RESISTIVE BALLOONING STABILITY OF ADVANCED STELLARATORS

H.P. Zehrfeld, J. Kisslinger, H. Wobig

Max-Planck-Institut für Plasmaphysik EURATOM Association, D-8046 Garching, Federal Republic of Germany

Abstract

Recently it has been shown that the problem of resistive ballooning stability of plasmas in axisymmetric toroidal magnetic field configurations can be treated and solved applying a variational approach [1]. The method was suggested by the observation that resistive ballooning modes, in the framework of single-fluid MHD theory, can be conceived as Euler-Lagrange equations of an appropriately constructed Lagrangian. In the present paper we extend this method to three-dimensional configurations. A unique treatment for both stellarators and tokamaks becomes possible by specifying the MHD equilibria assigned for ballooning stability analysis in terms of suitable flux coordinates.

This approach and a stability investigation for the advanced stellarator Helias will be presented.

Using particular field line coordinates in the covering space the equations describing resistive ballooning modes [2] in a three-dimensional equilibrium configuration can be written in the form

$$\frac{1}{\mu_0} \mathbf{B} \cdot \nabla \left\{ \frac{\mathbf{k}^2}{\mathbf{B}^2} \mathbf{B} \cdot \nabla \mathbf{u} \right\} + \left\{ \mathbf{K} \frac{\mathbf{dp}}{\mathbf{dV}} - \frac{\rho \gamma^2 \mathbf{k}^2}{\mathbf{B}^2} \right\} \mathbf{u} + \mathbf{K} \frac{\mathbf{dp}}{\mathbf{dV}} \mathbf{v} = \mathbf{0} \tag{1}$$

$$\mathbf{B} \cdot \nabla \big\{ \frac{\mathbf{B} \cdot \nabla \mathbf{v}}{\mathbf{B}^2} \big\} - K \frac{d\mathbf{p}}{d\mathbf{V}} \big\{ \frac{\eta}{\gamma} + \frac{\rho \gamma^2}{\mu_0((\nabla \mathbf{p} \cdot (\mathbf{k} \times \nabla \sigma))^2} \big\} \mathbf{u}$$

$$-\left\{\frac{\eta}{\gamma}\left(K\frac{dp}{dV} + \frac{\rho\gamma^2k^2}{B^2}\right) + \frac{\mu_0\rho\gamma^2}{B^2}\frac{1+\beta}{\beta}\right\}v = 0$$
 (2)

Here

$$K \equiv 2\kappa \cdot (k \times \nabla \sigma)(k \times \nabla \sigma) \cdot \nabla V \qquad D \equiv 1 + \frac{\eta k^2}{\mu_0 \gamma}$$
 (3)

$$\mathbf{k} \equiv -\frac{2\pi \mathbf{n}}{\Psi'(\mathbf{V})} \nabla \tau \tag{4}$$

with k being the wave vector, κ the curvature vector, V the volume enclosed by a magnetic surface and Ψ being the poloidal magnetic flux; all other quantities have their usual meaning. (V, τ, σ) are right-handed flux coordinates in the covering space [3] of a magnetic surfaces resulting from the Clebsch representation $\mathbf{B} = \nabla V \times \nabla \tau$. σ is related to the arc length s along a field line by $d\sigma = ds/B$.

After an appropriate transformation of the equations (1) and (2) the problem to be solved can be seen to be equivalent to the stationarity conditions with respect to u of the quadratic functional

$$L(\gamma, V, \sigma_0) = \int_{-\infty}^{+\infty} \mathcal{L}(\gamma, V, \sigma, \sigma_0, \mathbf{u}(\sigma), \dot{\mathbf{u}}(\sigma)) d\sigma$$
 (5)

with the Lagrange density

$$\mathcal{L} = \frac{1}{2} (\dot{\mathbf{u}}^{\mathrm{T}} \cdot \mathbf{P} \cdot \dot{\mathbf{u}} - \mathbf{u}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{u}) \tag{6}$$

 $u=(u^1,u^2,u^3,u^4)$ comprises real and imaginary parts of u and v in equations (1) and (2) and $\dot{u}=du/d\sigma$ the components $du^k/d\sigma$, k=1,...,4. Q and P are equilibrium determined symmetric matrices with nonlinear dependence on the the complex growth rate γ . Thus unstable resistive ballooning modes u are those stationary points of L with Real $\{\gamma\}>0$. P and Q are equilibrium determined real symmetric matrices with nonlinear dependence on the the complex growth rate γ . They have the structure

$$\mathbf{P} = \begin{pmatrix} P_{11} & P_{12} & 0 & 0 \\ P_{12} & -P_{11} & 0 & 0 \\ 0 & 0 & P_{33} & P_{34} \\ 0 & 0 & P_{34} & -P_{33} \end{pmatrix}, \qquad \mathbf{Q} = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} & 0 \\ Q_{12} & -Q_{11} & 0 & -Q_{13} \\ Q_{13} & 0 & Q_{33} & Q_{34} \\ 0 & -Q_{13} & Q_{34} & -Q_{33} \end{pmatrix} \quad (7)$$

where the matrix elements are determined by equilibrium quantities.

The field line coordinates (V, τ, σ) can be easily related to Boozer's coordinates [4] which were used to investigate ideal ballooning modes for stellarator configurations [5].

In the present paper, for the case of resistive ballooning modes, we apply a variational approach which already turned out to be successful in the case of axially symmetric equilibrium configurations [1].

The computational procedure will be applied to a Helias configuration which originally is described in Boozer's coordinates (V, u, v). Fig. 1. shows a poloidal cut of magnetic surfaces reconstructed from data in the straight-field line flux coordinates (V, u, v).

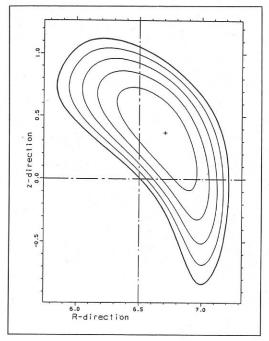


Fig. 1: Poloidal cut of magnetic surfaces of the Helias configuration reconstructed from data in straight-field line flux coordinates.

REFERENCES

- [1] H.P. Zehrfeld, K. Grassie, "Resistive Ballooning Stability of ASDEX Equilibria", Nucl. Fusion 5 (1988), 891.
- [2] D. Correa-Restrepo, "Resistive Ballooning modes in Three-Dimensional Configurations", IAEA-CN-41/V-3
- [3] R.L.Dewar, A.H.Glasser, "Ballooning mode spectrum in general toroidal systems", Phys. Fluids 26 (1983), 3038.
- [4] Boozer, A., Phys.Fluids 23 (1980) 904.
- [5] J.Nührenberg, R.Zille, Proc. 12th Eur. Conf.on Contr. Fusion and Plasma Physics (Budapest, 1985), EPS, Budapest 1985, Vol.9F, I, 445.

