growing season rainfall [mm]

Ne
t e

co
sy

st
em

 e
xc

ha
ng

e 
[g

 C
 m
−2

 m
on

th
−1

]

a b

c d

200 300 400 500 600

−4
00

−2
00

0
20

0
40

0

Growing season rainfall [mm]

Ne
t e

co
sy

st
em

 e
xc

ha
ng

e 
[g

 C
 m
−2

 m
on

th
−1

] HadRM3P−ORIG
HadRM3P−PROBCOR
HadRM3P−PRECIPCOR
HadRM3P−ISIMIP

−4
−2

0
2

4

Li
ne

ar
 s

lo
pe

s,
 d

NE
E 

/ d
Pr

ec
ip

 [g
C 

m
−2

 a
−1

 m
m
−1

]

ORIG PROBCOR PRECIPCOR ISIMIP

Linear slopes between quantilese f

Figure 7. (a–d) Kernel density plots of the sensitivity of simulated annual NEE to grow-
ing season rainfall in LPJmL under four different bias correction schemes. Grey dots de-
note ERA-Interim control simulations in each plot, black lines indicate piecewise linear re-
gressions. (e) Piecewise linear regression relations for each bias correction scheme. Shaded
colours indicate confidence intervals (5–95th percentile of piecewise linear regression derived
by bootstrapping). (f) Distribution of linear regression slopes (dNEE/dRainfall) between regu-
larly spaced quantiles of the rainfall distribution for each bias correction scheme.
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